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Abstract

We deal with applications of thermodynamics and availability theory to practical
systems where a certain external control is possible in order to achieve improved
performance. In particular, results of optimization of endoreversible processes
which yield mechanical work are discussed. Equations of dynamics which follow
from energy balance and transfer equations are difference constraints for optimizing
work. Irreversibilities caused by the energy transport are essential. A model system
is developed which incorporates finite heat resistances for an energy conversion
process, and may be extended to take into account friction, heat leakage, mixing and
other effects decreasing the thermodynamic efficiency. Deviation of efficiencies
from their limiting Carnot values are analyzed in terms of the finite heat flux. The
variational calculus and optimal control theories are shown to be the basic tools
when formulating and solving problems with maximizing work. For a finite-time
passage of a resource body between two given temperatures, optimality of an irre-
versible process manifests itself as a connection between the process duration and
an optimal intensity. Extremal performance functions which describe extremal work
are found in terms of final states and process duration measured in terms of the
number of the heat transfer units. An extended exergy that has an irreversible com-
ponent and simplifies to the classical thermal exergy in the limit of infinite duration
is discussed. With this exergy performance criteria and bounds are defined for real
processes occurring in a finite time. Enhanced bounds for the work released from an
engine system or added to a heat-pump system are evaluated. A comparison be-
tween the optimization in thermodynamics (with exergy) and in economics (with
costs) is made. Examples of exergy analysis to seek the best adjustable parameters
of solar collectors, separation processes (distillation) and a chemical process with
catalyst deactivation are discussed.
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1. Introduction

Outlook. Thermodynamics as the science of
energy transformations has many faces today.
Well-established equilibrium theorems of classi-
cal thermodynamics, with solid statistical back-
grounds based on partition function and ensem-
ble theory can be contrasted with sometimes
nearly heuristic approaches used in some con-
temporary theories of non-equilibrium thermo-
dynamics. However, an engineer deals usually
with nonequilibrium systems in local equilibrium
approximation, at which both thermodynamic
and transport properties have to be evaluated at
various points of the system and possibly for
various times. In this case two outlooks, classical
and nonequilibrium, have to complement each

other. It was not always easy to achieve a con-
sensus between researchers representing these
two different outlooks. Recently, however, its
seems that the situation has been achieved when
the two outlooks converge within the framework
of a common thermodynamic theory. This theory
uses classical methods and evaluations of ther-
modynamic and transport properties to describe
nonequilibrium passages from one thermody-
namic state to another in a finite time. The time
here should be understood as a chronological
time of an unsteady process or a holdup or con-
tact time in a steady-state process. A description
of a finite-time passage is accomplished formally
by assuming a finite rate and an irreversible be-
havior from the very beginning; then the equa-
tions describing the system are typically certain
evolution equations obtained by combination of
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evolution equations obtained by combination of
balance and transport laws within usually a net-
work-like description. Entropy generation is in-
cluded as an (finite) irreversibility indicator. The
simultaneous analysis of work-production capa-
bilities and losses related to the entropy genera-
tion, frequently accompanies an analysis of the
evolution equations describing the system. Laws
of classical thermodynamics and classical ther-
modynamic limits are recovered at the quasistatic
limit when the rates and entropy generation tend
to vanish,

Systems. The systems usually considered
within the so-generalized thermodynamics are
those with conversion, transfer and accumulation
of thermal and chemical energy. They include
thermal and combustion engines, solar engines,
solar cells, heat exchangers, separation units (e.g.
distillation), chemical reactors, fuel cells, energy
recovery units, storage systems, chemical reac-
tors, and chemical plants. These are important
practical systems most of which can yield me-
chanical or electrical energy or valuable prod-
ucts.

Models and optimization. Mathematical
models are constructed in order to predict the
system behavior, find better pathways, reduce
possible losses and evaluate the optimal per-
formance of the system in question. For optimi-
zation purposes system models contain: i) opti-
mization criterion as a measure of efficiency of
our decisions, ii) control (decision) variables, iii)
state variables as minimum necessary variables
capable of describing the system and iiii) some
uncontrolled (fixed) parameters. These models
incorporate diverse process characteristics such
as finite heat conductances, semiconductor band-
gaps, diffusion and beam transfer channels, fric-
tion, heat loss, chemical resistances, and other
factors which are essential in real energy conver-
sion and transmission processes. The optimiza-
tion criteria include important physiochemical
quantities such as the produced mechanical
work, chemical yield, or they are constructed on
economic grounds, such as the production costs.
It is essential that when the finite time or finite-
size constraints are imposed, these criteria take
into account a finite investment (even if not ex-
plicitly specified). Efficiency is very seldom a
performance criterion in an optimization; rather
it is one of the system variables which charac-
terize its performance. The second-law based
efficiencies are more fundamental than those
based on the first law, although an engineer deals
usually with the first-law efficiencies.

Efficiency. Consider, for example, the first-
law efficiency of a thermal engine. It is defined

as nl = w/q i.e. the ratio of the power output to
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the driving heat input. In other words nI is the
ratio of work produced to the 'valuable' or costly
heat. This definition, however, does not attribute
any value to the heat; it is obvious that sources
releasing the heat q at a higher temperature T
will be more valuable (and hence more costly)
than those which transfer the same q at lower T's.
This flaw in the definition bears the question:
Perhaps an efficiency should be defined in terms
of values of the quantities involved rather than
the quantities themselves? In thermodynamics,
the answer is the second-law efficiency in which
the thermodynamic work equivalent of heat q(1-

TE/T) is used instead of the heat itself. The sec-
ond law efficiency n" = w[q(1-T®/T)]"', where

T€ is the temperature of the low temperature res-
ervoir or the environment, hence the superscript
e. But the superscript also means 'equilibrium’

because the temperature T is the final tempera-
ture of the finite resource in equilibrium with the
infinite environment and thus the second law
efficiency: 0" = n'/nC where nC is the Camot
efficiency. This is a relative efficiency. Some-
times efficiencies of this sort are defined as ratios
n“a’n, where the subscript max corresponds to an
upper limit efficiency which is not necessarily
the Camot efficiency. They are all called the
second law efficiencies. In examples which fol-
low we will use for simplicity the bare symbol 1
for the first-law efficiency. Only in cases when
two efficiencies appear simultaneously will their
distinguishing be pointed out by indices.

