\int Hacettepe Journal of Mathematics and Statistics Volume 44 (2) (2015), 247 – 254

Some properties of ordered 0-minimal (0, 2)-bi- Γ -ideals in po- Γ -semigroups

M. Y. Abbasi* and Abul Basar †

Abstract

In this paper, we introduce ordered (generalized) (m, n)- Γ -ideals in po- Γ -semigroups. Then we characterize the po- Γ -semigroup through ordered (generalized) (0, 2)- Γ -ideals, ordered (generalized) (1, 2)- Γ -ideals and ordered (generalized) 0-minimal (0, 2)- Γ -ideals. Also, we investigate the notion of ordered (generalized) (0, 2)-bi- Γ -ideals, ordered 0-(0, 2) bisimple po- Γ -semigroups and ordered 0-minimal (generalized) (0, 2)-bi- Γ -ideals in po- Γ -semigroups. It is proved that a po- Γ semigroup S with a zero 0 is 0-(0, 2)-bisimple if and only if it is left 0-simple.

2000 AMS Classification: 06F99, 06F05.

Keywords: po- Γ -semigroup, ordered bi- Γ -ideal, ordered (m, n)- Γ -ideal, ordered (0, 2)- Γ -ideal.

Received 21/11/2013 : Accepted 10/02/2014 Doi : 10.15672/HJMS.2015449100

1. Introduction and Preliminaries

The notion of the Γ -semigroup was introduced by M. K. Sen in [9] as a generalization of semigroups and ternary semigroups and the concept of the po- Γ -semigroup was given by Y. I. Kwon and S. K. Lee in [5]. Thereafter different aspects of ideal-theoretic results have been extensively studied in semigroups and po- Γ -semigroups in [1-4, 6].

The concept of the (m, n)-ideal in semigroups was given by S. Lajos in [8] as a generalization of one-sided ideals of semigroups. Thereafter, the notion of the generalized bi-ideal [(or generalized (1,1)-ideal] was introduced in semigroups by S. Lajos in [7] as a generalization of bi-ideals of semigroups. In this paper, we define and use the notion of ordered (generalized) (m, n)- Γ -ideals in po- Γ -semigroups to examine some important classical results and properties in po- Γ -semigroups. As an application of the results of

^{*}Department of Mathematics, Jamia Millia Islamia, New Delhi-110 025, India. Email: yahya_alig@yahoo.co.in

[†]Department of Mathematics, Jamia Millia Islamia, New Delhi-110 025, India. Email:basar.jmi@gmail.com Corresponding Author.

this paper, the corresponding results of Γ -semigroups (without order) and semigroups (without order) can also be obtained.

Let S and Γ be two nonempty sets. Then a system (S, Γ, \cdot) is called a Γ -semigroup, where \cdot is a ternary operation $S \times \Gamma \times S \to S$ such that $(x \cdot \alpha \cdot y) \cdot \beta \cdot z = x \cdot \alpha \cdot (y \cdot \beta \cdot z)$, for all $x, y, z \in S$ and all $\alpha, \beta \in \Gamma$. Let A be a nonempty subset of (S, Γ, \cdot) . Then A is called a sub- Γ -semigroup of (S, Γ, \cdot) if $a \cdot \gamma \cdot b \in A$, for all $a, b \in A$ and $\gamma \in \Gamma$. Furthermore, a Γ -semigroup S is said to be commutative if $a \cdot \gamma \cdot b = b \cdot \gamma \cdot a$, for all $a, b \in S$ and $\gamma \in \Gamma$.

A po- Γ -semigroup is an ordered set (S, \leq) at the same time a Γ -semigroup (S, Γ, \cdot) such that $a \leq b \Rightarrow a \cdot \alpha \cdot x \leq b \cdot \alpha \cdot x$ and $x \cdot \beta \cdot a \leq x \cdot \beta \cdot b$, for all $a, b, x \in S$ and $\alpha, \beta \in \Gamma$.

Notation 1: For subsets A, B of a po- Γ -semigroup S, the product set $A \cdot B$ of the pair (A, B) relative to S is defined as $A \cdot \Gamma \cdot B = \{a \cdot \gamma \cdot b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}$ and for $A \subseteq S$, the product set $A \cdot A$ relative to S is defined as $A^2 = A \cdot A = A \cdot \Gamma \cdot A$.

