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A NOTE ON HARMONIC MAPS OF STATISTICAL MANIFOLDS

FATMA MUAZZEZ ŞİMŞİR

Abstract. We show an existence and uniqueness result for a class of maps
from a flat statistical manifold into a Riemannian manifold in a given homotopy
class when the target Riemannian manifold is of negative sectional curvature
under a global topological non-triviality condition. We also show that due
to dualistic structure of the domain manifold the result is still valid in dual
coordinates.

1. Introduction

This paper is based on the application of the results of Jost and Şimşir, [1, 2].
Moreover, their deep relationship to the statistical manifolds is deduced. Fur-
thermore, the system of affi ne harmonic map equations is extended to dual flat
coordinates with inverse Kähler affi ne metric.
The concept of affi ne harmonic maps, geometry of statistical manifolds and its

close relationship to affi ne differential geometry and information geometry is sum-
marized in preliminaries. Then, the following section is devoted to the results on
harmonic maps of statistical manifolds.

2. Preliminaries

In Riemannian geometry higher dimensional generalizations of geodesics are har-
monic maps. They are the critical points of an energy integral that involves the
metric. Therefore, they have a variational structure which depends on the Levi-
Cività connection of the underlying Riemannian metric. An affi ne manifold, how-
ever, naturally possesses a different connection, a flat affi ne connection that has
nothing to do with the Levi-Cività connection of the auxiliary Riemannian metric.
In particular, that Riemannian metric need not to be flat. Thus, harmonic maps
are not naturally defined on such manifolds. Affi ne harmonic maps, as introduced
and studied in [1, 2], are determined by the affi ne connection, and the resulting
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equations do not satisfy a variational principle. The absence of a variational struc-
ture makes the analysis more diffi cult. Therefore, an additional global non-triviality
condition to guarantee the existence of an affi ne harmonic map in a given homotopy
class is needed. As in the case of ordinary harmonic maps, non-positive curvature
of the target manifold is also required.
A statistical manifold is simply a Riemannian manifold (M, g) together with two

torsion free connections ∇ and ∇∗ that satisfy a duality relation with respect to
the Riemannian metric g. Indeed, for all vector fields X,Y on M , Xg(Y,Z) =
g(∇XY,Z) + g(Y,∇∗XZ). One may immediately observe that if ∇ = ∇∗ the geom-
etry reduces to the Riemannian one. There is a close relationship between the
concept of a statistical manifold and affi ne differential geometry. One may refer
to the works of Lauritzen, Kurose and Noguchi [8, 7, 9] for a detailed study of
statistical manifolds.
An affi ne manifold is a differential manifold whose coordinate changes are affi ne

transformations which leads to existence of a torsion-free connection with vanish-
ing curvature. Once we have such a structure we may introduce a two tensor
gij = ∂2F

∂xi∂xj dx
i ⊗ dxj where F is a strictly convex function. Thus, g is symmetric

and positive definite, that is to say, a Riemannian metric onM . Such structures are
first introduced by Cheng and Yau, [6]. One may recover mutually flat connections
from this structure. Conversely, given mutually flat connections one may obtain
local potential functions. The details can be found in Jost and Şimşir, [1, 2]. If g is
a Kähler affi ne metric and D is the flat affi ne connection of the affi ne manifold M ,
the triple (M,D, g) is called a Kähler affi ne manifold. Throughout this text Rie-
mannian manifolds satisfying a duality relationship with respect to the metric are
called statistical manifolds referring their relationship with information geometry.
However, in case dual connections are flat the concept of Kähler affi ne manifolds is
more transparent.
On the other hand, the set of probability distributions constitute a statistical

model as a manifold. This leads to the concept of information geometry which
can be described as applying the techniques of differential geometry to statistics,
[4]. By means of this model, the relationship between the geometric structure
of the manifold and statistical estimation can be analyzed. One may approach
information geometry either from the point of view of dually flat connections or the
Fisher information metric. Dually flat connections are investigated by Chentsov
and Amari [5, 4] as a basis of information geometry.

2.1. Statistical manifolds.

Definition 1. For a torsion-free affi ne connection ∇ and a Riemannian metric g
on a manifold M , the triple (M,∇, g) is called a statistical Riemannian manifold
if it admits another torsion-free connection ∇∗ satisfying

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗XZ)
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for arbitrary X,Y and Z in X(M), where X(M) is the set of all tangent vector
fields on M .

∇ and ∇∗ are called dual affi ne connections with respect to g and the triple
(g,∇,∇∗) is called a dualistic structure on M .
A flat connection ∇ and a Riemannian metric g on a differentiable manifold

M is a Kähler affi ne structure if and only if it satisfies the Codazzi equation
DXg(Y,Z) = DY g(X,Z), [10]. This is automatically satisfied for statistical man-
ifolds due to their definition. Note that Shima and Japanese school calls Kähler
affi ne structures as Hessian structures since they are Hessian of a convex potential
function.

