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Abstract 

A general methodology for the decomposed optimization of highly coupled, highly 
dynamic energy systems is presented. The approach is based on the physical division of 
the system into units (sub-systems, components or disciplines) subject to functions 
describing the energy, cost and other couplings between them. Two versions of the 
approach are proposed. The first approach is called the Local-Global Optimization 
(LGO) Approach. LGO requires unit optimizations to be carried out with respect to 
purely local decision variables for various combinations of the functions that connect the 
units. The results are used to create an Optimum Response Surface (ORS) for the entire 
problem. The ORS is then searched by a system-level optimizer to find the values of the 
coupling functions that lead to an optimum system-level solution. The second approach 
proposed is an iterative version of LGO (ILGO). In this case, the ORS is closely 
approximated using a linear Taylor series expansion. The partial derivatives resulting 
from such an approximation are seen to correspond to the shadow prices (or marginal 
costs) typically used in the thermoeconomic literature. ILGO effectively and 
significantly reduces the number of unit optimizations required. The properties used to 
describe the coupling functions play a critical role in the convergence of ILGO to a 
global system-level optimum. A discussion of this and its implication for the choice of 
First or Second-Law based quantities for the optimization of systems is given. 
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1. Introduction 

The integrated synthesis/design of highly 
integrated energy systems with variable loads 
and/or environmental conditions is a research 
area of great interest. In this paper, 
decomposition is used as a tool for overcoming 
the mathematical, cultural, and software 
difficulties that can occur if the design problem 
is formulated as a single problem for the system 
as a whole. Decomposition is seen as a tool that 
not only permits the solution of the overall 
synthesis/design problem by dividing it into 

smaller sub-problems but facilitates the difficult 
task of sub-system integration. The problem of 
integration is not only that the synthesis/design 
of the different subsystems usually present in 
complex systems is accomplished by teams 
generally in different areas of expertise each 
using tools possibly incompatible with those 
used in other areas but also that these teams 
encompass a wide variety of engineering 
disciplines. In addition, the synthesis/design of 
the different sub-systems may, in many cases, be 
done at different stages and at times crossing 
company lines. Furthermore, it is not uncommon 



 

to have design teams that are not located entirely 
at one facility that, added to cultural differences, 
complicates the task at hand even further. The 
methods presented here are seen to match and 
enhance existing design practices and are in tune 
with the current need for concurrent, 
collaborative environments that make use of 
multiprocessing as well as parallel and internet 
capabilities. 

To demonstrate the generality of the 
decomposition methods presented here, the 
systems considered are quite general and, thus, 
may represent, for example, stationary or 
aircraft/aerospace applications. It is assumed 
throughout this paper that any system modeling 
may require a high level of detail (and is, 
therefore, expensive to simulate and optimize) 
and may involve large numbers of continuous 
and discrete variables. The synthesis/design 
problem is set up in a general way so that 
streams and feedbacks (i.e. couplings) between 
units1 may be represented by energy (or exergy) 
or by any other relevant quantity that may, for 
example, facilitate the interface with non-energy 
systems. This contrasts with the El-Sayed and 
Evans (1970) formalism and other 
thermoeconomic formulations (e.g., 
Frangopoulos, 1983; Tsatsaronis, 1985; von 
Spakovsky, 1986; Valero et al., 1986; Benelmir, 
1990; etc.), which were developed under the 
assumption that the properties of the energy 
system being considered are best expressed in 
terms of exergy. These formulations used exergy 
due to the belief that cost accounting is more 
rationally achieved with the use of exergy. For 
analysis purposes, this is indeed the case! 
However, even the most enthusiastic proponents 
of Second Law analysis know that exergy is not 
an essential requirement for optimization 
although in certain cases there may be an 
associated advantage to its use2. In this paper, the 
final choice of quantity (or quantities) used to 
represent streams and feedbacks (i.e. couplings) 
is based on ensuring that the shadow prices (or 
marginal costs)3 associated with these quantities 
exhibit certain desirable properties (e.g., aid in 
decomposition and subsystem integration). 
Whether the choice is exergy or energy or 
something else depends on this and certain 
practical considerations such as the details of the 
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1 Units in this context refer to either subsystems or 
components.  
2 For example, it may be used as the basis of a search engine 
for finding the global optimum; or in certain cases, it may 
enhance decomposition itself. 
3 “Marginal cost” and “shadow price” are not synonymous 
but are nonetheless used interchangeably here, since under 
the conditions specified in the paper, the “shadow price” is 
the marginal cost associated with marginal changes in a unit 
or local objective’s optimum value with respect to marginal 
changes in the value of an associated coupling function. 

simulations tools available, the level of expertise 
present, the number of different disciplines 
required, etc.  

2. The Synthesis and Design Optimization 
of Dynamic Energy Systems 

Consider a general non-hierarchical4 
system5 composed of three units (sub-systems, 
components, disciplines, or simply black-boxes) 
as shown in Figure 1. Three is considered a 
small enough number to understand the features 
of the methods yet large enough to reveal 
patterns and facilitate the use of compact 
mathematics. The results presented in this paper 
can be routinely extended to systems with more 
than three units. In Figure 1, the functions uij are 
called coupling, compatibility, linking or 
connecting functions. The coupling functions can 
also be considered intermediate forward and 
backward feedback functions. Each unit has its 
own vector of decision variables ix

r
 and a local 

contribution, fi, to the overall objective function, 
f. The objective function is often called the cost 
function. Although not all design problems have 
this feature, it is very typical in energy systems. 
In this kind of system, a unit’s contribution to the 
overall objective function takes the form: 

iiii ZRkf +=  (1) 

where the functions )m,...,1i(Ri =  represent the 
external resources (e.g., fuel) used to perform the 
required tasks. These tasks are assumed known. 
The functions Zi are related to the physical 
dimensions and material and technology choices 
for the unit and can, therefore, be given in terms 
of mass, area, volume and/or capital cost. The Zi 
will, thus, be called the capital functions. The 
constant ki is an appropriate conversion factor. 
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Figure 1.  A coupled non-hierarchical system. 