2. Exergy as a Generalized Mechanical Energy

The maximum work a system can deliver
upon relaxation to equilibrium with its environ-
ment, a reservoir of infinite size with intensities

T€ (temperature), P (pressure), and pf (chemi-
cal potential of species i), can be described by
the availability function 4 (Keenan 1941; Gibbs
1993) or the exergy function Ex (Rant 1956,
Szargut and Petela 1965; Vogler and Weissman
1988). The techniques of analysis related to A4 or
Ey are respectively known as availability analy-
sis or exergy analysis; they are both second law
analyses. In the availability A the condition of
chemical equilibrium in the reference state is not
used. This function deals with the so-called re-
stricted equilibrium and it is not readily applica-
ble to chemical systems (Kotas 1980). Moreo-
ver, since chemical potential terms are absent in
A4, only the exergy Ex can take the diffusion of
matter into the system's environment into ac-
count. The distinction between 4 and Ex in the
literature is often ambiguous. The simplest for-



mula for the exergy Eyx adds the term
-pui(n; -n{) to A

E. :%v2 +u-u®-T(s-s°)

Bl @)
+P°(v—v®)=> uf(n; -nf,)

where u is the specific internal energy, s is the
specific entropy, v is the specific volume, and nj
is the number of moles of species i per unit mass.
This is valid for the substances which are com-
mon constituents of the environment. In the
general case the exergy Ex uses a system of en-

vironmental reference substances with respect to
which, in their environmental states, standard
exergies of commonly used chemical elements
can be evaluated. Such a reference state is the
state of unrestricted thermodynamic equilibrium
with the environment. For the principles of
computation of the exergy Ey for an arbitrary
chemical system based on Szargut’s theory of the
reference states (Szargut and Petela 1965) see
Kotas's two recent reviews and the book (Kotas
1980, 1985, 1986). The usefulness of the exergy
cannot be underestimated. The present work
shows merely several examples the common
feature of which is that they are dealing with
processes of the energy conversion and transport.
The energy storage problems are not considered.
In this regard it should be realized that the en-
ergy storage is, in fact, the storage of the exergy,
also energy savings are related to savings of the
exergy (Sieniutycz 1991).

Recently an idea was proposed to derive a
generalized exergy on kinetic grounds rather than
from classical analysis of a limiting quasistatic
process (Sieniutycz 1997a, b). Those analyses
include a transfer model of heat conduction
through boundary layers in which dissipative
phenomena occur, thus allowing some inevitable
lossy mechanisms. Therein the work produced or
the work consumed are described in terms of
functionals which depend on the thermodynamic
coordinates and their derivatives in time or
space. These functionals incorporate the entropy
production associated with irreducible ir-
reversibilities as those occurring in the boundary
layers. The consequence of the irreversibility is
that the finite-time work produced during the
relaxation of the system of a body and the bath to
the equilibrium (the so-called engine mode) is
not equal to the finite-time work consumed dur-
ing the departure of the system form the equilib-
rium (the so-called heat-pump mode). This idea
is illustrated in Figure 1, which in particular
contains an explanation why the second work is
larger than the first. The related kinetic model of
the process is developed in the next section.

work supplied
heat-pump mode

T

environment (infinite bath)
T=T". K=K

Figure 1. Two works considered in the extended
exergy analysis. The work produced (engine
mode) characterizes a thermodynamic profit
obtained from the process of relaxation of a body
to the equilibrium with the bath. The work sup-
plied (heat-pump mode) characterizes a thermo-
dynamic cost necessary to create the nonequilib-
rium system. In a reversible case the magnitudes
of both works are equal. In our example we con-
sider changes of temperatures only.

3. Differential Equations for Endo-reversible
Thermal Nachines and Exergy Functionals

Figure 2 depicts the differential part of an
engine with dissipative processes, which is, in
fact, the differential engine of Novikov, Curzon
and Ahlbom (Novikov 1958; Curzon and Ahl-
born 1975; de Vos 1992). The differential con-
ductances dy1 and dy2 are present between the
working fluid of the Carnot engine and each of
two fluids (of finite thermal conductivity). These
dissipative elements within the system can be
expressed as dyl =0 dA] and dy, = o, dAz, where
o and o, are the heat transfer coefficients and
dA and dA are the corresponding upper and
lower exchange surface areas. The correspond-
ing differential increase in the length coordinate
x is dx. The conductances link the heat sources
with the working fluid of the engine at high and
low temperatures. We designate by T 'and T ' the
upper and lower temperatures of the working
fluid which circulates in the differential Carnot
engine. A hot fluid (fluid 1) supplies heat to the
system at a high temperature T,; this heat reaches
the engine fluid at T,'. The supplied heat rate,
dQ1, thus depends on the temperatures T, and T}". .
In the simplest case considered here, i.e. Newto-
nian heat exchange, the heat rate dQ1 is propor-
tional to the temperature difference T-T,. In
the low-temperature part of the Carnot subsystem
heat is transferred to an environment (or fluid 2)
through another conductance, dy2. The flux of
the released heat depends on the temperatures T?
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and T2' and in the Newtonian case is propor-
tional to the temperature difference T2 - T2.
This low-grade heat flows between the low-

temperature part of the engine, which works at
the temperature T7', to the environmental fluid at

the low temperature T2 = T®. Again, this is a

case when the temperature of the heat reservoir is
constant and equal to that of the environment.

Since the resource (driving) fluid flows at a
finite rate and work is produced in the engine
mode of the process, the fluid temperature de-
creases along its path. In the engine mode, any
local efficiency of power production, n= dw/dQ1,

is smaller than the efficiency n. of a Carnot cy-
cle operating between the temperatures T, and T,.
In this mode, which is, in fact, an active (work-
producing) heat exchange between two fluids,
one may consider the problem of the maximum
work delivered in a finite amount of time. For
the inverse process in which work is added, the
first fluid is heated and the system works as a
heat pump. For this case the associated optimi-
zation problem is that of finding the minimum
work supplied in a finite amount of time,

We will show below that the flux formulae
deal with the infinitesimal conductance of the
overall heat transfer, dy. Such quantity is de-
fined through the partial conductances dy] and

dy2 in the standard way. As schematized in Fig.

2 and shown in Eq. (2), this overall conductance
can be expressed as the product of an overall
transfer coefficient, o, and the differential area

dA,
N d’YldY?, _ U.ldeoﬁz(l—k)dA
dy, +dy, o kdA+o,(d-Kk)dA
= %% ga oA

L} !

