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GLOBAL EXISTENCE AND STABILITY RESULTS FOR
HADAMARD—VOLTERRA—STIELTJES INTEGRAL EQUATIONS

SAID BAGHDAD AND MOUFFAK BENCHOHRA

Abstract. In this paper we prove the existence and stability of solutions of
a class of Hadamard—Volterra—Stieltjes integral equations in the Banach space
of continuous and bounded functions on unbounded interval. That result is
proved under rather general hypotheses. The main tools used in our consider-
ations are the concept of measure of noncompactness in conjunction with the
Darbo and Mönch fixed point theorems.

1. Introduction

The theory of integral operators and integral equations is an important part of
nonlinear analysis. It is caused by the fact that this theory is frequently applicable in
other branches of mathematics and mathematical physics, engineering, economics,
biology as well in describing problems connected with real world see [6, 7, 8, 21, 28].
Fractional calculus is a generalization of the ordinary differentiation and in-

tegration to arbitrary non-integer order, it has developed up to the present day
[9, 15, 17, 18, 19]. Differential and Integral equations of fractional order are one of
the most useful mathematical tools in both pure and applied analysis, and various
theoretical results have been obtained, see the papers of Abbas et al. [1, 2, 4, 5].
There are many results in nonlinear functional analysis which contain conditions
with the Kuratowski measure of noncompactness, an axiomatic approach to the no-
tion of a measure of noncompactness was introduced by Banas and Goebel. There
were constructed many examples of axiomatic measures of noncompactness in Ba-
nach spaces, which are expressed by explicit formulas. This approach to the con-
cept of a measure of noncompactness has found many applications in the theory of
differential and integral equations in abstract spaces or in the fixed point theory
[11, 12, 13, 14, 16]. The paper is devoted to the study of a class of integral equations
of Hadamard—Volterra—Stieltjes type. That class comprises a lot of particular cases
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of fractional integral equations which can be encountered in research papers and
monographs concerning the theory of integral equations and their applications to
real world problems see [10, 19, 24, 26].
Consider the following integral equation

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

×
∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, u(t, s))

st
dth1(y, t)dsh2(x, s); (x, y) ∈ J, (1)

where J = [1,+∞) × [1, b], r1, r2 > 0, µ : J → R is continuous and bounded
function, f : J × R → R is continuous function, h1 : [1, b] × [1, b] → R , h2 :
[1,+∞)× [1,+∞)→ R are given functions, and Γ(·) is the Euler gamma function.
Using the technique associated with measures of noncompactness and fixed point

theorems we show that Eq. (1) has solutions being continuous and bounded func-
tions on the interval [1,+∞)× [1, b]. Moreover, the choice of suitable measures of
noncompactness allows us to assert that those solutions are asymptotic stable in
certain sense which will be defined in the sequel.

2. Preliminaries

This section is devoted to collect some definitions and auxiliary results which
will be needed in further considerations.
At the beginning we present some basic facts concerning measures of noncom-

pactness. Assume that (X, ‖·‖) is an infinite dimensional Banach space with zero
element θ. Denote by B(x, r) the closed ball centered at x and radius r. We write
Br to denote the ball B(θ, r). If A is a subset of X then the symbols A, ConvA
stand for the closure and closed convex hull of A, respectively. Moreover, we de-
note by MX the family of all nonempty and bounded subsets of X and by NX its
subfamily consisting of all relatively compact sets.
We accept the following definition of the concept of a measure of noncompactness.

Definition 1. [11, 14, 17] A mapping ψ : MX → R+ is said to be a measure of
noncompactness in X if it satisfies the following conditions

(1) The family ker ψ = {A ∈ MX : ψ(A) = 0} is nonempty and ker ψ ⊂ NX .
(2) A ⊂ B ⇒ ψ(A) ≤ ψ(B).
(3) ψ(A) = ψ(A).
(4) ψ(A) = ψ(Conv A).
(5) ψ(λA+ (1− λ)B) ≤ λψ(A) + (1− λ)ψ(B) for λ ∈ [0, 1].
(6) If (An) is a sequence of closed sets from MX such that An+1 ⊂ An (n =

0, 1, 2, . . .) and if limn−→∞ ψ(An) = 0, then the intersection set A∞ =⋂∞
n=0An is nonempty.