One of the features of dynamic energy 
systems is that the amount of external resources 
may vary in time. Likewise, under certain 

                                                           
4 A non-hierarchical system is one in which each decision, 
even a localized decision, influences the rest of the system. 
5 In order to be as general as possible, the term “system” is 
used here to refer to any engineering system whether energy 
based or not. 



 

circumstances, the capital functions may take 
different values over time. One such 
circumstance is when the capital function 
represents costs that may be influenced by 
operating conditions (e.g., maintenance costs). 
Another feature of energy systems is that the 
coupling functions uij may be interpreted as 
intermediate products of unit i, which become 
intermediate resources for unit j. In some cases, 
the coupling functions can be considered as 
attributes of j that are passed back to i, i.e. they 
effectively act as intermediate feedback 
functions.  

Time variations in the local objective 
functions are handled by defining the 
independent synthesis/design and operational 
variables ix

r
 and tiy

r
, respectively, for each 

unit. The synthesis/design variables, ix
r

, 
typically correspond to geometric parameters 
(physical unit dimensions), design flow rates, 
design pressure ratios, as well as discrete (e.g., 
material or technology choices) or binary (e.g., 
unit existence or nonexistence) parameters. By 
definition synthesis/design variables remain 
constant in time. Operational variables, tiy

r
, are 

parameters which can be controlled over time so 
that off-design operation is optimal. Operational 
variables can be continuous variables (flow rates, 
valve settings) or binary variables (e.g., units on 
or off).  

Given the dynamic nature of the problem, it 
is often convenient to work with objective 
functions in rate form. The functional 
relationships for the local objective functions at 
an instant of time t are then given by: 
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and 
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At an instant of time t, the coupling 
functions are in general given by 

)y,y,x,x(uu
tjtijiijtij

rrrr
=  (5) 

With this in mind and after choosing the 
independent variables, the system-level 
synthesis/design problem is formulated as: 

dtff minimize
time
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where: 

iiii ZRkf &&& +=  (6.3) 

The vectors of equality and inequality 
constraints at various instants of time, tH

r
and 

tG
r

, represent the thermodynamic, physical and 
cost models (i.e. the analysis system of 
equations) and the restrictions imposed on the 
synthesis/design. One such restriction is the 
desired product for each of the units. Thus, the 
nth element of any vector of equality constraints 

ih
r

 at any instant t is given by: 

o
ittitn,i PPh && −=  (6.4) 

where  is the actual product rate and  the 
rate of product required from unit i. 

tiP& o
itP&

In most cases it is advisable to discretize the 
time integral by taking time segments 
(independent of each other or not6) over the 
entire load and/or range of environmental 
conditions. The number of these segments 
depends on the nature of the load and the level of 
detail desired. A discretized version of Eq. (6) 
can be written as:  
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subject to: 
                                                           
6 A problem with dependent time segments is one for which 
transient effects are important. 
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Here the subscript t refers to the τ different 
segments into which the load/environmental 
conditions have been divided. Note that Eq. (7) 
allows time segments of different durations. 

Now, assume that the sizes of the 
synthesis/design and operational variable vectors 
are d and o, respectively. The total number of 
variables is, therefore, d+oτ. For complex, highly 
dynamic energy systems, which may require 
high levels of detail and/or have large numbers 
of units, the total combined number of variables, 
discrete and continuous, may grow very large. In 
addition, the fact that the response of energy 
system components and subsystems is typically 
highly nonlinear and the nature of the design 
space non-contiguous (due to the presence of 
discrete/binary variables) makes the problem 
very expensive computationally and in some 
cases, even impossible to be solved with existing 
optimization algorithms. In fact, the resulting 
mixed-integer, non-linear programming 
(MINLP) problem has a known solution only 
under very special, restricted conditions 
(Floudas, 1995; Bruno et al., 1998).  

The alternatives normally considered are to 
reduce the number of independent variables 
either by varying only a few synthesis/design 
variables at a time (trade-off analysis), 
considering a severely limited number of 
synthesis/design variables while accounting for 
only one of the operating conditions (one-point 
synthesis/design), and/or linearizing the problem 
in order to transform it into a mixed integer 
linear programming (MILP) or linear 
programming (LP) problem. These alternatives 
can be avoided through the use of decomposition 
so that the solution to the original problem does 
not compromise the quality of the final synthesis/ 
design.  

However, the purpose of decomposition is 
not just to decrease the size of the 
synthesis/design problem. An equally important 
reason is to facilitate the difficult task of sub-
system and, in some cases, discipline integration. 
In many existing industrial design processes, the 
synthesis/design of units is carried out by 
different groups and oftentimes different 
departments within a company or even different 
companies. The different design philosophies, 

tools and procedures are in many cases not 
compatible with each other, making the solution 
of the entire problem as a single block simply 
impractical. These difficulties are only worsened 
by the fact that the synthesis/design of the 
different units is done at different times. 

Therefore, in many practical settings, 
decomposition is an absolute necessity. In this 
work, two types of decomposition are 
considered. The first is time decomposition and 
the second physical (i.e. unit) decomposition. 
Physical or unit decomposition uses the Local 
Global (LGO) and Iterative Local Global (ILGO) 
optimization methods developed by Muñoz and 
von Spakovsky (2000 a, b, c). 

2.1 Time decomposition 
Time decomposition exploits the 

fundamental differences that exist between the 
design and operational variables to create a set of 
hierarchical problems each with a lower 
dimensionality than the overall system-level 
problem. Different types of time decomposition 
can be defined.  