Notation 2: For $M \subseteq S$, $(M] = \{s \in S \mid s \leq m, \text{ for some } m \in M\}$. Also, we write (s] instead of $(\{s\}]$ for $s \in S$.

Notation 3: Let $B \subseteq S$. Then for a non-negative integer m, the power of $B^m = B\Gamma B\Gamma B\Gamma B \cdots$, where B occurs m times. Note that the power is suppressed when m = 0. So $B^0\Gamma S = S = S\Gamma B^0$.

In what follows we denote the po- Γ -semigroup (S, Γ, \cdot, \leq) by S unless otherwise specified. Throughout the paper, for the sake of brevity, we denote $a \cdot \gamma \cdot b$ by $a\gamma b$.

1.1. Example. Let S be the set of all $m \times n$ matrices with entries from a field, where m, n are positive integers. Let P(S) be the power set of S. Then it is easy to see that P(S) is not a semigroup under multiplication of matrices because for $A, B \in P(S)$, the product AB is not defined. Let Γ be the set of $n \times m$ matrices with entries from the same field. Then for $A, B, C \in P(S)$ and $P, Q \in \Gamma$, we have $APB \in P(S)$, $AQB \in P(S)$ and since the matrix multiplication is associative, we get that S is a Γ -semigroup. Furthermore, define $A \leq B$ if and only if $A \subseteq B$ for all $A, B \in P(S)$, then P(S) is a po- Γ -semigroup.

Suppose A and B are two nonempty subsets of S. Then we have the following (see [3]).

- (1) $(A]\Gamma(B] \subseteq (A\Gamma B];$
- $(2)A \subseteq B \Rightarrow (A] \subseteq (B];$
- (3) ((A]] = (A].

Suppose S is a po- Γ -semigroup and I is a nonempty subset of S. Then I is called an ordered right (resp. left) Γ -ideal of S if

- (i) $I\Gamma S \subseteq I(rep. S\Gamma I \subseteq I)$,
- (ii) $a \in I, b \leq a$ for $b \in S \Rightarrow b \in I$.

Equivalent definition:

- (i) $I\Gamma S \subseteq I$ (resp. $S\Gamma I \subseteq I$).
- (ii) (I] = I.

An ordered Γ -ideal I of S is both a right and a left ordered Γ -ideal of a po- Γ -semigroup S. A right, left or (two-sided) ordered Γ -ideal I of S is called proper if $I \neq S$.

Let S be a semigroup and A be a nonempty subset of S then A is called a generalized (m, n)-ideal of S if $A^m S A^n \subseteq A$, where m, n are arbitrary non-negative integers. Note that if A is a subsemigroup of S, then A is called an (m, n)-ideal of S. We now introduce the following definition.

1.2. Definition. Suppose B is a sub- Γ -semigroup (resp. nonempty subset) of a po- Γ -semigroup S. Then B is called an (resp. generalized) (m, n)- Γ -ideal of S if (i) $B^m \Gamma S \Gamma B^n \subseteq B$ and (ii) for $b \in B, s \in S, s \leq b \Rightarrow s \in B$.

Note that in the above Definition 1.2, if we set m = n = 1, then B is called a (generalized) bi- Γ -ideal of S. Moreover, if m = 0 and n = 2, then we obtain an ordered (generalized) (0, 2)- Γ -ideal of S. In a similar fashion, we can obtain an ordered (generalized) (1, 2)- Γ -ideal and an ordered (generalized) (2, 1)- Γ -ideal of S.