The family ker ψ described in 1. is said to be the kernel of the measure of
noncompactness ψ.



HADAMARD—VOLTERRA—STIELTJES INTEGRAL EQUATIONS 1389

Remark 2. Observe that the intersection set A∞ from 6. is a member of the family
ker ψ. In fact, since ψ(A∞) ≤ ψ(An) for any n, we infer that ψ(A∞) = 0.

In what follows we will work in the Banach space BC consisting of all real
functions defined, continuous and bounded on J = [1,+∞) × [1, b]. this space is
furnished with the standard norm

‖u‖ = sup{|u(x, y)|; (x, y) ∈ J}.
Denote by L1(J,R) the Banach space of function u : J → R that are Lebesgue
integrable with norm

‖u‖L1 =

∫ ∫
J

|u(x, y)|dydx.

In order to define a measure of noncompactness in the space BC, let us fix a
nonempty bounded subset Y of the space BC . For u ∈ Y , T ≥ 1, ε1, ε2 > 0,
(x1, y1), (x2, y2) ∈ [1, T ]× [1, b] such that |x2 − x1| ≤ ε1 and |y2 − y1| ≤ ε2.
We denote by ωT (u, ε1, ε2) the modulus of continuity of the function u on the

interval [1, T ]× [1, b] i.e

ωT (u, ε1, ε2) = sup{|u(x2, y2)− u(x1, y1)|; : (x1, y1), (x2, y2) ∈ [1, T ]× [1, b]}
ωT (Y, ε1, ε2) = sup{ωT (u, ε1, ε2); : u ∈ Y }

ωT0 (Y ) = lim
ε1,ε2→0

ωT (Y, ε1, ε2)

ω0(Y ) = lim
T→∞

ωT0 (Y ).

If (t, s) is a fixed number from J , let us denote Y (t, s) = {u(t, s); u ∈ Y } and
diam : Y (t, s) = sup {|u(t, s)− v(t, s)|; u, v ∈ Y } .

Finally, consider the function ψ defined on the family MBC by the formula

ψ(Y ) = ω0(Y ) + lim
t7−→∞

sup : diam : Y (t, s). (2)

Following the ideas from [12], we can show that the function ψ is a measure of
noncompactness in the space BC. The kernel ker : ψ consists of nonempty and
bounded sets Y such that functions from Y are locally equicontinuous on J and the
thickness of the bundle formed by functions from Y tends to zero at infinity. This
property will permit us to characterize solutions of the integral equation considered
in the next section.
Now, let us assume that Ω is a nonempty subset of the space BC and F is an

operator on Ω with values in BC. Consider the following equation

u(x, y) = (Fu)(x, y); (x, y) ∈ J. (3)

Definition 3. [4, 5, 11, 12] The solution u = u(x, y) of Eq. (3) is said to be globally
attractive if for each solution v = v(x, y) of Eq. (3) we have that

lim
x 7−→∞

(
u(x, y)− v(x, y)

)
= 0.
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In the case when this limit is uniform i.e when for each ε > 0 there exists T > 0
such that ∣∣u(x, y)− v(x, y)

∣∣ < ε.

For x ≥ T , we will say that solutions of Eq. (3) are uniformly globally attractive.

Let a nondegenerate interval I = [a, b]× [c, d] ⊂ R2 be given. We consider a real
function p : I −→ R defined on I. For a given subinterval I = [a1, b1]× [c1, d1] ⊂ I,
a ≤ a1 ≤ b1 ≤ b, c ≤ c1 ≤ d1 ≤ d we set

mp(I) = p(b1, d1)− p(b1, c1)− p(a1, d1) + p(a1, c1);

Let us de define ∨
I

(p) = sup
∑
i

|mp(Ii)|.

Where the supremum is taken over all finite systems of nonoverlapping intervals
Ii ⊂ I
(i.e. for the interiors I

◦
i of the intervals Ii we assume that I

◦
i ∩ I

◦
j = ∅ whenever

i 6= j).
If p : I = [a, b]×[c, d] −→ R and γ ∈ [c, d] is fixed, then we denote the usual variation
of the function p(s, γ) in the interval [a, b] by

∨b
a p(·, γ).Similarly for

∨d
c p(α, ·) where

α ∈ [a, b] is fixed.