The most common time decomposition 
(e.g., Frangopoulos (1989), Olsommer, et al 
(1999a,b)) consists of initially selecting values 
for the synthesis/design variables ( X

r
) and then 

searching for the optimum values of the 
operational decision variables ( tY

r
). The latter 

low-level optimization can be done taking all of 
the time segments into which the 
load/environmental conditions have been divided 
and using them in a single problem. If the 
number of operational decision variables (e.g., 
the size of the vector Y

r
) and/or the number of 

time segments is large, it may be advisable to 
define a set of τ optimization problems, one for 
each of the time segments (each with respect to 
the instantaneous operational variable vectors 
( tY
r

)). Once the lower-level problems are solved, 
the optimum values of the objective functions 
corresponding to the given synthesis/design 
variables are sent back to a high-level optimizer 
for analysis. The high-level optimizer is in 
charge of finding the optimum values for the 
synthesis/design variables ( X

r
). 

The so-called nested time decomposition 
described above, effectively reduces the size of 
the overall problem from d+oτ variables by 
solving two problems of size d and oτ or a 
combination of one problem of size d and τ 
problems of size o. The main disadvantages of 
nested time decomposition approaches are: 
- the very large expense of the nested 

optimizations that result from applying either 
approach (i.e. all the time segments as a 
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single problem or each time segment as an 
individual problem).  

- the size of the sub-problems may still be too 
large even with time decomposition. 

- other forms of decomposition, e.g., physical 
decomposition, are difficult to implement at 
the synthesis/design level. 

- it is likely that a number of combinations of 
the synthesis/design variables X

r
 when used 

in the lower-level problem(s) (to find the 
optimum tY

r
 values) will not lead to feasible 

solutions. 
Other than the third disadvantage above, all of 
these drawbacks are alleviated somewhat by the 
fact that both approaches are easily parallelized 
in various ways. Thus, for example, multiple 
processors may simultaneously handle different 
combinations of the synthesis/design variables 
along with the optimizations with respect to the 
operational variables. Another possibility is to 
have multiple processors execute the τ  
optimizations of the different time segments. 

In order to get around the third disadvantage 
listed above and at the same time minimize the 
others as well, the type of time decomposition 
proposed and used in this work is not nested and 
consists of selecting one time segment, say 
segment δ, which has the most demanding7 load 
requirements and/or environmental conditions8, 
as the synthesis/design point9. The system is then 
synthesized/designed for this point by solving 
the restricted problem: 

δ=
δ
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7 The most demanding segment could be the one that uses the 
greatest amount of external resources and/or poses the 
greatest challenges in terms of satisfying the system analyzer 
equations including the external demand for the system’s 
products. 
8 Actually, more than one segment could be chosen especially 
if a priori it were not clear which segment is the most 
demanding or if two or more segments are relatively close in 
significance. Of course, each additional segment complicates 
the process and too many defeat the purpose of this type of 
non-nested time decomposition all together. 
9 A single reference condition is normally called the 
synthesis/design point. In this context, such a designation is 
somewhat misleading since one is trying to obtain the 
synthesis/design that minimizes the cost over the entire 
period of operation.  

0
g
g
g

G

3

2

1 r

r

r

r

r
≤

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

δ

δ

δ

δ  (8.2) 

where t∆  is the length of time considered for all 

time segments (i.e. ). The subscript δ 

refers to the segment chosen for the 
“synthesis/design” point of the system. 

∑
τ

=
∆=∆

1t
ttt

The result obtained from solving Eq. (8) for a 
single synthesis/design is a set of feasible 
solutions10 (one optimal with respect to Eq. (8) 
and others not) that satisfies the constraints given 
by Eq. (8.2). These solutions have a 
corresponding set of vectors δX

r
 and δY

r
. The 

most promising of these feasible solutions (each 
having decision variables fpXδ

r
 and fpYδ

r
, and 

corresponding objective function value ) are 
then used to minimize the total cost over the 
entire load/environmental profile for each of 
these feasible solutions, i.e.: 

fpfδ

minimize: 

t

1

1t

3

1i
i

3

1i

fp
i tftff ∆⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∆⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ∑∑

−τ

= =δ=

&&  (9) 

{ } { }
τ+δ−δ=

==

,...,1,1,...,1t
y,y,yYΥ    w.r.t. t3t2t1t
rrrrr

 

subject to: 

{ }

{ } τ+δ−δ=≤
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

==Γ

τ+δ−δ==
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

==Η

,...,1,1,...,1t;0
g
g
g

G

,...,1,1,...,1t;0
h
h
h

H

t3

t2

t1

t

t3

t2

t1

t

r

r

r

r

rr

r

r

r

r

rr

 (9.1) 

and 0XX fp rrr
=− δ  (9.2) 

This type of decomposition uses the implicit 
assumption that some synthesis/design variables 
X
r

 are likely to lead to an optimum solution 
when the period of operation is included. The 
first term on the right of Eq. (9) is known from 
solutions to Eq. (8). It is furthermore assumed 
that the best solutions for the reference 
(synthesis/design) point found from problem (8) 
are not necessarily the best when integrated over 

                                                           
10 This presupposes a means for generating these feasible 
solutions, which can be done with a heuristic approach such 
as a genetic algorithm or conventional gradient-based 
method. 



 

the various off-design conditions. To this end, as 
indicated by constraint (9.2), the values of the 
synthesis/design variables are set equal to the 
various synthesis/design variable values 
associated with the promising feasible solutions 
obtained from solving problem (8). 