If B is a nonempty subset of S, then to see that $(B^2 \cup B\Gamma S\Gamma B^2]$ is an ordered (generalized) bi- Γ -ideal of S, we present the verification of it as follows:

$$\begin{array}{lll} ((B^2 \cup B\Gamma S\Gamma B^2)] &=& (B^2 \cup B\Gamma S\Gamma B^2) \operatorname{and}(B^2 \cup B\Gamma S\Gamma B^2)\Gamma S\Gamma (B^2 \cup B\Gamma S\Gamma B^2) \\ &=& (B^2 \cup B\Gamma S\Gamma B^2)\Gamma (S]\Gamma (B^2 \cup B\Gamma S\Gamma B^2) \\ &\subseteq& (B^2\Gamma S\Gamma B^2 \cup B^2\Gamma S\Gamma B\Gamma S\Gamma B^2 \cup B\Gamma S\Gamma B^2 \Gamma S\Gamma B^2 \cup B\Gamma S\Gamma B^2 \Gamma S\Gamma B\Gamma S\Gamma B^2 \\ &\subseteq& (B\Gamma S\Gamma B^2) \\ &\subseteq& (B^2 \cup B\Gamma S\Gamma B^2). \end{array}$$

2. Main Results

We now develop ideal theory for po- Γ -semigroups. We begin our study with proving the following Lemma.

2.1. Lemma. The following assertions are equivalent for a subset *B* of a po- Γ -semigroup *S*.

(i) B is an ordered (generalized) (0, 2)- Γ -ideal of S;

(ii) B is an ordered left Γ -ideal of some ordered left Γ -ideal of S.

Proof. $(i) \Rightarrow (ii)$. Suppose *B* is an ordered (generalized) (0, 2)- Γ -ideal of a po- Γ -semigroup *S*. Then we obtain $(B \cup S\Gamma B]\Gamma B = (B^2 \cup S\Gamma B^2] \subseteq (B] = B$ and ((B)] = (B] and so *B* is an ordered left Γ -ideal of the ordered left Γ -ideal $(B \cup S\Gamma B]$ of *S*.

 $(ii) \Rightarrow (i)$. Suppose L is an ordered left Γ -ideal of S and B is an ordered left Γ -ideal of L. Then, $S\Gamma B^2 \subseteq S\Gamma L\Gamma B \subseteq L\Gamma B \subseteq B$. Suppose $b \in B$ and $s \in S$ are such that $s \leq b$. As $b \in L$, we get $s \in L$ and so $s \in B$. Consequently, B is an ordered (generalized) (0, 2)- Γ -ideal of S.

2.2. Theorem. Suppose B is a subset of a po- Γ -semigroup S. Then the following results are equivalent:

- (i) B is an ordered (generalized) (1, 2)- Γ -ideal of S;
- (ii) B is an ordered left Γ -ideal of some ordered (generalized) bi- Γ -ideal of S;
- (iii) B is an ordered (generalized) bi- Γ -ideal of some left ordered Γ -ideal of S;
- (iv) B is an ordered (generalized) (0,2)- Γ -ideal of some ordered right Γ -ideal of S;
- (v) B is an ordered right- Γ -ideal of some ordered (generalized) (0,2)- Γ -ideal of S.

Proof. (*i*) ⇒ (*ii*). Suppose *B* is an ordered (generalized) (1, 2)-Γ-ideal of *S*. This means *B* is a sub-Γ-semigroup (nonempty subset) of *S* and *B*Γ*S*Γ*B*² ⊆ *B*. So $(B^2 \cup B\Gamma S\Gamma B^2]\Gamma B = (B^2 \cup B\Gamma S\Gamma B^2]\Gamma(B] \subseteq (B^3 \cup B\Gamma S\Gamma B^3] \subseteq (B^2 \cup B\Gamma S\Gamma B^2] \subseteq (B] = B$. Obviously, if $b \in B, s \in (S^2 \cup B\Gamma S\Gamma B^2]$ so that $s \leq b$ then $s \in B$. Hence, *B* is an ordered left Γ-ideal of the ordered (generalized) bi- Γ-ideal $(B^2 \cup B\Gamma S\Gamma B^2]$ of *S*.

(*ii*) \Rightarrow (*iii*). Suppose *B* is an ordered left Γ -ideal of some ordered (generalized) bi- Γ -ideal *A* of *S*. Recall that $(B \cup S\Gamma B]$ is an ordered left Γ -ideal of *S*. According to our hypothesis, $B\Gamma(B \cup S\Gamma B]\Gamma B \subseteq (B]\Gamma(B \cup S\Gamma B]\Gamma(B] \subseteq (B^3 \cup B\Gamma S\Gamma B^2] \subseteq (B \cup A\Gamma S\Gamma A\Gamma B] \subseteq (B \cup A\Gamma B] \subseteq (B] = B$. Suppose $b \in B$, $s \in (B \cup S\Gamma B]$ such that $s \leq b$. As $b \in B$, $b \in A$. So $s \in A$ and therefore, $s \in B$. Hence, *B* is an ordered (generalized) bi- Γ -ideal of the left ordered Γ -ideal $(B \cup S\Gamma B]$ of *S*.