Definition 4. [10] The real function p : I −→ R is of bounded variation on I if∨
I(p) <∞.

Lemma 5. [10] Let p : I = [a, b] × [c, d] −→ R be given such that
∨
I(p) < ∞,∨b

a p(·, γ0) <∞ for some γ0 ∈ [c, d]. Then
∨b
a p(·, γ) <∞ for all γ ∈ [c, d] and

b∨
a

p(·, γ) ≤
∨
I

(p) +

b∨
a

p(·, γ0).

Let f and g be a functions defined on the interval [a, b], the Stieltjes integral of
the function f with respect to the function g is designated by∫ b

a

f(x)dg(x),

It is clear that the Riemann integral is a special case of the Stieltjes integral,
obtained by setting g(x) = x. For more properties of the Stieltjes integral see
[10, 25].
The Stieltjes integral exists under several conditions, we will restrict ourselves

to only one theorem in this direction.

Theorem 6. [25] The integral ∫ b

a

f(x)dg(x),



HADAMARD—VOLTERRA—STIELTJES INTEGRAL EQUATIONS 1391

exists if the function f is continuous on [a, b] and g is of finite variation on [a, b],
and we have ∣∣∣∣∣

∫ b

a

f(x)dg(x)

∣∣∣∣∣ ≤ sup
x∈[a,b]

|f(x)|
b∨
a

(g).

Lemma 7. [25] If the function f is continuous on [a, b] and if the function g has
a Riemann integrable derivative g

′
at every point of [a, b], then∫ b

a

f(x)dg(x) =

∫ b

a

f(x)g
′
(x)dx.

For u ∈ L1(J,R), we consider the Hadamard—Stieltjes fractional integral of order
r = (r1, r2) of the form

(HSIru)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 u(s, t)

st
dtg1(y, t)dsg2(x, s);

where g1 : [1, b] × [1, b] −→ R, g2 : [1,+∞) × [1,+∞) −→ R, and the symbols ds,
dt indicate the integration with respect to s, t respectively.

Theorem 8. (Darbo)[16]
Let Ω be a nonempty, bounded, closed and convex subset of the Banach space X
and let F : Ω −→ Ω be a continuous mapping. Assume that there exists a constant
k ∈ [0, 1) such that ψ(FA) ≤ kψ(A) for any nonempty subset A of Ω. Then F has
a fixed point in the set Ω.

Remark 9. Let us denote by Fix F the set of all fixed points of the operator F
which belong to Ω. It can be shown that the set Fix F belongs to the family ker ψ.

Theorem 10. (Mönch)[17, 22]
Let D be a bounded, closed and convex subset of the Banach space X such that
0 ∈ D, and let F : D −→ D be a continuous mapping. If the implication

V = ConvF (V ) or V = F (V ) ∪ {0} ⇒ ψ(V ) = 0

holds for every subset V of D. Then F has a fixed point.

3. Main results

In this section we give two results for (1). The first one relies on the Darbo fixed
point theorem and the second one on the Mönch fixed point theorem. (1) will be
considered under the following assumptions :

(H1): The function f is continuous and there exists a continuous and bounded
function g : [1,+∞)× [1, b] −→ R+ such that

|f(x, y, u1)− f(x, y, u2)| ≤
g(x, y)|u1 − u2|
|u1|+ |u2|+ 1

; (x, y) ∈ J ; : u1, u2 ∈ R.
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(H2): The function t 7→ h1(y, t) is continuous and of bounded variation on
[1, b] for each fixed y ∈ [1, b], and as the function s 7→ h2(x, s) is continuous
and of bounded variation on [1,+∞) for each x ∈ [1,+∞).

(H3) : There exist a constant λ, η > 0 such that

sup
x≥1;1≤y≤b

∣∣∣∣∣∣
∫ x

1

∫ y

1

(
ln
x

s

)r1−1
|f(s, t, 0)|dt

α=t∨
α=1

h1(y, α)ds

β=s∨
β=1

h1(x, β)

∣∣∣∣∣∣ ≤ λ.
And

sup
x≥1

∣∣∣∣∣∣
∫ x

1

(
ln
x

s

)r1−1
ds

β=s∨
β=1

h1(x, β)

∣∣∣∣∣∣ ≤ η.
With

k =
η‖g‖ ln b

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) < 1.