The type of time decomposition proposed 
effectively transforms a problem with d+oτ 
variables into two problems (one of 
synthesis/design and the other of operation), the 
latter of which can be divided further into τ-1 
problems since one can define (τ-1) off-design 
optimization problems (implemented in parallel) 
with respect to the instantaneous operational 
decision variables (Yt). The synthesis/design 
problem will, thus, have d+o decision variables 
while each of the operational or off-design 
problems will have o decision variables. The 
reduced number of variables for the decomposed 
problem, however, comes at the expense of 
possibly having to carry out the optimization 
problem given by problem (9) for several 
possible feasible (but promising) solutions found 
by solving the reduced problem given by 
problem (8). An obvious advantage over the 
nested time decomposition approaches described 
earlier is that no time is spent on solutions that i) 
are infeasible or ii) do not meet the most 
stringent demand and operating conditions.  

Even with time decomposition, the solution 
of the synthesis/design problem (problem (8)) 
may be problematic if the number of variables 
(d+o) is still very large. In this case, time 
decomposition reduces the number of variables 
for each decomposed operational problem but 
does not completely facilitate the solution of the 
overall problem. Thus, an additional 
decomposition is necessary.  

 2.2  Physical (unit) decomposition in 
energy system synthesis and design  

Depending on the size of the problem 
(number of units, number of inputs/outputs of 
each unit, number and nature of the independent 
variables), any of the approaches developed by 
Muñoz and von Spakovsky (2000 b, c) can be 
considered for solving the overall problem using 
physical decomposition. The first is the Local-
Global Optimization (LGO) approach and the 
second the Iterative Local-Global Optimization 
(ILGO) approach applied to energy systems. 
Both decomposition approaches use certain 
desirable properties of the shadow prices 
(marginal costs) associated with the energy and 
cost flow couplings between units to facilitate 
the optimization and the convergence of the 
process. In order to apply any of these methods, 
let us consider the three-unit energy system of 
Figure 1. The synthesis/design problem for this 
system is to:  

minimize: 
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subject to the primary constraints: 
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2.3  Local-global optimization (LGO) 
approach for energy systems 

 In the Local-Global Optimization (LGO) 
approach, the units (disciplines) are decomposed 
and the resulting problems are solved for 
different values of the unit couplings. The 
optimum results are used by a system-level 
optimization problem, which optimizes with 
respect to the coupling functions (Muñoz and 
von Spakovsky, 2000 a, b, c). 

In order to apply the LGO approach to the 
design/optimization of the energy system of 
Figure 1, it is assumed that the coupling 
functions uij , i.e. the intermediate feedbacks, are 
kept at a constant value  at each instant of 

time, i.e.: 
ijξ

{ } { } τδ=ξ= ,...,,...,1tu tijtij  (11) 

From close inspection of problem (10) and 
the functional relationships for the coupling 
functions given by Eq. (5), it is clear that the 
decision variable vectors ix

r
 and tiy

r
 are strictly 

local and that the are the only link between 

unit i and the rest of the system. The fact that the 
u

iju

ij are kept fixed allows one to define a local 
optimization problem for unit 1 and a different 
one for units 2 and 3 combined or two different 
ones for units 2 and 3 as separate entities11. For 
example, as mentioned above, the following 
local (unit) synthesis/design problem for unit 1 
could be defined: 

                                                           
11 Further decompositions are, of course, also possible for 
each of the units. 
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minimize: 
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t13,1231,21t1111 t,,y,xff ∆ξξξξ= ∑
τ
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rr&  (12) 

w.r.t.  τδ= ,...,,...,1ty  ,x t11
rr

 

subject to: 

τδ== ,...,,...,1t0h t1
rr

 (12.1) 

τδ=≤ ,...,,...,1t0g t1
rr

 (12.2) 

The requirement imposed by Eq. (11) on the 
values for the coupling functions may be overly 
restrictive, particularly if the values of the 
coupling functions at different instants are 
dependent on each other. In such cases, it is 
advisable to use the time decomposition scheme 
presented above and solve the problem in two 
sequential steps. In the first step, problem (12) 
and the corresponding ones for units 2 and 3 are 
solved at one load/environmental condition, δ, 
judged to be the most critical so that it becomes 
the synthesis/design condition. The most 
promising solutions from these problems are 
then used to minimize the sum of the local (unit) 
objective functions at all the other off-design 
conditions.  

The solutions obtained from solving 
problem (12) and similar problems defined for 
units 2 and 3 are the restricted local (unit-based) 
optimum cost rates at different times { }tif ∗&  and 
their corresponding restricted total optimum 
values  as well as the optimum operational 

decision variables at all instants of time 

∗
if

{ }tiy∗
r

 

and the optimum synthesis/design variables ∗
ix
r

. 

It is possible to construct a surface of  versus 

the coupling functions . This hyper-surface 
constructed from the unit optimums is called the 
Optimum Response Surface

∗f

iju

12 (ORS) of the 
overall synthesis/design problem.  

The ORS is then used to define a system-
level problem, which consists of finding the 
combination of coupling function values that 

                                                           
12 The optimum response surface (ORS) may be a graphical 
representation of the overall objective (constructed from the 
restricted unit-based minimum objectives) versus the 
coupling (intermediate feedback) functions, or it could also 
be a lookup table from which restricted optimum solutions 
can be obtained by interpolation, curve-fitting or other 
means. Furthermore, multiple optimum response surfaces 
exist any time an intermediate feedback is represented by a 
discrete instead of a continuous variable.  However, in order 
to simplify our presentation, the singular tense will be used 
throughout even though more than one of these hyper-
surfaces may be present for any given optimization problem.  

lead to the minimum system level cost . The 
system-level problem is in this case to: 

∗∗f
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( )∑
τ
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∗∗∗∗ ∆++=
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t321 tffff &&&  (13) 
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The local (unit-based) optimizations (e.g., 
problem (12)) can be performed in a nested 
fashion at the same time the system-level 
problem is being solved (Real Time LGO 
approach (RT-LGO)). A second alternative is to 
store the results from the sub-problems and use 
them later in the global (system-level) optimizer 
(Offline LGO approach (OL-LGO)). In both 
cases, the optimum results for the unit syntheses 
/designs form the ORS of the system. 