@

In Eq. (2), o =k o , where k is a constant
fraction of the upper heat transfer area A in
terms of the total area A = A + A . When-ever A
is proportional to the length coordinate x, the
above result is pertinent to defining a non-
dimensional time for the process. We shall derive
some formulae describing the power delivered by
this engine. We assume the steady work of the
engine. The entropy balance for the reversible

part of our differential process
d d
_er_ = & 3)

and the energy balance in the efficiency form,
dQ2 = dQ1(1- n), yield the stage efficiency given
by the Camnot formula
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T;
n=1-— 4)
T

However n is lower than the Carnot efficiency
referred to bulk temperatures of both fluids, Tq
and T7, as it applies to the intermediate tem-
peratures T1' and T7'.

dl
power output

Tz —’H’ :d-zl y@*‘ dvg
2N
dQ, T,
heat cutput
T,=T*
environment
x %+ dx -
s = e —d
¥ y+dy
T T+ dt

Figure 2 Differential Novikov-Curzon-Ahlborn
engine (differential NCA engine).

The temperatures T,  and T,' are unknown,
hence they should be expressed in terms of the
boundary temperatures T, and T, and a single
decision variable, which may be in principle an
arbitrary process variable, Here we use the en-
tropy flux entering the Carnot engine or leaving
this engine as a suitable decision variable. Its
usefulness results from the entropy conservation
throughout the Carnot engine, which causes the
single entropy flux d9 = dQ,/T, = dQ,/T,. This
quantity is used in the analysis which follows.

One begins by substituting for dQ and dQ,
their transport expressions. Here we assume the
simple Newtonian heat transfer. The reversible
entropy balance is then

dy; (T, -T)) _ dy,(T; -T,)
g I DASIPE

(&)

The differentials dy and dy, correspond to the
infinitesimal length dx, as shown in Fig. 2. In
terms of the common differential entropy flux
d9S, equal to each side of the above equation, the
temperatures T1' and T7' are

(6)

and



T,
T! = 2
T o
dy,
Hence the corresponding heat fluxes are
dQ, =dy,(T,-T))
T T,d3
o @®
I+— 14+—
dy, dy,
and
dQ, =dy,(T; -T,)
T, T,d9
=d -T,)=
Yz{l_ﬁ 2) l_ﬂ ©)
dy, dy,

These fluxes vanish for dS = 0, the situation
which corresponds with n = 1-T /T , the Carnot
efficiency. The work flux (power) at the differ-
ential stage equals the difference of the fluxes
dQI and sz, that is

dW =dQ, - dQ,
il T,
=, T S )d3 (10)
1+— 1-—
Y1 dy,
T, T,

The associated first-law efficiency of the
stage is

(i55:)
1+—
=M:1_[T_2J e

dQ, T [1 dS]
dy, (11)

1 1

e it
L
Ty dosil

d\g dYZ

For an infinitely slow process the flux
d9 vanishes, and efficiency approaches m=
I-T /T =m, the Camnot efficiency. The flow of
the circulating fluid G¢ vanishes in this limiting
case as well, and the residence time of this fluid
in the Carnot loop, C= G /G¢ (G is the mass of
the circulating fluid in the system) tends to infin-
ity. From Eq. (20) the power dw at the stage is
then equal to zero. On the other hand whenever
T; =T, the situation corresponding with the
equahty of expressions given by Eqgs. (16) and
17, ie.,

dsg ds
Td-—)=T,0+—) (12)
dy, dy,

the efficiency m equals zero (no engine) and the
associated entropy flux is

L

@)z 5 —2— (13)
ol
dy, dr

This point, at which d9 is finite, corresponds to
the pure heat conduction, without any work pro-
duction. At this point n = 0 and again dw = 0.
Substituting Eq. (13) into Eq. (8) yields the cor-
responding heat fluxes, dQ and dQ (which are
equal in this case)

T,d$ (led'Yz
43 dy, +dy,

dy,
=dy(T; -T,) =(dQ3) -0

(dQl )'rl:ﬂ )(Tl - Tg )

1+ (14)

The above expression contains the overall con-
ductance of heat transfer, Eq. (2).

With the entropy flux as the control vari-
able, the maximum power condition at the stage
is

(15)

Thus the common entropy flux which maximizes
the power, satisfies the equation

1 1 Ty s 1
— = |=(—+ ) (16)
das dy, T, d9 dy,

or an equivalent formula

Ao 1,1 T
as \j; e (dh g A

Whence, the engine entropy flux at the maximum
power condition (superscript 0) equals

j A i
\JT
a8% s (1h Bl o (18)

it 10 b (i
dy, dn VT,
The heat flux at the maximum power point
(dQ,)° =T, d8° is obtained from Eq. (8) as
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Tl
(dy)) " +(@8°)!
T
= 3 ‘1 (19)
1 by, dy
dy, O
T, (1-T, /T})
b &

dy, dy,
which yields finally

T
dQ,)° =dyT,(1- 1’—2—)
T (20)
=dy(T; -T,T,)

The corresponding extremum power, Eq.
(20) for d9 = d99, equals afier simplifications

0 _ _E2 | G
dw -dT,(l \[;J dm[m 1]

=dy{T, YT, -{T,) @1

- T, YT, -Ty)

= dy(JT, -{T,)?
which is consistent with the single-stage result
known from a standard treatment of NCA proc-
ess (de Vos 1992). The above results, in par-
ticular Eqgs. (30) and (31), lead one back to the

well-known formula for the efficiency at maxi-
mum power

i R dy(JT, —{T,)?

T dQ)°  dy(T, -yT,T,)
AT Jf
VT T

which is called the NCA efficiency. The second
derivative of W is negative at the extremal point,
hence the extremum is the maximum.

dQ,)’ =

(22)

One can also express fluxes of heat and
power in terms of the efficiency, . For this pur-
pose when the function

d8 = f(n, dy1, dy2, T1, T2)

is evaluated from Eq. (11) and the result substi-
tuted into Eqgs. (8) and (9). long but straightfor-
ward calculations produces
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1 (23)
_d‘{T‘ ) TZ}

and
dQ, =dy,(T; - T,)

24
=dy[d-wT, - T,] e

They vanish whenever for n = 1-T2/T1 =
nC whenever the thermal conductivities are fi-

nite. Note that the heat flux formulae deal with
the infinitesimal conductance of the overall heat
transfer, dy.