(*iii*) \Rightarrow (*iv*). Suppose *B* is an ordered (generalized) bi- Γ -ideal of some left ordered Γ -ideal *L* of *S*. This implies that $B \subseteq L$, $B\Gamma L^{1}\Gamma B \subseteq B$ and $S\Gamma L \subseteq L$. Therefore $(B \cup B\Gamma S]\Gamma B^{2} \subseteq (B \cup B\Gamma S]\Gamma (B^{2}] \subseteq (B^{3} \cup B\Gamma S\Gamma B^{2}] \subseteq (B \cup B\Gamma S\Gamma L\Gamma B] \subseteq (B \cup B\Gamma L\Gamma B] \subseteq (B] = B$. Furthermore, suppose that $b \in B$, $s \in (B \cup B\Gamma S]$ such that $s \leq b$, so $b \in L$. Then $s \in L$, therefore $s \in B$. Hence, *B* is an ordered (generalized) (0, 2)- Γ -ideal of the ordered right Γ -ideal $(B \cup B\Gamma S]$ of *S*.

 $(iv) \Rightarrow (v)$. Suppose *B* is an ordered (generalized) (0, 2)- Γ -ideal of some ordered right Γ -ideal *R* of *S*. This implies that $B \subseteq R$, $R\Gamma B^2 \subseteq B$ and $R\Gamma S \subseteq R$. Then $B\Gamma(B \cup S\Gamma B^2] \subseteq (B]\Gamma(B \cup S\Gamma B^2] \subseteq (B^2 \cup B\Gamma S\Gamma B^2] \subseteq (B \cup R\Gamma S\Gamma B^2] \subseteq (B \cup R\Gamma B^2] \subseteq (B] = B$. Let $b \in B$, $s \in (B \cup S\Gamma B^2]$ such that $s \leq b$. Then $b \in R$, so $s \in R$, thus $s \in B$. Hence, *B* is an ordered right Γ -ideal of the (generalized) (0, 2)- Γ -ideal $(B \cup S\Gamma B^2]$ of *S*.

 $(v) \Rightarrow (i)$. Suppose *B* is an ordered right Γ -ideal of an ordered (generalized) (0, 2)- Γ -ideal *R* of *S*. This further implies that $B \subseteq R$, $B\Gamma R \subseteq B$ and $S\Gamma R^2 \subseteq R$. Then $B\Gamma S\Gamma B^2 \subseteq B\Gamma S\Gamma R^2 \subseteq B\Gamma R \subseteq B$. Suppose $b \in B$, $s \in S$ such that $s \leq b$. As $b \in R$, so $s \in B$. Hence *B* is an ordered (generalized) (1, 2)- Γ -ideal of *S*. Hence, *B* is an ordered (generalized) bi- Γ -ideal of *S*.

2.3. Lemma. A sub- Γ -semigroup (nonempty subset) A of a po- Γ -semigroup S such that A = (A] is an ordered (generalized) (1, 2)- Γ -ideal of S if and only if there exists an ordered (generalized) (0, 2)- Γ -ideal L of S and an ordered right Γ -ideal R of S so that $R\Gamma L^2 \subseteq A \subseteq R \cap L$.