It should be pointed out that the coupling 
function uij going from unit i to unit j may in fact 
be a vector of multiple products (e.g., electricity, 
steam, compressed air). It is clear then that a 
multi-unit, multi-product system may require a 
very large number of optimization runs (i.e. 
problems such as problem (12) would need to be 
solved innumerable times for many different 
combinations of the elements of the vectors uij). 
The potential problem caused by the large 
amount of computational and analysis time, 
which would be involved, is exacerbated by two 
facts: 
- Each unit may need to be optimized using 

time decomposition (as described above). 
- The synthesis/design problem in its entirety 

requires the use of binary, discrete and 
continuous variables. The optimization 
algorithms needed to deal with the resulting 
mixed-integer non-linear programming 
problems (MINLPs) are usually of the 
artificial intelligence type (e.g., Genetic 
Algorithm and Simulated Annealing). 
Although these algorithms are effective when 
properly developed and conditioned, they 
impose a serious computational burden on 
finding the solution. 

Thus, the application of the LGO approach 
to complex, highly integrated, highly dynamic 
energy system synthesis/design may require a 
large number of optimizations to create the ORS. 
The amount of computational time required to do 
this may in some cases be impractical. A 
possible solution to these difficulties is the use of 



 

the iterative version of the method (ILGO), 
which is presented below. 

Although similar LGO based decomposition 
methods have been used in the past, those 
outside the field of thermoeconomics typically 
use components as the unit (as opposed to 
subsystems) along with first order objective 
functions. The objective functions commonly 
used are overall system efficiency at the system 
level and component adiabatic efficiency or mass 
at the unit level (e.g., Zimering et al., 1999). 
Although the use of LGO with these objectives is 
a vast improvement over typical trade-off 
analysis as practiced in industry, it is apparent 
that it does not fully account for all of the 
system-level effects that the component may 
have. In the case of a simple compressor, for 
example, the method will call for the 
maximization of the isentropic efficiency (for 
given inlet and outlet conditions) or 
minimization of mass (or cost). It is apparent, 
however, that the inherent competing tendencies 
of efficiency and mass (or cost) should be taken 
into account simultaneously and not separately. 
The LGO approach presented here does just that, 
taking into account both thermodynamic and size 
(economic) factors and their impact on the global 
(system) as well as local (unit) level objectives. 
An example application of the LGO method is 
described in detail in Muñoz and von Spakovsky 
(1999, 2000a). 

2.4  Iterative local-global optimization 
(ILGO) approach applied to energy 
systems 

The ILGO method uses the linear term of a 
Taylor series expansion to guide the selection of 
values for the coupling functions that make the 
system-level cost lower than that of some 
reference solution. Once a better solution is 
found the procedure is repeated until the 
optimum solution is achieved. ILGO starts by 
finding an arbitrary initial point on the ORS 
without actually creating the ORS13. This initial 
or reference solution is obtained by setting 

 and solving a set of unit-level 

problems, which for unit 1 take the form: 
t

o
ijtiju ξ=

minimize: 
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13

o
12
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31,
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subject to: 
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13 It should be emphasized here that throughout the 
discussions on the ILGO approach (versions A and B), which 
follow, the ORS is never created. It is simply explored using 
marginal cost information (see discussions below). 

τδ== ,...,,...,1t0h t1
rr

 (14.1) 

τδ=≤ ,...,,...,1t0g t1
rr

 (14.2) 

As before, time decomposition may be 
needed to solve the above problem. The 
solutions to the unit-level sub-problems are the 
restricted local (unit-based) optimum cost rates 

at different times ( )otif ∗&  and their corresponding 

restricted total values ( )oif ∗  as well as the 

optimum operational decision variable values at 

various instants in time ( )otiy∗
r

 and the optimum 

design variable values ( )oix∗
r

 at the initial or 

reference point.  
The initial value selection for the coupling 

functions ( ) can be made in different 

ways. For example, an existing synthesis/design 
can be used as an initial point or a largely 
simplified model of the system can be used to 
find a near optimum solution, which could then 
be used as the ORS reference point. Another 
possibility is to use existing analysis techniques 
to find the coupling function values that cause 
the system, for example, to have a high Second 
Law efficiency.  

t
o
ijtiju ξ=

Once a suitable initial or reference point on 
the ORS is found, a Taylor series expansion is 
performed about that point. After taking the 
linear term, the local (unit-based) cost rate at an 
instant of time t can then be written for unit 1 as: 
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The partial derivatives above are by definition 
the shadow prices or marginal costs of the 
coupling functions. Similar quantities which 
have been defined in the past (e.g., von 
Spakovsky and Evans, 1993) form the basis of 
the calculus methods of thermoeconomics such 
as Thermoeconomic Functional Analysis 
(Frangopoulos, 1984, 1994), Engineering 
Functional Analysis (von Spakovsky and Evans, 
1993; Evans and von Spakovsky, 1993; von 
Spakovsky, 1994) and the approach of El-Sayed 
(1989, 1996). The shadow prices (marginal 
costs) used here are more general in that they are 
defined for arbitrary coupling functions, energy 
or exergy based or not. Furthermore, the 
marginal costs in Eq. (15) are instantaneous and, 



 

thus, are allowed to take substantially different 
values at various instants in time. 

Using the notation commonly found in the 
thermoeconomics literature, Eq. (15) is rewritten 
for units 1, 2 and 3 as: 
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where the marginal costs based on the restricted 
(unit-based) optimum local cost rate at an instant 
of time t are defined as: 
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Quite naturally from the above definitions, 
“design” and “off-design” marginal costs can be 
defined. The former are those with δ=t  and the 
latter those with δ≠t . 