It follows from Eq. (23) that the efficiency
in terms of the driving heat flux can be written as
T,
T, -dQ, /dy
fosish A8 ol
T, +dT, /dt

n=1-
(25)

where use was made of the formula dQl =
— G ¢ dT and the non-dimensional holdup time t
was introduced defined by the differential ex-
pression

dy

dtr=— 26
T Ge (26)

This is, in fact, a modified definition of the
well-known engineering quantity called the
number of heat transfer units. Our efficiency
formula (25) shows that an effective temperature
of the upper source T' = T, + dT /dz plays a role
in the efficiency deviations from the Carnot
value. In the engine mode T is lower than T1 due
to the finite heat flux. In effect, the efficiency of
the engine mode, where dT < O because the
work is produced, decreases with clTlldt. We
can now simplify designations, by using the bare
symbol T for the temperature of the first fluid
(the resource fluid), and use the symbol T€ for
the constant temperature of the second fluid
(bath fluid). For example, the efficiency expres-
sion (25) in new designations will take the form

Te

- 27
T+T

n=1-

The corresponding expression for the dif-
ferential power output per unit flow (the quantity
which has the work units) exhibits the deviation
from the reversible Camot theory, caused by the
presence of the dissipative elements:



dw iy
dW=—=—|1-———|dT
( T+de'cl1]

=—c|l- X — | Tdr
T+T

Carnot efficiency is achieved when the ef-

fect of the overall resistance dy~ is negligible or
the derivative dT/dt is very small. The heat-
efficiency relationships such as Eq. (23) are
called equations of thermal characteristics.
Equation (23) states that the efficiency of any
NCA process decreases when the intensity of the
driving heat flux grows. While the properties of
the infinitesimal steps of the process are those
known for NCA engines of finite sizes, these
properties should be here understood locally, i.e.
for each value of the length coordinate x or each
value of the conductance coordinate y. Each
infinitesimal step is defined by two basic points:
i) the so called short-circuit point where n(y) = 0
and classical heat exchange takes place with dQ]
= dy AT(y), and ii) the so-called open-circuit
point where n(y) = m (y) and dQ = 0 whenever
the transport coefficients are finite. At each of
these two points the power type derivative
dw(y)/dy = 0; the power may be produced only
in the range of efficiencies between 0 and 7 .

(28)

Analogously an unsteady process may be
considered between a body which has the tem-
perature T and the bath, T®, The final formulae
are identical but ¢ must in this case, be inter-
preted as the specific heat under constant volume
rather than constant pressure. The differential of
the nondimensional time < is, in this case, de-
fined by equation

a'A
c,M

drt=

dt (29)

This definition contains; an overall heat
transfer coefficient, o'; an overall area of heat
transfer, A; the mass of the resource, M, and the
usual chronological time, t. This is related, again,
to a modified definition of the number of heat
transfer units.

Consider now a finite time transition of a
resource between two arbitrary temperatures, T
and T in a process of finite time interaction of
this resource with bath. Assume a restricted total
duration 7; this also means that an average rate
of the process must be finite. It follows from Eq.
(28) that for processes with pure heat transfer in
which cooling of the resource occurs in a se-
quence of infinitesimal engines (process from A
to B; T'<« T and TB < T’\; minus subscript at ),

the functional of the extremal work | can be
written in the form

T, T .
L(T,, T, T) = -1 Bcl1- i
_(Ty, T, T) mgx{ _[rAc(l T+T]Td1}

= oT, ~Ty)~cT* In A (30)
TB

s 2
—T* min Ic T— dt
T T(T+T)
Ta

where the minimized term in the last line de-
scribes the entropy production (Sieniutycz
1997a). T is the instantaneous temperature of the
resource and T is the rate of change of this tem-
perature with respect to the nondimensional time,
7. The minus subscript at symbol 1 of the work

functional means that the entropy production is
subtracted in this case.

For the fluid heating in a heat-pump system
(process from B to A; T' > T and TB < TA; plus

subscript at 1) an analogous functional
holds

T TF gl
1_(T,,Ty,T)=max c|1- — [Tdt
( i ) T {'[FB [ T-FTJT }

T
=¢(T, —Tg)-cT* In-2- (31
Ty

Ta 112
+T*® min J.c—.d‘c
T 3 T(T+T)

B

When Tg = T¢, both formulae above define a
nonclassical finite-time exergy. They show that
both work functions are equal, i.e., I. =1, only in
reversible or quasistatic case (T' = T). This
equality is the consequence of potential proper-
ties of the classical exergy in the thermodynamic
state space. Thus, in the reversible case each
function represents the same change of the clas-
sical exergy.

It is easy to see that classical or 'thermo-
static' exergy can be obtained from approaches of
this sort directly: by integration of the work inte-
gral under the assumption that the process effi-
ciency is that of Camot

Te
E, = Inch
* (32)
Tr e
=— ——)c(T)dT
i 1--=)(T)d

The integration limits used are for the 'engine
mode' of the system, i.e. the case when the sys-
tem produces work. For the heat-pump mode,
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when the process is from T€ to T, the integration
limits are inverted and so is the sign before the
integral. One obtains a mode-independent result

B, =c(T-T®)-¢T® ln(Tle) =A, (33)

which is valid when the specific heat is constant.
This is a special case of a more general formula

E, =h-h°®-T°(s—s°) (34)

which takes into account the temperature de-
pendence of the specific heat. Equation (34)
refers to the case of a steady state system, in
which case the notion of the exergy of a sub-
stance pertains to its exergy at flow, that is, we
are looking for a special quantity which is de-
fined as the ratio of the exergy flux (associated
with the flow of this substance) to the mass flux
of this substance. Equation (34) contains, there-
fore, the difference of specific enthalpies h in-
stead of the internal energy differences. Corre-
spondingly, Eq. (33) contains then the specific
heat at constant pressure instead of at constant
volume. However, in the case of the system of
the body and bath, where the evolution is in the
chronological time, the use of the specific heat at
constant volume, cy, is appropriate. To take into
account the two possibilities (a time evolution or
a steady-state process) we have used the symbol
¢ without index; this made it possible to assign
the index only now to describe the changes of
internal energy or enthalpy, depending on a con-
crete situation.

An obvious remark is that in order to gen-
eralize exergy to finite durations (finite rates)
one has to go to transport properties. In Eq. (2)
we have defined the infinitesimal conductance of
the overall heat transfer, dy. Such a quantity is
defined through the partial conductances dy1 and
dy7 in the standard way. Equations (26) and (29)
contain these transport properties explicitly in the
definition of the number of the transfer units, .
One should notice a connection between this
quantity and the Stanton number which can be
interpreted as the scale for the non-dimensional
conductance (Spalding 1963; Bird et al. 1966).
This should help evaluate all necessary quantities
in a concrete situation.