Consider Rn with its standard affi ne coordinate system {x1, ..., xn} and let D
be the canonical flat affi ne connection, i.e, D ∂

∂xi

∂

∂xj
= 0. Let Ω ⊂ Rn be a

domain and let ϕ be a strictly convex function on Ω. With the Kähler affi ne metric

g =
∂2ϕ

∂xi∂xj
dxidxj , the triple (Ω, D, g) is a Kähler affi ne manifold. This triple is a

flat statistical manifold. Conversely a flat statistical manifold is locally isometric
to (Ω, D, g) as required.

2.2. Affi ne harmonic maps.

Definition 2. Let M be an affi ne manifold and N be a Riemannian manifold. A
map f : M −→ N that satisfies

gij
(
∂2fα

∂xi∂xj
+ Γαβδ

∂fβ

∂xi
∂fδ

∂xj

)
= 0

is called an affi ne harmonic map [1, 2].

Note that this is an elliptic, semi-linear system of partial differential equations
and the metric g is any Riemannian metric on the affi ne manifold (M,D). Then,
we have the following result:

Theorem 1 (Jost - Şimşir, [2]). Let M be a compact affi ne manifold, N a compact
Riemannian manifold of nonpositive sectional curvature. Let g : M → N be con-
tinuous, and suppose g is not homotopic to a map g0 : M → N for which there is
a nontrivial parallel section of g−10 TN . Then g is homotopic to an affi ne harmonic
map f : M → N .

Affi ne harmonic maps are determined by the affi ne structure hence they lack
variational structure which make their analysis harder. In a weaker case of the
above theorem we replace affi ne manifold by a Kähler affi ne manifold in which

case the Kähler affi ne metric hence the affi ne differential operator L := gij
∂2

∂xi∂xj
becomes invariant under affi ne transformations, [1]. Furthermore, one may recover
the dual flat connections from the metric.
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3. Results on harmonic maps of statistical manifolds

In this chapter, some results on harmonic maps of statistical manifolds is ob-
tained under the light of Theorem 1 described in 2.2.

Theorem 2. Let (M,D, g) be a n-dimensional compact flat statistical manifold
and N a compact Riemannian manifold of nonpositive sectional curvature. Let
g : M → N be continuous, and suppose g is not homotopic to a map g0 : M → N
for which there is a nontrivial parallel section of g−10 TN . Then g is homotopic to
an affi ne harmonic map f : M → N and this map is unique in its homotopy class.

Proof. From the definition of statistical manifold the Codazzi equation

Xg(Y,Z) = g(DXY,Z) + g(Y,D∗
XZ)

is satisfied for the flat connection D where D∗ is the dual flat connection. Since D
is flat it defines a flat structure and (xi)1≤i≤n is an affi ne coordinate system for D.
Hence, this yields a Kähler affi ne structure. Therefore, a flat statistical manifold
is a Kähler affi ne manifold. As a consequence, proof of existence part follows from
the Theorem 1. Using the argument of Al’ber [3], one can also show that the affi ne
harmonic map is unique in its homotopy class under the assumptions of the above
theorem. In fact, here, we also need the global condition. For the details one may
refer to [1, 2]. �

From Theorem 1 we immediately arrive at the following corollaries:

Corollary 1. Let M be a compact flat statistical manifold, N a compact Rie-
mannian manifold of negative sectional curvature. Let g : M → N be continuous,
and suppose g is not homotopic to a map onto a closed geodesic of N . Then g is
homotopic to an affi ne harmonic map.

Corollary 2. Let M be a compact flat statistical affi ne manifold, N a compact
Riemannian manifold of nonpositive sectional curvature. Let g : M → N be smooth
and satisfy e(g∗TN) 6= 0, where e is the Euler class. Then g is homotopic to an
affi ne harmonic map.

Proof. The two corollaries follow from Theorem 1 because their assumptions imply
that g cannot be homotopic to a map g0 : M → N for which there is a nontrivial
parallel section of g−10 TN . For the first corollary, if the tangent space of g0(M) has
a parallel section g0(M) itself ought to be a flat subspace in a negatively curved
target space N and this kind of subspaces are one dimensional hence homotopic
to closed geodesics of N . For the second corollary, remember that a vector with a
parallel section has vanishing Euler class. �

Let (M,D, g) be a flat statistical manifold. In this case, M becomes a Kähler

affi ne manifold. Hence, metric g in local coordinates is of the form gij =
∂2ϕ

∂xi∂xj
.