The equations presented above contain a 
wealth of information that can be exploited with 
the purpose of improving the initial or reference 
synthesis/design. They provide a means of 
moving in the optimum system cost vs. coupling 
functions (intermediate products/feedback) 
space, i.e. on the ORS. The first feature of these 
equations is that they show the trade-off between 
the costs that are purely local and those that are 
affected by synthesis/design and operational 
considerations in the rest of the system. The 
comparative magnitude of the λ’s will indicate 
whether a decrease in intermediate coupling 
function values coming from unit i and the 
(likely) resulting increase in local cost of unit j 
will reduce the system-level cost. These marginal 
costs will, provided that they are not identically 
equal to zero14, suggest synthesis/design changes 
that will make the system as a whole better from 
the standpoint of the cost objective. Thus, for 
example, negative marginal costs will point 
toward the need for higher values of the coupling 
functions (e.g., more of the intermediate 
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14 This would indicate that the reference point is in fact 
already the optimum for the objective consistent with the 
optimum for the system as a whole. 

products/feedbacks) and vice versa. Therefore, 
the optimizer would tend to favor 
syntheses/designs with greater values of the 
coupling functions but with lower associated 
marginal costs. 

In addition, the off-design marginal costs 
become a measure of how important the entire 
load/environmental profile is when compared to 
the most critical point in the load/environmental 
profile, i.e. the synthesis/design point. The 
marginal costs will help pinpoint syntheses 
/designs that may have a relatively poor 
performance at the design point but may perform 
better than the best solution at the synthesis 
/design point when combined with all of the off-
design conditions.  

The step that follows the calculation of the 
marginal costs is problem dependent and leads to 
two different versions of the method: ILGO-A 
and B. Version A of the method (ILGO-A) uses 
the marginal costs as a guide for selecting a new 
set of values for the coupling functions. The 
descent algorithm for choosing these new values 
is given in detail in Muñoz and von Spakovsky 
(2000b,c) and is summarized as: 
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where the marginal cost used in the above 
equation is such that the greatest improvement in 
the objective function is achieved. The step size, 

oα , is chosen to ensure the descent properties of 
the algorithm. 

The importance of Eq. (21) is that it shows 
the required changes in the coupling functions at 
all time steps so that both the synthesis/design 
and operational variables can be adjusted 
accordingly. It may be necessary, particularly for 
large problems, to perform the changes 
sequentially by using time decomposition. In 
ILGO-A a new set of values for the coupling 
functions at the synthesis/design point, i.e. 
( )

new
o
ijδξ , can be chosen according to Eq. (21). 

An improved solution at the synthesis/design 
point can be found by solving the decomposed 
(local or unit-based) optimization problems. The 
resulting set of most feasible solutions are then 
fed into the off-design problems to find the 
optimum operational variables. It is apparent that 
an implicit assumption in the use of ILGO-A is 
that there is enough confidence that an optimum 
solution can be obtained for the new values of 
the coupling functions ( )

newt
o
ijξ  which may 



 

require some prior knowledge about system 
behavior15. After a new set of values for the 
coupling functions is chosen, the marginal costs 
are recalculated and the process repeated until 
nor further improvement is achieved or the 
physical limits of the independent variables are 
reached. 

To circumvent the inherent drawback to 
ILGO-A noted above, a second version of the 
method, ILGO-B, has been developed. In this 
version, the coupling functions are allowed to 
fluctuate within limits to preserve the validity of 
the Taylor series expansion (as opposed to 

forcing them to take fixed values ). 

ILGO-B improves upon the initial solution by 
solving a set of unit-based system-level sub-
problems, which for unit 1 takes the form: 
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or  
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subject to: 

τδ== ,...,,...,1t0h t1
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τδ=≤ ,...,,...,1t0g t1
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Here, for example, 
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where the functional relationships given by Eq. 
(5) have been used. In general, the effect of the 
decision variables on the coupling functions is 
given by: 
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15 It should be noted that this cannot necessarily be 
guaranteed, hence ILGO-B. 

In addition to the above constraints, the 
additional constraints: 

0|u||u|
maxtijtij ≤∆ε−∆  (25) 

are imposed upon the problem. In expression 
(25), the |u|

maxtij∆  are the maximum 

allowable values for the coupling functions and 
the factor ε is added to ensure that the linear 
Taylor series expansions are a good local 
representation of the ORS. It is readily seen that 
one of the advantages of ILGO-B over ILGO-A 
is that t11 yandx

rr
 may be chosen so that the 

internal (coupling) constraints (both for the 
analysis system of equations and for the desired 
unit’s products or tasks) are always met. Another 
advantage is that unlike LGO, neither ILGO-A 
nor B requires nested optimizations. 

Problem (22) represents the minimization of 
the system-level objective function by variations 
in the local (unit 1) decision variables only. The 
function to be minimized is composed of the 
local contribution (in this case ) to the overall 
objective plus the impact that the local decision 
variables (

1f

t11 y,x
rr

) have on the local objectives of 
the other units (2 and 3). This impact is made via 
the coupling functions. Only one unit is used to 
carry out the optimization. This is made possible 
by the assumption that the marginal costs are 
correctly calculated. The solution of problem 
(22) will provide a new reference point on the 
ORS, which has a lower value of the system-
level objective function than the previous 
reference solution. At this stage, the marginal 
costs are recalculated, and a new unit is chosen 
to perform optimization in the manner stated in 
problem (22). As with ILGO-A, the process is 
repeated until no further improvements are 
achieved or until the limits of the independent 
variables are reached. 