Proof. Suppose A is an ordered (generalized)(1, 2)- Γ -ideal of S. We know that $(A \cup S\Gamma A^2]$ and $(A \cup A\Gamma S]$ are an ordered (generalized) (0, 2)- Γ -ideal and an ordered right Γ -ideal of S, respectively. Furthermore, assume $L = (A \cup S\Gamma A^2]$ and $R = (A \cup A\Gamma S]$. Then $R\Gamma L^2 \subseteq (A^3 \cup A^2\Gamma S\Gamma A^2 \cup A\Gamma S\Gamma A^2 \cup A\Gamma S\Gamma A\Gamma S\Gamma A^2] \subseteq (A^3 \cup A\Gamma S\Gamma A^2] \subseteq (A] = A$. Hence, $R \subseteq R \cap L$. Conversely, suppose R is an ordered right Γ -ideal of S and L is an ordered (generalized) (0,2)- Γ -ideal of S so that $R\Gamma L^2 \subseteq A \subseteq R \cap L$. Then $A\Gamma S\Gamma A^2 \subseteq (R \cap L)\Gamma S\Gamma (R \cap L)\Gamma (R \cap L) \subseteq R\Gamma S\Gamma L^2 \subseteq R\Gamma L^2 \subseteq A$. Hence, A is an ordered (generalized) (1,2)- Γ -ideal of S.

2.4. Definition. An ordered (generalized) (0, 2)-bi- Γ -ideal B of S is called 0-minimal if (i) $B \neq \{0\}$ and (ii) $\{0\}$ is the only ordered (generalized) (0, 2)-bi- Γ -ideal of S properly contained in B.

2.5. Lemma. Suppose L is an ordered 0-minimal left Γ -ideal of a po- Γ -semigroup S with 0 and I is a sub- Γ -semigroup (nonempty subset) of L such that I = (I]. Then I is an ordered (generalized) (0, 2)- Γ -ideal of S contained in L if and only if $(I\Gamma I] = \{0\}$ or I = L.

Proof. Suppose I is an ordered (generalized) (0, 2)- Γ -ideal of S contained in L. As $(S\Gamma I^2]$ is an ordered left Γ -ideal of S and $(S\Gamma I^2] \subseteq I \subseteq L$, we obtain $(S\Gamma I^2] = \{0\}$ or $(S\Gamma I^2] = \{L\}$. If $(S\Gamma I^2] = L$, then $L = (S\Gamma I^2] \subseteq (I]$. So I = L. Suppose $(S\Gamma I^2] = \{0\}$. As $S\Gamma(I^2] \subseteq (S\Gamma I^2] = \{0\} \subseteq (I^2]$, then $(I^2]$ is an ordered left Γ -ideal of S contained in L. By the minimality of L, we obtain $(I^2] = \{0\}$ or $(I^2] = L$. If $(I^2] = L$, then I = L. Therefore, $I^2 = \{0\}$ or I = L.

The converse part is straightforward.

2.6. Lemma. Suppose M is an ordered 0-minimal (generalized) (0, 2)- Γ -ideal of a po- Γ -semigroup S with a zero 0. Then $(M^2] = \{0\}$ or M is an ordered 0-minimal left Γ -ideal of S.

Proof. As $M^2 \subseteq M$ and $S\Gamma(M^2]^2 = S\Gamma(M^2]\Gamma(M^2] \subseteq (S\Gamma M^2]\Gamma(M^2] \subseteq (M]\Gamma(M^2] \subseteq (M^2]$. Then we obtain $(M^2]$ is an ordered (generalized) (0, 2)- Γ -ideal of S contained in M. Therefore $(M^2] = \{0\}$ or $(M^2] = M$. Suppose $(M^2] = M$. As $S\Gamma M = S\Gamma(M^2] \subseteq (S\Gamma M^2] \subseteq (M] = M$, it follows that M is an ordered left Γ -ideal of S. Suppose B is an ordered left Γ -ideal of S contained in M. Therefore, $S\Gamma B^2 \subseteq B^2 \subseteq B \subseteq M$. Hence, B is an ordered (generalized) (0, 2)- Γ -ideal of S contained in M and so $B = \{0\}$ or B = M.

2.7. Corollary. Suppose S is a po- Γ -semigroup without a zero 0. Then M is an ordered minimal (generalized) (0,2)- Γ -ideal of S if and only if M is an ordered minimal left Γ -ideal of S.

Proof. It follows by Lemma 2.5 and Lemma 2.6.

2.8. Lemma. Suppose S is a po- Γ -semigroup without a zero 0. Further suppose that M is a nonempty subset of S. Then the following results are equivalent:

(i) M is an ordered (generalized) minimal (2, 1)- Γ -ideal of S;

(ii) M is an ordered (generalized) minimal bi- Γ -ideal of S.