4. Generalization of Carnot formula and
exergy to finite time (finite size) processess

When the energy production process
evolves, the energy of the resource decreases.
The rate of the temperature decrease associated
with the Carnot efficiencies in Eq. (32) for the
classical exergy is zero, as only then can these
efficiencies be assured in systems with finite-
resistance characteristics. While remaining Car-
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not, these efficiencies decrease with decreasing T

which ultimately approaches the value T€ at the
state of the equilibrium with the environment, the
consequence of the finiteness of the resource. At
equilibrium, the work production terminates.
The Carnot formula can be writtern to describe
the quasistatic changes of efficiencies as follows

A-wT=T° (35

This is still the Carnot equation which says
that when a finite resource interacts with the
bath, the product of the resource temperature T
and (1 - n) remains constant, this constant being,
of course, the temperature of the bath. Now one
can ask an important question: How does that
simple rule change when the evolution of the
resource temperature T in time t occurs with
finite rates which are such that the final cumula-
tive production of work is maximum at a final

time instant ©f ? This question implies, of course,

a passage from T to T€ in a finite time, i.e. with a
finite mean rate, thus allowing an irreversible
process producing the entropy. Below we will
show that the simple rule discussed above still

holds, although the constant is no longer T,

One can derive that for the Fourier model
of heat exchange the temperature evolution of
the resource in our active (work producing) pro-
cess 18 described by the formula

diaT _m=mp(T)
dr 1-n

g (36)

which is a transformed form of an earlier result
(Sieniutycz 1997a). The quantity & is an intensity
parameter which characterizes the change of the
logarithm of the resource temperature in time T.
From this we conclude that n > n¢ refers to
heating processes of the resource fluid, whereas
1 < M refers to cooling processes of the resource

fluid. When T > T€ the cooling occurs in a se-
quence of the thermal engines; whereas, the
heating occurs in a sequence of the heat pumps.
Equation (36) holds for an arbitrary control m.
However, if the control is optimal, the logarith-
mic rate & is constant in time (Sieniutycz 1997a),
and the corresponding rule for the efficiency
change in time is described by an equation

* Smnymy o T
£+1 TE +1)

(37

which follows from Eq. (36). In this (optimal)
case the constant numerical value of £ can be
evaluated from the boundary conditions which
specify the end temperatures and duration of the
process. The integration of the temperature loga-
rithm in Eq. (36) yields immediately,



f i
g - nfr/T) (38)

i —1
With this equation a useful form of the effi-
ciency equation (37) can be obtained in the form
of generalized Eq. (35).

A-NT=————_ (9)
1+(t" =1")" In(T' /T")

This again shows the constancy of the
product of (1- ) and T, but in reference to a fi-
nite-rate process which produces a minimum
inevitable amount of the entropy, Sg. The prod-

uct -T®Sg is given in Eq. (40) below. Equation
(39) states that the finite-rate efficiencies of the
resource cooling processes (associated with work

production when T > T®) are lower than nc at

the same T, whereas those of heating processes
(associated with work consumption when T >

T®) are greater than nc at the same T. While the
qualitative statement can be obtained in classical
thermodynamics, the derivation of the quantita-
tive form given by Eq. (39) required the analysis
based on combination of the energy balance and
kinetics in Section 3. The transport properties are
contained in the definition of the number of the
heat transfer units, represented by the nondimen-
sional time, t. For example, Eq. (29) shows that
one can accomplish infinite nondimensional du-
rations in the sense of an infinite number of the

heat transfer units (tf - ti) even for finite contact
times t, whenever the products of transfer areas
and the heat transfer coefficients are very large in
comparison with the total heat capacity. When
these conditions are not satisfied one is dealing
with the finite-duration passages in which the
process efficiencies are different than those of
Carnot. It may be seen that one can identify the
right-hand side of Eq. (39) with an effective
temperature of the environment. The value of

this effective temperature is less than T¢ for
heating processes (heat-pump modes) and greater
than T® for cooling processes (engine modes). In

both cases the effect of the finite rates causes
adverse efficiencies.

Equation (36) with a finite constant £ is, in
fact, the relationship which one uses when inte-
grating Eqs. (30) and (31) along an extremal to
get Eq. (40). The specific work function follows
for every process mode as

(T, T, <, <)
; } (40)
i T il T
=¢(T' -TH-¢cT® ]nTT+cT (ﬁ)lnF
; T In(T" /T*
ST SRPAN ENERIN (1 .J N
bR e tf -t —In(T /T

The particular extremal work which de-
scribes the (generalized) exergy contains the en-
vironment temperature as one of the boundary
states. The exergy is the maximal work Wmax
= KT, oI, TL, <f) with T = T and Tf = T€ for the
engine mode, and the negative minimal work (-
W)min = - I(T, <, Tf, <f) with Ti = T® and Tf =
T for the heat-pump mode. For the vanishing
intensity £ the classical thermal exergy is recov-
ered. A general formula for the dissipative ther-
mal exergy is obtained as

B, (T. 1% 1"y =c(T -T°) —cT" mf—e
") e

1++xH) ™ In(T/T®)
=B B F 00T S

+ET* (41)

where Ex(T, T¢, ®) is the classical exergy and
we have assumed without any losses in general-
ity that ©! = 0. Equation (41) simplifies to the
classical exergy at the limit of infinite time tf. In
the above equations the upper sign refers to the
heat-pump mode and the lower sign to the engine
mode. The general thermodynamic result in the
second line of equation (41) is, of course, in
complete agreement with the Gouy-Stodola law
(Szargut and Petela 1965, Kotas 1985) or with its
particular form given by Tollman and Fine
(1948). These formulations of the second law
link losses of the extremal work, finiteness of the
process duration, and the associated minimum
entropy generation, Sg. However, these classical

formulations do not provide neither information
about analytical forms of the nonclassical contri-
butions to the exergy (and the related quantity
So) nor about the time evolution of the system.
For that purpose a dynamical model of the evo-
lution and the solution of the related Hamilton-
Jacobi equation are necessary, as shown in sev-
eral recent papers (Sieniutycz 1997a, b). Thus
the methods of analytical dynamics and optimal
control theory become ingredients of nonequilib-
rium  thermodynamics  whenever  post-
thermostatic (rate penalty) terms.are sought for
generalized thermodynamic potentials, i.e., when
thermodynamic potentials are generalized to fi-
nite time durations.