The descent properties of the ILGO 
algorithm indicate that, at the very least, a local 
minimum will be found. This important finding 
leads us to conclude that if the cost function is 
convex and smooth with respect to the products 
and feedbacks, then the ILGO approach points 
toward a global optimum (e.g., the local 
minimum of a smooth convex function is the 
global minimum). In the worst case, the ILGO 
method only leads to a local minimum in which 
case the process must be repeated with different 
workable starting points (i.e. feasible 
syntheses/designs) until confidence in the 
solution as a global optimum is achieved. 
Despite the obvious time penalty that this may 
cause, the ILGO may still be the most if not the 
only practical optimization scheme that can be 



 

applied to a highly complex, highly dynamic 
energy system synthesis / design. 

The previous discussion allows one to 
tackle in an informed way the question of what 
thermodynamic property should be used as the 
coupling or communication variable between 
sub-problems (i.e. subsystems or components) 
when physical decomposition is used for 
optimization purposes. The authors believe that 
the answer depends on how the total cost 
function behaves with respect to the system’s 
intermediate products and feedbacks (i.e. the 
ORS) when represented in terms of any of the 
candidate quantities (e.g., energy, exergy, thrust, 
negentropy, etc.)16. In fact, Gaggioli and El-
Sayed, two of the biggest proponents of exergy 
and Second Law analysis, state in their landmark 
article of 1989 (Gaggioli and El-Sayed, 1989) 
that, for optimization, which quantity (ies) is 
(are) best is an open question and will more than 
likely depend on the case at hand. Of course, in 
the past, a number of authors have observed 
advantages to using exergy as opposed to energy, 
advantages, which they believed, simplified 
decomposition and speeded up and possibly even 
ensured convergence (Frangoupolos and Evans, 
1984; Frangopoulos, 1984; Gaggioli and El-
Sayed, 1989; von Spakovsky and Evans, 1993; 
Evans and von Spakovsky, 1993; El-Sayed, 
1989, 1996). Furthermore, without 
decomposition, exergy has also been used as the 
basis for optimization algorithms, which guide 
the search for a global optimum by relating 
component or subsystem changes directly to 
improvements in the overall system objective 
(Tsatsaronis and Pisa, 1994). Clearly using 
exergy in the latter case is useful and clearly 
when the problem at hand is that of analysis and 
not optimization, exergy has any number of 
advantages in helping guide the synthesis/design 
in the most favorable direction (Sama, 1995). 
However, for optimization with decomposition, 
the need for exergy as the basis for the coupling 
or communication variable between sub-
problems is only justified17 on the basis of how, 
as stated above, the total cost function behaves 
with respect to the system’s intermediate 
products/feedbacks and, thus, aids in 
decomposition and, in turn, optimization of the 
system as a whole. In certain cases, it will be the 
quantity of choice. In others, as has been shown 
(Muñoz and von Spakovsky, 1999, 2000 a, b, c; 
Frangopoulos, 1994; von Spakovsky, 1994), 
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16 This has direct bearing on the associated marginal costs 
and their behavior. 
17 Of course, using exergy may add information which 
otherwise would not be there and could eventually aid in an 
interpretation of the optimization results. The argument made 
here, however, is that exergy is simply not necessarily 
required in order to obtain these results using decomposition. 

energy or some other quantity (e.g., thrust, 
negentropy, etc.) may work very well and be a 
better choice for any number of practical 
reasons. 

Thus, based on the recent and past work of 
the authors and of others, the determining factor 
for which quantity (ies) is (are) the most 
appropriate is that of total cost function (overall 
system-level objective function) behavior with 
respect to the intermediate products and 
feedbacks, i.e.: 
- that the ORS surface be smoothly convex (or 

concave) with respect to the products and 
feedbacks; this will ensure that the ILGO 
approach leads to the global optimum; 

- that ideally the total cost function be linear 
with respect to these products and feedbacks; 
this will increase the convergence speed of 
the algorithm; obviously since the cost 
function is the sum of resources (usually 
fuel) and capital, there is always the 
alternative of manipulating the latter to make 
the cost function linear or piecewise linear, a 
technique which has been used by a number 
of researchers (e.g., Frangopoulos, 1984, von 
Spakovsky, 1986). A linear cost function 
with respect to the intermediate products and 
feedbacks would produce a hyper-plane and 
the optimum solution would be expected to 
be at or close to one of the corners of that 
plane. 

Finally, some additional observations as to 
the best choice of thermodynamic quantities for 
describing the intermediate products and 
feedbacks of a system can be made: 

- Consider a single unit that uses a single 
resource R1 to produce a single product P1. 
The synthesis/design optimization will find 
the optimum vector of decision variables 

∗∗
1X
r

and ∗∗
1Y
r

 that minimize the sum 

for a given value of P111 ZRk + 1. Typically, 
if the quantity or quality of product P1 
increases, the best design will tend to have a 
higher value for the total cost function than 
that of a synthesis/design with a lower 
required P1. This is valid regardless of the 
choice of thermodynamic property used to 
describe the product. The implication is that 
overall (total) cost functions have the 
tendency to be monotonic with respect to 
their products. This type of behavior will 
favor the convexity of the cost function. 
Problems arise, however, when the need to 
have a larger product forces changes in the 
technology being employed. In this case the 
tendency may be inverted and even make the 
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total cost function discontinuous. This 
obviously can occur when the overall 
optimization problem uses a discrete variable 
that represents various possible types of units 
(a vapor compression cycle vs. an absorption 
cycle, for example). Note, however, that 
discrete variables present in the local (unit) 
optimization problem (e.g., representing 
different types of material for a given 
component) do not pose this problem.  