Proof. Suppose S is a po- Γ -semigroup without zero and M is an ordered minimal (generalized) (2, 1)- Γ -ideal of S. Then $(M^2\Gamma S\Gamma M] \subseteq M$ and so $(M^2\Gamma S\Gamma M]$ is an ordered (generalized) (2, 1)- Γ -ideal of S. Therefore, we obtain $(M^2\Gamma S\Gamma M] = M$.

As $M\Gamma S\Gamma M = (M^2\Gamma S\Gamma M]\Gamma S\Gamma M \subseteq (M^2\Gamma S\Gamma M\Gamma S\Gamma M] \subseteq (M^2\Gamma S\Gamma M] = M$, we have that M is an ordered (generalized) bi- Γ -ideal of S. Let there exist an ordered (generalized) bi- Γ -ideal B of S contained in M. Then $B^2\Gamma S\Gamma B \subseteq B^2 \subseteq B \subseteq M$, therefore, B is an ordered (generalized) (2, 1)- Γ -ideal of S contained in M. Applying the minimality of

M, we obtain B = M.

Conversely, suppose M is an ordered minimal (generalized) bi- Γ -ideal of S. Then M is an ordered (generalized) (2, 1)- Γ -ideal of S. Suppose T is an ordered (generalized) (2, 1)- Γ -ideal of S contained in M. As $(T^2\Gamma S\Gamma T]\Gamma S\Gamma (T^2\Gamma S\Gamma T] \subseteq (T^2\Gamma (S\Gamma T\Gamma S\Gamma T^2\Gamma S)\Gamma T] \subseteq (T^2\Gamma S\Gamma T]$, we obtain $(T^2\Gamma S\Gamma T]$ is an ordered (generalized) bi- Γ -ideal of S. This shows that $(T^2\Gamma S\Gamma T] = M$. As $M = (T^2\Gamma S\Gamma T] \subseteq (T] = T$, M = T. Hence, M is an ordered minimal (generalized) (2, 1)- Γ -ideal of S.

2.9. Definition. A sub- Γ -semigroup (nonempty subset) B of a po- Γ -semigroup S is called an ordered (generalized) (0, 2)-bi- Γ -ideal of S if B is an ordered (generalized) bi- Γ -ideal of S and also an ordered (generalized) (0, 2)- Γ -ideal of S.

2.10. Lemma. Suppose B is a subset of a po- Γ -semigroup S. Then the following conditions are equivalent :

- (i) B is an ordered (generalized) (0, 2)-bi- Γ -ideal of S;
- (ii) B is an ordered Γ -ideal of some ordered left Γ -ideal of S.

Proof. (*i*) ⇒ (*ii*). Suppose *B* is an ordered (generalized) (0,2)-bi-Γ-ideal of *S*. This implies that $B\Gamma S\Gamma B \subseteq B$ and $S\Gamma B^2 \subseteq B$. Then $S\Gamma (B^2 \cup S\Gamma B^2) \subseteq (S\Gamma B^2 \cup S^2 \Gamma B^2) \subseteq (S\Gamma B^2) \subseteq (S\Gamma B^2) \subseteq (S\Gamma B^2)$ Therefore, $(B^2 \cup S\Gamma B^2)$ is an ordered left Γ-ideal of *S*. As $B\Gamma (B^2 \cup S\Gamma B^2) \subseteq (B^3 \cup B\Gamma S\Gamma B^2) \subseteq (B] = B$, $(B^2 \cup S\Gamma B^2) \Gamma B \subseteq (B^3 \cup S\Gamma B^3) \subseteq (B] = B$. Hence *B* is an ordered Γ-ideal of the left Γ-ideal $(B^2 \cup S\Gamma B^2)$ of *S*.

 $(ii) \Rightarrow (i)$. Suppose B is an ordered Γ -ideal of some ordered left Γ -ideal L of S. By Lemma 2.1, B is an ordered (generalized) (0, 2)- Γ -ideal of S and hence B is an ordered (generalized) bi- Γ -ideal of S.