5. Averaged Efficiency for an Energy Pro-
duction Process With a Finite Resource

The problem of local efficiency changes
arises due to the finiteness of amount of the re-
source. When an averaged first-law efficiency is
evaluated from Eq. (40), for the whole engine
process between a nonequlibrium state T and the
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equilibrium state TC, the reversible result is ngy
= (1 = T®Tay ) where Tyy is the logarithmic

mean of the temperatures T and T®, The quantity
Nav is smaller than the initial efficiency of the

reversible engine mode, n = (1 — T¢/T), and it is
also smaller than the final efficiency of the heat-
pump mode. Therefore, in engine mode, the
averaged efficiency deviates adversely from the

Camot efficiency (1 — T¢/T), the effect caused
by the finiteness of the resource. The finiteness
of the resource is, however, a reversible effect, as
it becomes an advantage in the case of the heat-
pump mode, where a decreased effort is neces-
sary to achieve the final state. Whenever dissi-
pation occurs, the irreversible duration-related
term in the second line of equation (36) enhances
the decrease of the averaged efficiency in the
engine mode, which decreases below the reversi-
ble reference value, described above. Otherwise,
the irreversible term increases the averaged effi-
ciency of the heat-pump mode above its reversi-
ble value, a detrimental effect again, caused by
the dissipation. These conclusions have, of
course, a practical value. An example is calcula-
tion of an average efficiency and the efficiency
formula at the maximum power point for an en-
gine system of a nuclear power plant which has
its thermal characteristics similar to those of
Novikov-Curzon-Ahlborn system (De Vos 1992,
Sieniutycz 1997b). However, we should not ex-
pect the coincidence of the maximum-power
efficiencies with efficiencies of industrial proc-
esses. Economic reasons, associated with trade-
off between the investment and fuel costs, de-
termine that the actual efficiency nexp is always

smaller than the Carnot efficiency and larger
than the maximum-work efficiency. The associ-
ated thermoeconomic argument is adduced be-
low.

6. Constraint on Process Duration as a Finite
Investment

Any reasonable industrial enterprise has the
imposed constraint that investment money be
used in finite amounts. A finite investment re-
quires that the system size and/or the residence
time of the participating species remain finite.
Consequently, finite investments require only
finite time to accomplish changes of state in a
real process. This characteristic is, however, not
taken into account in classical thermostatics in
which the reversible changes between any two
different states are associated with vanishing
rates and hence infinite durations (i.e. infinite
investment). However, the finite-time thermody-
namics can manage situations in which the in-
vestment is finite.

As an example, let us consider work-
producing systems, in particular thermal engines.

54 Int.J. Applied Thermodynamics, Vol.1

For reasons of economics associated with the
tradeoff between investment and fuel costs, ac-
tual efficiencies for these engines are smaller
than Carnot efficiency. To explain why, let us
consider the net profit P as a general criterion of
the process. When work units are used for P
instead of the conventional economic ones, the
net profit takes the form

P=c,WQ,Q.Q" v |-c,t —coQ' @2

where Q is the cumulative or integral heat vari-
able (expensive heat) added to the system during
time t with Q°=0 and ° = 0 and
WlQ, Q,Qf.‘l:fl the symbolic notation for the
work functional (the gross profit), usually an
integral which depends on the current Q, the heat

flow rate Q = dQ/d and the final values of Q

and 7 (i.e. Qf, ’I:f). As in the work functionals we
use a nondimensional time t identical to the
number of heat transfer units, a quantity propor-
tional to the residence time of the fluid in the
system. The symbol Q represents the total ex-
pensive heat supplied to run the engine system
during the total time 7. The quantities cy, Cg
and c() are, respectively, the prices of the work,
equipment (investment) and of the heat Q. In the
engine model used above there is the direct pro-
portionality between the heat Q and the tem-
perature T of the fluid, i.e. Q = —-G¢(T — T) with
Tﬂ being an initial fluid temperature. [This was,
in fact, the reason for which the current tem-
perature variable T(t) has been used in place of
Q(x) as a suitable variable in Egs. (30) and (31).]
We have also to use therein the negative of the

derivative T = dT/dt as a measure of the local
intensity of the heat Q.

Thus, Eq. (42) represents an economic ex-
tension of Eqs. (30) or (31) that can effectively
be used to analyze various realistic cases. The
Carnot efficiency corresponds to vanishing rates.
This causes infinitely long residence times and
infinite equipment sizes necessary for any finite
change in the process (at a fixed Q). It is inher-

ent in this equation that for any fixed Qf, work
maximization leads to the Carnot point of the
engine as an optimal point when the investment
is free (cy = 0). Otherwise, in a finite investment

(fixed f) work maximization leads to an optimal
efficiency which is lower than that of the Carnot,
even if a heat supply is free (cQ = 0; free fuel).
For the special case of infinite resource, the op-
timal efficiency of the engine is the well-known
Novikov efficiency, [1-(T®/T)"]. Since in this

special case the total heat af (temperature Tf ) is
unconstrained, the integrand w of the integral W



is stationary with respect to the rate dT/dt, and
the Novikov efficiency is obtained from the con-
dition *Wp/*Q = sw/s = ew/s(dT/d1) = 0 at the
maximum power point. For example, the condi-
tion *w/+(dT/dt) = O applied for the integrand w
of functionals (30) or (31) yields (T + T) =
(TeT)1/2 a5 the optimal value of the sum (T +
T). When this result is applied in the efficiency
expression (27) corresponding with Egs. (30) and
(31) or its modified form Eq. (27') below

B TB _1_“ TE
TrT c,M_dT
T+ (—=—)(—
(a’A)(dt)

@7)

(here we have used the usual contact time t), the
already-known result for the maximum power
efficiency, Eq. (22) or Eq. (22" below, is ob-
tained