Remark 11. In view of the assumption (H1) we infer that for each u ∈ X

|f(x, y, u)| ≤ g(x, y)|u|
|u|+ 1

+ |f(x, y, 0)|; (x, y) ∈ J ; u ∈ R.

Theorem 12. Under assumptions (H1)−(H3) the integral equation (1) has at least
one solution u = u(x, y). Moreover, solutions of (1) are globally attractive.

Proof. Consider the operator F defined on the space BC in the following way :

(Fu)(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

×
∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, u(t, s))

st
dth1(y, t)dsh2(x, s);

Observe that in view of our assumptions, for any function u ∈ BC the function
Fu is continuous on J . Next, let us take an arbitrary function u ∈ BC. Using our
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assumptions, for a fixed (x, y) ∈ J we have

|Fu(x, y)| ≤ |µ(x, y)|

+
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 |f(t, s, u(s, t))|
st

dth1(y, t)dsh2(x, s)

≤ |µ(x, y)|+ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
×
[
g(s, t)|u(s, t)|
|u(s, t)|+ 1

+ |f(s, t, 0)|
]
dth1(y, t)dsh2(x, s)

≤ ‖µ‖+
ln b

Γ(r1)Γ(r2)

[
‖g‖.‖u‖
‖u‖+ 1

α=b∨
α=1

h2(y, α)

∫ x

1

(
ln
x

s

)r1−1
ds

β=s∨
β=1

h1(x, β)

+

∫ x

1

∫ y

1

(
ln
x

s

)r1−1
|f(s, t, 0)|dt

α=t∨
α=1

h2(y, α)ds

β=s∨
β=1

h1(x, β)

]

≤ ‖µ‖+
ln b

Γ(r1)Γ(r2)

[
‖g‖.‖u‖
‖u‖+ 1

α=b∨
α=1

h2(y, α)

∫ x

1

(
ln
x

s

)r1−1
ds

β=s∨
β=1

h1(x, β)

+

∫ x

1

∫ y

1

(
ln
x

s

)r1−1
|f(s, t, 0)|dt

α=t∨
α=1

h2(y, α)ds

β=s∨
β=1

h1(x, β)

]

≤ ‖µ‖+
ln b

Γ(r1)Γ(r2)

[
‖g‖

α=b∨
α=1

h2(y, α)η + λ

]
.

Hence we obtain

‖Fu‖ ≤ ‖µ‖+
ln b

Γ(r1)Γ(r2)

[
‖g‖

α=b∨
α=1

h2(y, α)η + λ

]
.

Thus, we infer that the function Fu is bounded on J . Then Fu ∈ BC.
We take

r = ‖µ‖+
ln b

Γ(r1)Γ(r2)

[
‖g‖

α=b∨
α=1

h2(y, α)η + λ

]
.

We deduce that the operator F transforms the ball Br into itself.
Further, let (un) ⊂ Br such that un → u we get
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|Fun(x, y)− Fu(x, y)|

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 |f(t, s, un(s, t))− f(t, s, u(s, t))|
st

× dth1(y, t)dsh2(x, s)

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 g(t, s)|un(s, t)− u(s, t)|
|un(s, t)|+ |u(s, t)|+ 1

× dth1(y, t)dsh2(x, s)

≤ ‖g‖ ln b‖un − u‖
Γ(r1)Γ(r2)(‖un‖+ ‖u‖+ 1)

α=b∨
α=1

h2(y, α)

∫ x

1

(
ln
x

s

)r1−1
ds

β=s∨
β=1

h1(x, β).

Consequently

‖Fun − Fu‖ ≤
η‖g‖ ln b‖un − u‖

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α).