2.11. Theorem. Suppose B is an ordered 0-minimal (generalized) (0, 2)-bi- Γ -ideal of a po- Γ -semigroup S with a zero 0. Then exactly one of the followings cases arises:

- (i) $B = \{0, b\}, (b\Gamma S^1 \Gamma b] = \{0\};$
- (ii) $B = (\{0, b\}], b^2 = 0, (b\Gamma S\Gamma b] = B;$
- (iii) $(S\Gamma b^2] = B$ for all $b \in B \setminus \{0\}$.

Proof. Suppose *B* is an ordered 0-minimal (generalized) (0, 2)-bi- Γ -ideal of a po- Γ -semigroup *S*. Furthermore, suppose $b \in B \setminus \{0\}$. Then $(S\Gamma b^2] \subseteq B$ and $(S\Gamma b\Gamma b]$ is an ordered left Γ -ideal of *S*, therefore $(S\Gamma b^2]$ is an ordered (generalized) (0, 2)-bi- Γ -ideal of *S*. Hence $(S\Gamma b^2] = \{0\}$ or $(S\Gamma b^2] = B$.

Let $(S\Gamma b^2] = \{0\}$. As $b^2 \in B$, we obtain either $b^2 = b$ or $b^2 = 0$ or $b^2 \in B \setminus \{0, b\}$. If $b^2 = b$, then b = 0. This is a contradiction. Let $b^2 \in B \setminus \{0, b\}$. Then $S^1\Gamma(\{0, b^2\}]^2 \subseteq (\{0, S\Gamma b^2\}] = (\{0\}] \cup (S\Gamma b^2] = \{0\} \subseteq (\{0\} \cup b^2], (\{0\} \cup b^2]\Gamma S\Gamma(\{0\} \cup b^2] \subseteq (b^2\Gamma S\Gamma b^2] \subseteq (S\Gamma b^2] = \{0\} \subseteq \{0, b^2\}$. So $(\{0\} \cup b^2]$ is an ordered (generalized) (0, 2)-bi- Γ -ideal of S contained in B and we notice that $(\{0\} \cup b^2] \neq \{0\}, (\{0\} \cup b^2] \neq B$. This is to not possible since B is an ordered 0-minimal (generalized) (0, 2)-bi- Γ -ideal of S. So $b^2 = \{0\}$ and hence by Lemma 2.10, $B = (\{0, b\}]$. Now since we have $(b\Gamma S\Gamma b]$ is an ordered (generalized) (0, 2)-bi- Γ -ideal of S contained in B, we get $(b\Gamma S\Gamma b] = \{0\}$ or $(b\Gamma S\Gamma b] = B$. So, $(S\Gamma b^2] = \{0\}$ and it follows that either $B = \{0, b\}$ and $(b\Gamma S^1\Gamma b] = \{0\}$ or $B = \{0, b\}$,

 $b^2 = \{0\}$ and $(b\Gamma S\Gamma b] = B$. If $(S\Gamma b^2] \neq \{0\}$, then $(S\Gamma b^2] = B$.

2.12. Corollary. Suppose B is an ordered 0-minimal (generalized) (0, 2)-bi- Γ -ideal of a po- Γ -semigroup S with a zero 0 so that $(B^2] \neq \{0\}$. Then $B = (S\Gamma b^2]$, for every $b \in B \setminus \{0\}$.

2.13. Definition. A po- Γ -semigroup S with a zero 0 is called 0-(0, 2)- bisimple if (i) $(S^2] \neq \{0\}$ and $\{0\}$ is the only ordered proper (generalized) (0, 2)-bi- Γ -ideal of S.

2.14. Corollary. A po- Γ -semigroup S with a zero 0 is 0-(0, 2)-bisimple if and only if $(S\Gamma s^2] = S$, for every $s \in S \setminus \{0\}$.

Proof. If S is 0-(0, 2)-bisimple, then $(S\Gamma S] \neq \{0\}$ and S is an ordered 0-minimal (generalized) (0, 2)-bi- Γ -ideal. By Corollary 2.12, we have $S = (S\Gamma s^2]$, for every $s \in S \setminus \{0\}$. Conversely, suppose $S = (S\Gamma s^2]$, for every element $s \in S \setminus \{0\}$ and further suppose that B is an ordered (generalized) (0, 2)-bi- Γ -ideal of S such that $B \neq \{0\}$. Suppose $b \in B \setminus \{0\}$. Then $S = (S\Gamma b^2] \subseteq (S\Gamma B^2] \subseteq (B] = B$, therefore, S = B. As $S = (S\Gamma b^2] \subseteq (S\Gamma S] = (S^2]$, we obtain $\{0\} \neq S = (S\Gamma S] = (S^2]$. Hence S is 0-(0, 2)-bi-simple.