{ i XE

(TeT)UZ Y 22)
Thus the Novikov efficiency is a local op-
timal efficiency associated with a free fuel cost
(cQ = 0) and unlimited heat supply. It applies
when the heat capacity of the resource Mc ap-
proaches infinity and its temperature T is con-
stant. The efficiencies of real power stations lie
between those of the Camot and maximum
power (Curzon and Ahlborn 1975; de Vos 1992).
For the general optimization problem which is
just the case of a limited resource, the state coor-
dinates of this resource are fixed at the beginning
and the end of the process because any finite
resource is expensive, and only intermediate
states are influenced by our decisions. For this
fixed-end case, changes in investment costs are
path independent, regardless of the control
variations in the process (associated with the
path independent properties of the second term in
Eq. (1)). Therefore, since the process occurs in a
given piece of equipment (fixed investment,
fixed exchange area or fixed contact time), the
thermoeconomic problem of maximum net profit
has a solution which is well described by the
solution of the thermodynamic problem of
maximal work. This substantiates the important
technoeconomic role of the maximum work
problem which shows that (due to the tradeoff
between the investment and fuel costs) the actual
efficiency nexp is always smaller than the Car-
not efficiency and larger than the maximum-
work efficiency. The consideration in this sec-
tion has shown that optimizing of the work profit
at a fixed finite duration has its equivalent coun-
terpart in optimizing of a reduced work profit
(with the investment costs subtracted) at a free or
undetermined duration. This proves the sense for
thermodynamic optimization in a finite time

7. Reduction of Classical Exergy Consump-
tion in Heat Exchangers and Separation
Processes.

Geometrical methods have been used to
find optimal paths for thermo-mechanical and
separation processes. Two basic results were
proven: (i) the entropy production or exergy loss
of-a given process has a lower bound defined by
an expression proportional to the square of the
thermodynamic distance between the initial and
final states (Salamon and Berry 1983); (ii) the
minimum dissipation occurs when the process is
carried through at constant thermodynamic speed
(Salamon et al. 1980; Andresen and Gordon
1994). These results show that constant thermo-
dynamic speed can be used as a design principle.
Their application to heat exchangers proved the
superiority of countercurrent exchangers over the
cocurrent ones - (Andresen and Gordon 1992 a,
b). Principles of thermodynamic geometry can
also be applied to stagewise process with gas
separation by diffusion, staged refrigeration, or
chemical reactions. They were recently applied
by Andresen and Salamon to distillation process
(Sieniutycz and de Vos 1999). For a given feed
rate and fixed input and output concentrations
the distillation column really only has one free
control, the heat flow through the column. En-
ergy and mass balance equations from tray to
tray then impose the corresponding temperatures
and concentrations on each tray. The optimal
distillation column has external control of the
temperature at each plate. This enables the de-
signer to keep the trays a fixed thermodynamic
distance apart, thus minimizing dissipation ac-
cording to the general result of finite time ther-
modynamics. The optimal policy is a gradual
addition of heat at all trays below the feedpoint
and withdrawal of heat at all trays above the
feedpoint with a corresponding much smaller
heat duties of the reboiler and the condenser.
Although the overall amount of heat passed
through the column is the same as for the tradi-
tional design, most of that heat is degraded over
a much smaller temperature difference, thus be-
ing equivalent to a sharply reduced expenditure
of exergy for separation. A test calculation for
the separation of a 1/1 mixture of benzene and
toluene into 99% pure products shows a large
reduction of the driving exergy by a factor of 4.4,

8. Exergy-Based Optimization of Solar
Collectors

Solar collector design is an exemplary
problem for demonstrating the importance of
second law analysis and the superiority of effi-
ciencies based on the second law over those
based on the first law (Bejan 1982, 1988). We
follow here an analysis developed by this author.
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The simplest solar collector, an isothermal col-
lector characterized by a single temperature T, is
a device which absorbs a certain amount QS of
the solar radiation per unit time, loses a fraction
Q€= o A(T-T®) of the absorbed radiation to the
environment of temperature T®, and delivers a
useful exergy Q to a receiver at the temperature
T. Here A is the area of the collector, and o is
the heat exchange coefficient. The first law effi-
ciency nl= Q/Qs = 1- Q/QS is described by the
formula

o(T-T%A
n' = g_s =1- *(QT) (43)
where o is the coefficient of heat losses. The
highest possible collector temperature--the stag-
nation temperature--, Ty = T® + Q%aA_is the
one at which the efficiency vanishes corre-
sponding to vanishing heat power delivered to

the receiver. In terms of the stagnation tempera-
ture the first-law efficiency is

1 _g_ Tm -T
QS Tm = 1

44

The above equation indicates that the larg-
I
est possible first law efficiency (n = 1) occurs

when T = T€ corresponding with vanishing heat
flux to the environment. However, the exergy of

the heat delivered at T=T® vanishes; in this case
the receiver would consume worthless exergy in
spite of receiving the largest energy. A second

limit, nI =0, occurs when T =T , i.e. when de-

livery occurs at the maximum attainable T. The
receiver receives energy of the highest possible

quality, but since nl = 0, the flow of energy tends
toward zero; again no exergy is delivered to the
receiver. The maximum (classical) exergy deliv-
erable to the receiver can be determined by
maximizing

Bout :Q(l_%)
T -T T* G2
L e e
Qs : ~T°( T)

m
This maximum also corresponds to the maximum
of the exergy efficiency defined as n"=Boy¢/ Bin,
with constant Bjp, = Q3(1- T¢/TS), where TS is an
effective temperature of the sun. The differen-

tiation of equation (45) with respect to T yields
the optimal temperature of the collector Topt =

(T®Tym) . This can be generalized to the case

where there is a resistance between the collector
and the receiver. The analysis can be extended
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to nonisothermal collectors with a fluid stream,
combined convective and radiative heat losses,
extraterrestrial systems and to cases where Qg is

periodic (Bejan 1982, 1988).

9. Thermodynamic Aspects of Catalyst Deac-
tivation

Here we present another example showing
how thermodynamics can be helpful in engi-
neering analyses. This example, which uses only
classical thermodynamic concepts, shows an
improvement of model of catalyst decay by tak-
ing certain hysteretic properties into account.
The basic catalyst deactivation mechanism is that
associated with sorption processes in which the
irreversible occupation of active sites (blockage)
occurs through selective adsorption and subse-
quent degradation to carbonaceous material
(coke) of some of the process components.
Mechanistic kinetic models have been derived
since 1970s to describe deactivation through
coke deposition. These models take into account
deactivation as a series of reaction steps together
with” the main reaction. Extensions have been
made of those original models by taking into
account aspects such as: various deactivation
mechanisms, existence of the limiting residual
activity and a maximum coke content, activation
of a catalyst, selectivity in deactivation of each
individual main reaction, inhomogeneity of ac-
tive sites, et cetera.