Then when n→∞ we obtain Fun → Fu so F is continuous on Br.
Now, we take a nonempty Y ⊂ Br, for T ≥ 1, (x1, y1), (x2, y2) ∈ [1, T ]× [1, b] with
|x2−x1| ≤ ε1 and |y2− y1| ≤ ε2; for each ε1, ε2 > 0. Fix arbitrarily u in Y we have

|Fu(x2, y2)− Fu(x1, y1)|

=

∣∣∣∣ 1

Γ(r1)Γ(r2)

∫ x2

1

∫ y2

1

(
ln
x2
s

)r1−1 (
ln
y2
t

)r2−1 f(t, s, u(s, t))

st
dth1(y2, t)dsh2(x2, s)

− 1

Γ(r1)Γ(r2)

∫ x1

1

∫ y1

1

(
ln
x1
s

)r1−1 (
ln
y1
t

)r2−1 f(t, s, u(s, t))

st
dth1(y1, t)dsh2(x1, s)

∣∣∣∣
≤ 1

Γ(r1)Γ(r2)

∫ x2

1

∫ y2

1

(
ln
x2
s

)r1−1 (
ln
y2
t

)r2−1
× sup
(x1,y1),(x2,y2)∈[1,T ]×[1,b]

|f(t, s, u(x2, y2))− f(t, s, u(x1, y1))| dth1(y2, t)dsh2(x2, s)

≤ 1

Γ(r1)Γ(r2)

∫ x2

1

∫ y2

1

(
ln
x2
s

)r1−1 (
ln
y2
t

)r2−1
g(s, t)

× sup
(x1,y1),(x2,y2)∈[1,T ]×[1,b]

|u(x2, y2)− u(x1, y1)| dth1(y2, t)dsh2(x2, s)

≤ ‖g‖ ln b

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) sup
(x1,y1),(x2,y2)∈[1,T ]×[1,b]

|u(x2, y2)− u(x1, y1)|

×
∫ x2

1

(
ln
x2
s

)r1−1
dsh2(x2, s)

≤ η‖g‖ ln b

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) sup
(x1,y1),(x2,y2)∈[1,T ]×[1,b]

|u(x2, y2)− u(x1, y1)| .
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Thus

ω0(FY ) ≤ kω0(Y ). (4)

Further, for u, v ∈ Y and an arbitrary fixed (x, y) ∈ [1, T ]× [1, b] we obtain

|Fu(x, y)− Fv(x, y)|

=

∣∣∣∣ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, u(s, t))

st
dth1(y, t)dsh2(x, s)

− 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, v(s, t))

st
dth1(y, t)dsh2(x, s)

∣∣∣∣
≤ ln b

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1
|f(t, s, u(s, t))− f(t, s, v(s, t))| dsh2(x, s)

≤ ln b

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1
g(t, s)

|u(s, t)− v(s, t)|
|u(t, s)|+ |v(t, s)|+ 1

dsh2(x, s)

≤ η ln b‖g‖
Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) sup
u,v∈Y

|u(s, t)− v(s, t)|.

Then

lim
x−→∞

sup diam (FY )(x, y) ≤ k lim
x−→∞

sup diam Y (x, y). (5)

Observe, that linking (4), (5) and the definition of the measure of noncompactness
ψ given by the formula (2), we obtain

ψ(FY ) ≤ kψ(Y ).

Finally, in view of the Darbo fixed point theorem we deduce that F has at least
one fixed point in Br which is a solution of Eq. (1). Moreover, taking into account
the fact that the set Fix F ∈ ker ψ and the characterization of sets belonging to
ker ψ (Remark 9) we conclude that all solutions of Eq. (1) are globally attractive
in the sense of definition (3). �

Now we will give another result using Mönch’s fixed point Theorem. Eq. (1)
will be considered under the following assumptions :

(C1): The function f is continuous and there exists a continuous and bounded
function g : [1,+∞)× [1, b] −→ R+ such that

|f(x, y, u1)− f(x, y, u2)| ≤
g(x, y)|u1 − u2|
|u1|+ |u2|+ 1

; (x, y) ∈ J ; : u1, u2 ∈ R.

