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Abstract 
In this paper the problem of energy-optimal heating/cooling a building is considered. 
Here the given subset of rooms in a building must have given temperatures. It is proven 
that if heat is supplied from a single heat source then it is optimal to supply it only to the 
rooms with given temperatures. If individual heat sources (separate air-conditioners/heat 
pumps in each room) are used then it is more efficient to supply/remove heat to the tar-
get rooms and also to intermediate rooms with non-fixed temperatures.  

Key words: temperature control, minimum energy consumption, minimum exergy con-
sumption, optimum control 

 
1.  Introduction  

It is known that if an open thermodynamic 
system is in a steady state then such a distribu-
tion of thermodynamic potentials is established 
in it that entropy production is minimal. One of 
the problems considered by thermodynamics of 
open systems is estimation of the amount of en-
ergy required to establish a given distribution of 
potentials that differs from the equilibrium one. 
In this paper we consider one particular case of 
this problem, which is relatively simple but has 
important applications. Here a given discrete 
distribution of temperatures has to be estab-
lished. This problem arises when minimal energy 
required for the thermostatting of a building 
needs to be estimated. Such estimate and the 
corresponding optimal distribution of the energy 
fluxes in the building allow us to calculate poten-
tial energy savings by establishing fixed tem-
peratures only in a part of the building.  

This paper uses the methods of finite-time 
thermodynamics, developed during the last two 
decades, (see for example Rozonoer and Tsirlin 
1983, Bejan 1996). 

Consider a building and assume that it is 
necessary to establish fixed temperatures in some 
of its rooms only (we shall call them target 
rooms). The temperatures in other (intermediate 
or passive) rooms are allowed to attain any 
value. The rooms that are target rooms and their 
temperatures may vary, depending on the season 
and on the time of day. We consider two versions 
of the problem of minimal energy consumption 
for heating/cooling of such a building.  

Problem (A). A single source heat-
ing/cooling system is used for the whole building 
(one air-conditioner/heat pump or a direct supply 
of heat via electric, gas, water or air heating). 
Energy consumption here is a unique function of 
the sum of heat fluxes to all rooms. Therefore 
minimization of the energy consumption is 
equivalent to minimization of this combined heat 
flux.  

Problem (B). Each room has a separate air-
conditioner/heat pump. That is, each room has an 
individual heat source with a separate tempera-
ture.  

Unlike Problem A, minimization of energy 
consumption (exergy losses) in Problem B is not 

* Author to whom all correspondence should be addressed. 

 Int.J. Thermodynamics, Vol.6 (No.2) 79



equivalent to minimization of combined heat 
fluxes. 

We will show that for any law of heat trans-
fer the optimal heating/cooling in Problem (A) is 
achieved by transferring heat to target rooms 
only.  

We will also show that the most energy ef-
ficient way to thermostat the building in Problem 
B is by also supplying/removing some of the heat 
into intermediate rooms.  

A similar problem arises in cryogenics, 
where the objective is to establish a pre-set low 
temperature in a chamber using heat pumps. It is 
known that for some laws of heat transfer, it is 
more efficient here to use so-called active insula-
tion. It includes an “onion ring” of chambers 
embedding each other, where some part of the 
heat is removed from the central thermostatted 
chamber and some parts from each intermediate 
chamber. The temperatures in intermediate 
chambers are set lower than the temperature of 
the environment but higher than the temperature 
of the thermostatted chamber. The active insula-
tion problem was first considered in Martinovskii 
(1979), Sertorio (1991) and then generalized in 
Tsirlin et al. (1998). In Tsirlin et al. (1998) it was 
shown for which laws of heat transfer active in-
sulation leads to energy savings. 

2.  Problem Formulation 

 
Figure 1.  General structure of a building 

Consider the building whose structure is 
shown in Figure 1, where the following notations 
are used: 

Ti – is the temperature of the i-th room 
(i=0,1,…,n) [K]; 

)T,T( jiijα  – is the heat transfer coefficient 
between i-th and j-th rooms, which can depend 
on the temperatures in these rooms ( ), 
[W/K]; 

0ijji ≥α=α

)TT)(T,T(q ijjiijij −α=  – is the heat flux 
from the j-th room to the i-th room, [W]; 

)TT)(T,T(q i00i0i0i −α=  – is the heat flux 
to the i-th room from the environment with the 
temperature T0, [W]; 

iq~  – is the heat flux, supplied (removed) 
to/from i-th room, [W]. We assume that the sign 
of this flux is positive if the heat is supplied to 
the i-th room. Pi is the power that runs the air-
conditioner/heat pump in the i-th room. 

Problem formulation: Assume that the tem-
peratures of m rooms T1,…Tm (m<n) and the 
temperature of the environment T0 are fixed. It is 
required to find such heat fluxes iq~  (i=1,…,n) so 
that the total amount of heat supplied (for Prob-
lem A) or the combined power used to drive heat 
pumps and refrigerators (for Problem B) is 
minimal. 