2.15. Theorem. A po- Γ -semigroup S with a zero 0 is 0-(0, 2)-bisimple if and only if S is left 0-simple.

Proof. We recall that every ordered left Γ -ideal B of a po- Γ -semigroup S is an ordered 0-(0, 2)-bi- Γ -ideal of S. So $B = \{0\}$ or B = S. Therefore, if S is 0-(0, 2)-bisimple then S is left 0-simple.

Conversely, if S is left 0-simple then $(S\Gamma s] = S$, for every $s \in S \setminus \{0\}$ from which it follows that $S = (S\Gamma s] = ((S\Gamma s]\Gamma s] \subseteq ((S\Gamma s^2)] = (S\Gamma s^2)$. Therefore, using Corollary 2.14, S is 0-(0, 2)-bisimple.

2.16. Theorem. Suppose B is an ordered 0-minimal (generalized) (0, 2)-bi- Γ -ideal of a po- Γ -semigroup S. Then either $(B\Gamma B] = \{0\}$ or B is left 0-simple.

Proof. Suppose $(BΓB] \neq \{0\}$. Then, by Corollary 2.12, we obtain $(SΓb^2] = B$, for every $b \in B \setminus \{0\}$. As $b^2 \in B \setminus \{0\}$, for every $b \in B \setminus \{0\}$, we obtain $b^4 = (b^2)^2 \in B \setminus \{0\}$. Suppose $b \in B \setminus \{0\}$. As $(BΓb^2]ΓS^1Γ(BΓb^2] \subseteq (BΓBΓb^2] \subseteq (BΓb^2]$ and $SΓ(BΓb^2]^2 \subseteq (SΓBΓb^2ΓBΓb^2] \subseteq (SΓB^2Γb^2] \subseteq (BΓb^2]$, we get that $(BΓb^2]$ is an ordered (generalized) (0, 2)-bi-Γ-ideal of S contained in B. Therefore, $(BΓb^2] = \{0\}$ or $(BΓb^2] = B$. As $b^4 \in BΓb^2 \subseteq (BΓb^2]$ and $b^4 \in B \setminus \{0\}$, we obtain $(BΓb^2] = B$. By Corollary 2.14 and Theorem 2.15, it follows that B is left 0-simple.

References

- Abbasi, M. Y. and Basar Abul, On Ordered Quasi-Gamma-Ideals of Regular Ordered Gamma-Semigroups, *Algebra*, 2013, Article ID 565848, (2013). doi:10.1155/2013/565848.
- [2] Iampan, A. and Siripitukdet, M., On minimal and maximal ordered left ideals in po-Γsemigroups, *Thai Journal of Mathematics*,2(2004), 275-282.
- [3] Kehayopulu, N., On prime, weakly prime ideals in po-Γ- semigroups, Lobachevskii Journal of Mathematics, 30(4)(2009), 257-262.
- [4] Krgovic, D. N., On 0-Minimal (0,2)-bi-ideals of semigroups, Publications De L' Institut Mathematique, Nouvelle serie, tome., 31(45) (1982), 103-107.

- [5] Kwon, Y. I. and Lee, S. K., Some special elements in ordered Γ-semigroups, Kyungpook Math. J., 35(1996), 679-685.
- [6] Kwon, Y. I. and Lee, S. K., On weakly prime ideals of ordered-Γ-semigroups, Comm. Korean Math. Soc., 13(2)(1996), 251-256.
- [7] Lajos, S., Notes on generalized bi-ideals in semigroups, Soochow J. Math., 10 (1984), 55-59.
- [8] Lajos, S., Generalized ideals in semigroups, Acta Sci. Math., 2 (1961), 217-222.
- Sen, M. K., On Γ-semigroups, Algebra and its applications, Int. Symp., New Delhi, (1981), Lecture Notes in Pure and Applied Mathematics 91, Decker, New York, (1984), 301-308.