(C2): The function t 7→ h1(y, t) is continuous and of bounded variation on
[1, b] for each fixed y ∈ [1, b], and as the function s 7→ h2(x, s) is continuous
and of bounded variation on [1,+∞) for each x ∈ [1,+∞).
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(C3) : There exist a constant λ, η > 0 such that

sup
x≥1;1≤y≤b

∣∣∣∣ ∫ x

1

∫ y

1

(
ln
x

s

)r1−1|f(s, t, 0)|dt
α=t∨
α=1

h1(y, α)ds

β=s∨
β=1

h1(x, β)

∣∣∣∣ ≤ λ,
and

sup
x≥1

∣∣∣∣ ∫ x

1

(
ln
x

s

)r1−1
ds

β=s∨
β=1

h1(x, β)

∣∣∣∣ ≤ η
with

k =
η‖g‖ ln b

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) < 1.

Theorem 13. Under assumptions (C1)−(C3) equation (1) has at least one solution
u = u(x, y) in the space X. Moreover, solutions of (1) are globally attractive.

Proof. We have F : Br → Br continuous, let Y ⊂ Br with Y = F (Y ) ∪ {0}. Then
for all u in Y , there exist v in Y such that u = Fv.
For T ≥ 1, (x1, y1), (x2, y2) ∈ [1, T ]× [1, b] such that |x2 − x1| ≤ ε1 , |y2 − y1| ≤ ε2
, ε1, ε2 > 0 and u, v ∈ Y we get

|u(x2, y2)− u(x1, y1)|

=

∣∣∣∣ 1

Γ(r1)Γ(r2)

∫ x2

1

∫ y2

1

(
ln
x2
s

)r1−1 (
ln
y2
t

)r2−1 f(t, s, v(s, t))

st
dth1(y2, t)dsh2(x2, s)

− 1

Γ(r1)Γ(r2)

∫ x1

1

∫ y1

1

(
ln
x1
s

)r1−1 (
ln
y1
t

)r2−1 f(t, s, v(s, t))

st
dth1(y1, t)dsh2(x1, s)

∣∣∣∣
≤ ln b

Γ(r1)Γ(r2)

∫ x2

1

∫ y2

1

(
ln
x2
s

)r1−1
g(s, t) |v(x2, y2)− v(x1, y1)| dth1(y2, t)dsh2(x2, s)

≤ ln b.‖g‖
Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) sup
v∈Y
|v(x2, y2)− v(x1, y1)|

∫ x2

1

(
ln
x2
s

)r1−1
dsh2(x2, s)

≤ η ln b.‖g‖
Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) sup
v∈Y
|v(x2, y2)− v(x1, y1)| .

In view of our assumptions, we have

sup
u∈Y
|u(x2, y2)− u(x1, y1)| ≤

η ln b.‖g‖
Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) sup
v∈Y
|v(x2, y2)− v(x1, y1)| .

Then

ω0(Y ) ≤ kω0(Y ). (6)
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Next, let u, v, w, z ∈ Y such that u = Fv and w = Fz, for x, y ∈ J we have
|u(x, y)− w(x, y)|

=

∣∣∣∣ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, v(s, t))

st
dth1(y2, t)dsh2(x2, s)

− 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, z(s, t))

st
dth1(y2, t)dsh2(x2, s)

∣∣∣∣
≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
|f(t, s, v(s, t))− f(t, s, z(s, t))|

× dth1(y2, t)dsh2(x2, s)

≤ ln b

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α)

∫ x

1

(
ln
x

s

)r1−1
g(t, s) |v(s, t)− z(s, t)| dth1(y2, t)dsh2(x2, s).

We obtain

|u(x, y)− w(x, y)| ≤ η ln b.‖g‖
Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α)|v(s, t)− z(s, t)|.

Then
lim

x−→∞
sup diam (Y )(x, y) ≤ k lim

x−→∞
sup diam Y (x, y). (7)

From the estimates (6) and (7) we infer that

ψ(Y ) ≤ kψ(Y ).