Denoting the Christoffel symbols of the flat connection D by Γijk and lowering the
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index i by the metric g, we obtain Γijk = gilΓ
l
jk. If the Levi-Cività connection of

the metric g is denoted by ∇̂ then

Γijk = Γ̂ijk −
1

2
∂i∂j∂kϕ. (3.1)

where

Γ̂ijk = 〈∇̂ ∂

∂xi

∂

∂xj
,
∂

∂xk
〉. (3.2)

From (3.1) and (3.2),

Γ̂ijk =
1

2
∂i∂j∂kϕ,

and Γijk+Γ∗ijk = 2Γ̂ijk where D∗ is the dual flat connection of D and its Christoffel
symbols in x-coordinates are Γ∗ijk = ∂i∂j∂kϕ. Note that since D∗ is not flat in x-
coordinates, the theorem and its corollaries are not valid when we replace (M,D, g)
by (M,D∗, g) in x-coordinates.
The dual affi ne coordinates x∗ can be obtained as follows;

x∗j = ∂jϕ (3.3)

gij = ∂ix
∗
j .

The corresponding local potential function is obtained through the following Le-
gendre transformation.

φ(x∗) = max
x

(xix∗i − ϕ(x)), ϕ(x) + φ(x∗)− x · x∗ = 0, (3.4)

xj = ∂jφ(x∗), gij =
∂xj

∂x∗i
= ∂i∂jφ(x∗).

This is how we obtain dual flat connection through the metric. These kind of
dually flat structures are investigated by Chensov [5] and Amari [4] and information
geometry has founded. Conversely, if we have dually flat structure local potentials
of the Kähler affi ne structure shall be obtained.
Let D and D∗ be dually flat connections and Let {x1, . . . , xn} be the affi ne

coordinate system that is obtained from D. In this case, the vector fields ∂i =
∂

∂xi
are parallel. Then, the vector fields ∂j can be defined as follows:

g(∂i, ∂
j) = δji =

Observe that V g(∂i, ∂
j) = g(DV ∂i, ∂

j)+g(∂i, D
∗
V ∂

j) for every vector field V . Since
∂i is parallel for D, so is ∂j for D∗. As D∗ is torsion-free, for all j, k we get

[∂j , ∂k] = 0. The affi ne coordinates x∗j of D
∗ is obtained from ∂j =

∂

∂x∗j
. The

position of the indices has a specific importance since it shows the transformation
behaviour under coordinate transformations. For instance, when we transform x-
coordinates ∂i transforms contravariantly whereas ∂j transforms covariantly. In



A NOTE ON HARMONIC MAPS OF STATISTICAL MANIFOLDS 1375

particular, ∂j = (∂jxi)∂i and ∂i = (∂ix
∗
j )∂

j gives the transformation rule between

x and x∗-coordinates. Moreover, since g(∂i, ∂
j) = δji

gij := g(∂i, ∂j) =
∂x∗j
∂xi

gij := g(∂i, ∂j) =
∂xi

∂x∗j
.

We would like to find local potential functions ϕ(x) and φ(x∗) that satisfy x∗i =
∂iϕ(x), xi = ∂iφ(x∗). The first equation can be solved locally iff ∂ix∗j = ∂jx

∗
i . This

is equivalent to the condition that g is symmetric and gij = ∂i∂jϕ. Therefore, ϕ is
a strictly convex function. From the duality define, φ := xix∗i − ϕ to get

∂iφ = xi +
∂xj

∂x∗i
x∗j −

∂xj

∂x∗i

∂ϕ

∂xj
= xi.

Since ϕ and φ are strictly convex functions, they relate to each other by a Legendre
transform,

φ(x∗) = max
x

(xi − x∗i − ϕ(x))

ϕ(x) = max
x∗

(xi − x∗i − φ(x∗)).

Moreover,

Γ̂ijk = −Γ̂ijk = −1

2
∂i∂j∂kϕ,

is the Christoffel symbols of the Levi-Cività connection of the metric gij in x-
coordinates and the Christoffel symbols of D∗ in x∗-coordinates

Γijk = Γ̂ijk − 1

2
∂i∂j∂kϕ = −Γ∗ijk

becomes zero. Note that these formulas are only valid where ϕ and φ are locally
defined. Hence, in (x∗i )1≤i≤n flat affi ne coordinates together with the inverse Kähler
affi ne metric g−1, the triple (M,D∗, g−1) becomes a flat statistical manifold. In this
dual flat affi ne coordinate system (x∗), affi ne harmonic map equation reduces to

gij
(
∂i∂jfα + Γαβδ∂

ifβ∂jfδ
)

= 0.

and hence the following theorem holds:

Theorem 3. Let (M,D∗, g−1) be a n-dimensional compact flat statistical manifold
and N a compact Riemannian manifold of nonpositive sectional curvature. Let
g : M → N be continuous, and suppose g is not homotopic to a map g0 : M → N
for which there is a nontrivial parallel section of g−10 TN . Then g is homotopic to
an affi ne harmonic map f : M → N and this map is unique in its homotopy class.

Note that, the corollaries of Theorem 2 is also valid for Theorem 3. Working
with the dual flat connection, hence, dual flat affi ne coordinates forces us to use
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not the metric g itself but its inverse so that the definition of affi ne harmonic map
system makes sense.
It should be possible and of interest in information geometry to construct ex-

amples of affi ne harmonic maps for specific families of probability distributions
considered as flat statistical manifolds equipped with the Fisher information met-
ric.
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