An example deals with the triangular iso-
merization reaction of n butenes (Gayubo et al
1993)

- (46)
1+K,P, +K P, +K P,

(ry)o

The sorption model implies then the equation of
the catalyst deactivation in the form (Gayubo et
al 1993; Szwast 1994)

da kg KPP, +k4q K;P, +k4 K, Py
o e R £ ‘ a @n
dt 1+K,P, +K P, +K,P,

In a thermodynamic approach to catalyst
deactivation, the solid activity ag is identified
with its kinetic activity a = r:’rO, where 10 is the
reaction rate on the fresh catalyst. The Gibbs-
Duhem equation may be applied to link the de-
crease of the solid activity ag in time with the
increase of the activity of the adverse component
(poison, coke, moisture, ecetera)

(RT)™ (dp, + W, dp,)

: (48)
=M;'dlna, + W, M;'dlna_ =0

Here p, and p, are specific chemical poten-
tials of solid and coke, Mg and M¢ - corre-



sponding molar masses, W¢ -the mass of the

coke per unit mass of the fresh solid. We use
here the name coke for any adverse component
covering the solid and deactivating the catalyst.

Assume that the activity and chemical po-
tential of the coke are measured by its fugacity,
which is in principle the vapor pressure of the
adverse component at equilibrium with the coke.
For a constant T one can operate with the relative

vapor pressure Bc. For moist catalysts it is sim-

ply the relative humidity of the moisture at equi-
librium with solid.

For constant P and T, Eq. (48) yields
dlnp,
dlnWwW,

dInp,
dlnW,

dlna, =-M M (

JprdW,
(49)

=‘MSMEI( )P,wac

When the coke activity increases, the solid
activity ag decreases. The latter is found as the

integral form of Eq. (49)

W,
a, = ag cxp[— j M* [M]dwcjl (50)
wl=0

M, OlnW,_

In the case of approximation of the equilib-
rium relationship by the straight line pc = kW,
the partial derivative in Eq. (50) is equal to
unity. In this case the solid activity decreases
exponentially with the coke content W,

a, =al exp(-M_M_'W,) (51)

However the curves ag(W¢) are, in fact,
temperature dependent; an experimental fact
which proves the superiority of the general
equation (50). This equation implies a function
ag(W¢, T, P) rather than the simple function
ag(W¢) described by Eq. (51). Therefore, an im-
proved form of Eq. (51), i.e. Eq. (50) or its dif-
ferential form Eq. (49), should be used as a more
correct form when describing the deactivation
and reactivation

da, _ 0lnB (W,,T,P)
Bha v 52
i dInW, Jertia, o

Here Is = MM dW/dt is the molar

sorption (desorption) rate of the adverse compo-
nent, e.g the molar sorption (desorption) rate of a
poison or the generation rate (degradation rate)
of the coke. Equation (52) comprises the correc-
tion coefficient of the hysteretic nature

£=0InB, (W,,T,P)/dIn W, (53)

The coefficient £ is different for sorption (deac-
tivation) and desorption (activation).

In conclusion, thermodynamics helps to
take into account the experimentally observed
kinetic hysteresis of the deactivation-reactivation
process (Gayubo et al 1993) by using data of the
sorption-desorption hysteresis. The advantage is
that the latter is much better known than the for-
mer.

10. Concluding Remarks

Our studies of the application of thermody-
namics and availability theory to practical sys-
tems have shown that it makes sense to apply
thermodynamic ideas to control practical and
industrial processes, in order to achieve an im-
proved performance. In particular, the mechani-
cal work generation can be maximized in endor-
eversible thermal processes, exergy consumption
can be reduced in heat exchangers and separation
processes, temperature of solar collectors can be
optimized for the best exergy delivery, and the
chemical and transport systems with decay can
be given an improved description. Other exam-
ples can be found in the forthcoming book (Berry
et al. 1999). Extensions of the developed ther-
modynamic approach to complex chemical net-
works should be subject of further investigations
along the thermodynamic line demonstrated.
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Nomenclature

A Total transfer area coordinate of the
dA =dA1 +dAr

A B2 Classical exergy of mass unit

Ag Classical specific exergy of fluid
phase in heating example

a Catalyst activity

ay Specific area of heat exchange

(per unit volume)

¢ Specific heat of the driving fluid

E Energy-like function ('dissipative
energy') in terms of the rate

=dT/dz

Ex Generalized irreversible exergy of
mass unit

F=dV/dx  Cross-sectional area of the driving
fluid system

F, Rate of work production, profit
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Tl ' T2|

U

u=dT/dt

v=G/(pF)

W=W/G

rate (-L)

mass flux of the driving fluid
(fluid 1)

Extremum Hamiltonian function
Heat of transfer unit

Specific enthalpy of the fluid
Optimal performance function for
the work integral

Number of the heat transfer units
of the gas heating process in a
duct

Number of moles of i-th compo-
nent

Cumulative heat fluxes for upper
and lower reservoir, respectively
Function describing the driving
heat flux along the conductance
coordinate y

dissipated entropy per unit mass
flux of the driving fluid

mass of solid in the batch fluidi-
zation system

specific entropy of the driving
fluid

specific entropies of adiabats for
fluid circulating in the Camot
engine

contact time of the driving fluid
with the exchange surface

vector composed of the tempera-
ture and the number of heat trans-
fer units

temperatures of upper and lower
reservoirs (usually T2 =T€, and
T1=D

constant temperature of environ-
ment

upper and lower temperature of
the Carnot engine as the part of
the HCA engine

control vector of the generalized
process

rate of the temperature change of
the first fluid as the process con-
trol

volume coordinate of the driving
fluid system, satisfying dV= Fdx
linear velocity of the driving fluid
cumulative power output

total specific work or total power
per unit mass flux

enlarged vector of state with co-
ordinates W, T and .

transfer area coordinate

adjoint variable of the work
minimization problem, momen-
tum-type variable, L/T

adjoint variable of the entropy
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generation minimization, mo-
mentum-type variable, *L/* T

o' overall heat transfer coefficient

r gauging function

Y1, 72 coordinates of partial conduc-
tances

¥- coordinate of overall cumulative
conductance

A adjoint variable of work maximi-
zation problem, momentumlike
variable *fo/*T

n =dw/dQq local efficiency

p- mass density of the driving fluid

1 dimensionless contact time, num-
ber of the heat transfer units
(x/HTU)

£ Logarithmic intensity

o Entropy production

Subscripts

8- gas

C Carnot point

S entropy related quantity, solid

v per unit volume

o dissipative quantity

1,2 first and second fluid, respec-
tively

Superscripts

e environment, equilibrium

f. final state

i initial state
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