Since k < 1, we obtain ψ(Y ) = 0. Combining the above result and Theorem 10 we
complete the proof. �

4. Example

We consider the following Hadamard—Volterra—Stieltjes integral equation

u(x, y) =
ln(x+ y + 1)

1 + ex+y

+
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 se−s−t

t|u(s, t)|+ st

dt ln([y] + t)dse
−[x]−s

st
(8)

where (x, y) ∈ J = [1,+∞)× [1, π], and r1, r2 > 0.
Set

µ(x, y) =
ln(x+ y + 1)

1 + ex+y
; h1(y, t) = ln([y] + t); h2(x, s) = e−[x]−s

and

f(s, t, u(s, t)) =
se−s−t

t|u(s, t)|+ st
; : (s, t) ∈ J.
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The symbol [y] indicates the integer value of y. It is clear that equation (8) can
be written as equation (1). Let us show that conditions (H1) − (H3) hold. The
function t 7→ ln([y] + t) is continuous and nondecreasing for each fixed y0 ∈ [1, π],
so it is of bounded variation on [1, π]× [1, π], and

t=π∨
t=1

h2(y, t) ≤ ln(3 + π)− ln 2.

The function s 7→ e−[x]−s is continuous and decreasing for each fixed x0 ∈ [1,+∞),
and

lim
s→+∞

e−[x]−s = 0.

So it is of bounded variation on [1,+∞)× [1,+∞), and for each fixed x0 ∈ [1,+∞)

dsh1(x0, s) = −e−[x0]−sds.

|f(s, t, u1)− f(s, t, u2)| =
∣∣∣∣ se−s−tt|u1|+ st

− se−s−t

t|u2|+ st

∣∣∣∣
=

∣∣∣∣ tse−s−t(|u1| − |u2|)(t|u1|+ st)(t|u2|+ st)

∣∣∣∣
≤ tse−s−t|u1 − u2|
|u1|+ |u2|+ 1

.

So g(s, t) = tse−s−t ; f(s, t, 0) =
e−s−t

t
and for a fixed x0 ∈ [1,+∞) we have :∣∣∣∣∫ x0

1

∫ y

1

(
ln
x0
s

)r1−1
|f(s, t, 0)|dt ln([y] + t)dse

−[x0]−s
∣∣∣∣

=

∣∣∣∣∫ x0

1

∫ y

1

(
ln
x0
s

)r1−1 e−s−t
t

dt ln([y] + t)dse
−[x0]−s

∣∣∣∣
≤
∣∣∣∣lnπ[ln(3 + π)− ln 2]

∫ x0

1

−
(

ln
x0
s

)r1−1
e−s−[x0]e−[x0]−sds

∣∣∣∣
≤
∣∣∣∣lnπ[ln(3 + π)− ln 2] lnx0

∫ x0

1

e−2s−2[x0]ds

∣∣∣∣
≤
∣∣∣∣lnπ[ln(3 + π)− ln 2] lnx0

1

2

[
e−2s−2[x0]

]x0
1

∣∣∣∣
≤ 1

2

∣∣∣lnπ[ln(3 + π)− ln 2] lnx0

[
e−2x0−2[x0] − e−2[x0]−2

]∣∣∣ .
The function

ϕ(x) = lnπ [ln(3 + π)− ln 2] lnx
[
e−2x−[x] − e−2[x]−2

]
,
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is bounded on [1,+∞). Then there exist λ > 0 such that

sup
x≥1;1≤y≤π

∣∣∣∣∫ x

1

∫ y

1

(
ln
x

s

)r1−1
|f(s, t, o)|dt ln([y] + t)dse

−[x]−s
∣∣∣∣ ≤ λ.

We have also∣∣∣∣∫ x0

1

(
ln
x0
s

)r1−1
dse
−[x0]−s

∣∣∣∣ ≤ ∣∣∣∣lnx0 ∫ x0

1

e−[x0]−sds

∣∣∣∣
≤
∣∣∣lnx0 [e−[x0]−x0 − e−[x0]−1]∣∣∣ .

The function
ψ(x) = lnx

[
e−[x]−x − e−[x]−1

]
,

is bounded on [1,+∞). Then there exist η > 0 such that

sup
x≥1

∣∣∣∣∫ x

1

(
ln
x

s

)r1−1
dse
−[x]−s

∣∣∣∣ ≤ η.
It follows that

k =
η ln b‖g‖

Γ(r1)Γ(r2)

α=b∨
α=1

h2(y, α) =
ηe−2 lnπ

Γ(r1)Γ(r2)
[ln(3 + π)− ln 2] < 1.

Thus, from Theorem 12 the Eq. (8) has at least solution in BC and solutions of
Eq. (8) are globally attractive.
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