- Exergy has the important mathematical 
characteristic of combining temperature, 
pressure, chemical composition, velocity, 
mass flow rate, etc. in a single function. This 
conceptually poses an advantage for the 
calculation of the shadow prices (marginal 
costs). A fair amount of work has been 
devoted to the study of exergy-based 
marginal costs in stationary applications 
(Serra, 1994; Frangopoulos, 1994; von 
Spakovsky, 1994; Lazzaretto and Andreatto, 
1995; etc.). However, there are practical 
difficulties for their calculation when models 
of real systems are used. For example, take 
the case of the design of a gas turbine, which 
in addition to shaft work produces 
compressed air for a process. The air is to be 
taken, say, from the last compressor stage. It 
is much easier to design the system for a 
given value of the air mass flow rate to be 
taken from the compressor than for a given 
exergy value. This is because the pressure 
and temperature of the air depend on a 
number of factors that are not easily 
controllable, including, among others, the 
position of the design point on the gas 
turbine maps, the maximum allowable 
temperature in the combustor, the technology 
used and some stability considerations. 

- There is a need to remain open-minded to the 
possibility of using marginal costs based on 
commodities other than exergy or energy*17. 
In some applications, the use of non-energy 
values may be necessary. For example, size 
(volume and mass) and thrust (force) are 
critical factors in aircraft design. Although 
some authors (Frangopoulos and von 
Spakovsky, 1993; von Spakovsky and 
Frangopoulos, 1994; Sciubba, 1999) may 
argue that one could relate exergy to a unit’s 
mass via, for example, the manufacturing 
process, that option is replete with difficulties 

 
17 Other functions have been proposed and used in the past. 
For example, Valero et al. (1993) proposed the use of the 
relative free energy. 

and pitfalls (Curti et al., 2000 a, b) and will 
simply not be considered here.  

3. Conclusions 

The methods presented in this paper 
constitute a natural way for carrying out the 
decomposed synthesis/design optimization of 
highly coupled, highly complex energy systems. 
The Local-Global Optimization (LGO) approach 
in any of its forms (Real-time or Off-line) with 
its associated Optimum Response Surface (ORS) 
constitutes a powerful way of not only obtaining 
a global optimum solution but of gaining an 
enormous amount of insight as to the relative 
effect that each unit has in terms of the overall 
objective. The potentially large investment 
required for LGO is addressed by the iterative 
version of the approach, ILGO, which requires 
no nested optimizations and uses an 
approximation of the ORS to reduce the number 
of unit optimizations required. The effect of the 
different units’ independent variables is assessed 
in terms of the local (unit-based) cost and their 
effect on the rest of the system. Thus, in ILGO-
B, unit-based system-level optimization sub-
problems (as opposed to purely local objective 
functions) are defined. Each of these sub-
problems, while using strictly local (unit) 
independent variables, approximates the system-
level optimum cost. The approximation of the 
ORS leads to the definition of shadow prices 
(marginal costs) as the partial derivatives of the 
optimum cost with respect to the functions 
connecting the units. One of the most appealing 
features of ILGO is its ability to provide the 
information necessary to improve an existing 
design. In fact, in engineering practice, the word 
optimization is often used not to indicate the 
search for an absolute global optimum but rather 
to find a solution, which is better than some 
existing system. Any of the versions of ILGO 
excels at this task since one could use the 
existing design (which is assumed to be 
“optimized”) as the reference condition and start 
the iterative process from there. 

The approaches presented in this paper, 
while mathematically rigorous, have two great 
practical advantages. First, they permit the 
mathematical handling and solution of very large 
optimization problems by defining mutually 
consistent smaller sub-problems. Second, the fact 
that decomposition is done across unit 
boundaries allows the method to fit perfectly 
with current multi-/inter-disciplinary engineering 
design practices.  

In addition to the above, the approaches 
presented shed some light on the on-going 
controversy as to the importance and usefulness 
of Second-Law based methods for the synthesis/ 
design optimization (as opposed to analysis) of 



 

energy systems. There is no doubt that Second 
Law methods as analysis tools are superior to 
First Law approaches. However, when it comes 
to optimization, this is not necessarily true. Once 
the optimization problem is defined, there is only 
one global optimum and whether or not the 
problem is represented in Second or First Law 
terms has no effect on this optimum.  Thus, the 
question becomes: is a Second Law 
decomposition approach superior to a First Law 
approach in arriving at the optimum? Again, the 
answer is: not necessarily.  In our view, whether 
or not one defines the problem in terms of the 
Second or First Law should depend on what 
effect the “properties of choice” for representing 
intermediate products and feedbacks has on the 
mathematical behavior of the ORS. Thus, 
properties that lead to monotonic and, in the 
ideal case, linear behavior of the optimum cost in 
the intermediate products/feedbacks domain are 
preferred, whether they are exergy-based or not.  
As will be seen in the accompanying paper 
(Muñoz and von Spakovsky, 2001) in which the 
ILGO approach is applied to a large-scale 
optimization problem, the desirable “properties 
of choice” were not Second Law based.  

Acknowledgements 

This work was conducted under the 
sponsorship of the U.S. Air Force Office of 
Scientific Research  

Nomenclature 

d Number of design variables 
f&  Rate form of the objective function  
f objective function 
G
r

, g
r

 vector of inequality constraints  

H
r

, h
r

 vector of equality constraints 
 k constant, conversion factor 
o number of operational variables 
 P, p product 
R, R&  external input (resource), rate form 

ix,X
rr

 vector of design variables 

tiy,Y
rr

 vector of operational variables 

iju  coupling (intermediate feedback) 
function 

Z  capital function (e.g., cost, weight, 
volume) 

Greek symbols 
α step size 
δ design point 
ε small number 
λ shadow price (marginal cost) 
τ number of time segments into which the 

set of load/environ-mental conditions is 
divided 

ξ coupling (intermediate feedback) 
function value 

Superscripts 
fp feasible and “promising” solution 
o reference, initial value 
p capital 
* restricted optimum 
** Unrestricted (global) optimum 

Subscripts 
o reference, initial  
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