3.  Thermostatting Using a Single Heat Source 
(Optimal Distribution of Energy)  

Let us write down formally the problem of 
minimization of total heat supplied. This prob-
lem arises when the heating system is designed 
for a building in a set of rooms where the tem-
peratures are required to be fixed as well as the 
temperature of the environment T0 changes dur-
ing different seasons and/or during different 
times of the day.  
The optimality criterion here is:  

minq~I
n

1i
iA →=∑

=
 (1) 

subject to the heat balance:  

∑
=

=+
n

1j
ijiij ,0q~)T,T(q   (2) ,n,,1i K=

constraints on the heat fluxes:  

,0q~i ≥   (3) ,n,,1i K=

and constraints imposed on the temperatures of 
the thermostatted rooms:  

,TTT 0
0
ii >=   (4) .m,,0i K=

This problem can be simplified by eliminat-
ing condition (2) and rewriting the objective 
function as: 

max)T,T(qI
n

0j
jiij

n

0i
A →= ∑∑

==
 (5) 

subject to constraints:   

,0)T,T(q
n

0j
jiij ≤∑

=
  (6) .n,,1i K=

The unknown variables in this problem are 
the temperatures of the intermediate room Ti 
(i=m+1,…,n). 
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Let us write down the Lagrange function of 
the problem (5), (6): 

∑∑
==

λ+=
n

0j
jiij

n

0i
i )T,T(q)1(L  (7) 

The optimal values of heat fluxes iq~  
(i=1,…,m) are uniquely determined by the heat 
balance equation (2) which takes the following 
form: 

∑
=

=+
n

0j
ijiij ,0q~)T,T(q   (10) m,,1i K=Its optimality conditions follow the Kuhn- 

Tucker theorem: 

,n,1mi

,0
T

)T,T(q
)1(

T
L n

0j i

jiij
i

i

K+=

=
∂

∂
λ+=

∂
∂

∑
=  (8) ∑

=
=

n

0j
jiij ,0)T,T(q   (11) n,,1mi K+=

,TT 0
ii =   (12) .m,,0i K=

,0i ≤λ  ∑ ∑
= =

=
∂

∂
λ

n

0i

n

0j i

jiij
i .0

T
)T,T(q

 (9) 
The conditions (10)-(12) allow us to find 

the fluxes iq~  ( m,,1i K= ) and (n-m) tempera-
tures in intermediate rooms.  

From Slater's complementary slackness 
conditions (9) it follows that if , then: 0i =λ For Newton’s (linear) law of heat transfer, 

the heat transfer coefficients αij are constant and 
the problem (4)-(6) becomes the linear pro-
gramming problem, and the conditions (10)-(11) 
turn out to be the set of (n-m) linear equations. 
The solution of this set of equations completely 
determines the optimal values of fluxes iq~ . If 
one of the fluxes iq~  turns out to be negative then 
no optimal solution exists for the original heating 
problem (A). The optimal solution with the given 
set of temperatures in the target rooms can be 
guaranteed only if an air-conditioner/heat pump 
is used for heating. 

∑
=

<
n

0j
jiij 0)T,T(q  

and if  then: 0i ≤λ

∑
=

=
n

0j
jiij 0)T,T(q  

It is clear that any increase of temperature 
Ti of any of the rooms leads to the decrease of the 
heat flow that enters it. Therefore for all inter-
mediate rooms:  

4.  Example 1 
∑
=

<
n

0j
jiij 0)T,T(q ,      i=m+1,…n  Consider the building shown in Figure 1. 

The corresponding computational schematic 
structure is shown in Figure 2. The temperature 
of the environment T0 and the room temperatures 
T1 and T2 are given and equal to 20°C, 18°C and 
20°C, correspondingly. Heat transfer coefficients 
between the rooms and the environment are 
shown in TABLE I. It is required to determine 
the amount of supplied heat 1q~  and 2q~ and the 
temperatures in the non-thermostatted rooms T3, 
T4, T5, T6. 

From conditions (8) it follows that for these 
rooms , that is,  (i=m+1,…n). 
From Slater's complementary slackness condi-
tions (9), it follows that on the optimal solution:  

0)1( i =λ+ 1i −=λ

∑
=

=
n

0j
jiij 0)T,T(q ,      .n,1mi K+=

In other words, if the solution is optimal, 
then all the heat flows that enter intermediate 
rooms must equal zero. 

TABLE I.  THE HEAT TRANSFER COEFFICIENTS, ijα [W/K] 

i,j 0 1 2 3 4 5 6 

0  16.8 84 16.8 0 33.6 50.4 
1 16.8  0 0 33.6 33.6 33.6 
2 84 0  33.6 33.6 0 33.6 
3 16.8 0 33.6  33.6 33.6 0 
4 0 33.6 33.6 33.6  0 33.6 
5 33.6 33.6 0 33.6 0  0 
6 50.4 33.6 33.6 0 33.6 0  

 



 
Figure 2.  A fragment of building plan (a). Computational schema of heat transfer in this fragment (b). 

 
The equations (10)-(12) yield the set of heat 

balance equations  
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Substitution of the given temperatures T0, 
T1 and T2 yields the following results:  

1832q~1 = W; 4579q~2 = W; 
T3=6.8 °C; T4=12.3 °C; T5=1.6 °C; T6=4.5 °C. 

4.1. Minimization of exergy losses for 
heating using individual room 
pumps/air conditioners/ heat pumps  

The problem of minimization of the com-
bined energy used by air-conditioners/heat 
pumps takes the following form:  

minPI
n

1i
iB →= ∑

=
 (13) 

subject to conditions (2) and (4). We denote the 
efficiencies of heat pumps (coefficient of per-

formance) as 
i

i
i P

q~
r = . These efficiencies depend 

on the design of the pump (the heat transfer coef-
ficients in the heater and refrigerator ko and ki), 
the form of the cycle, the temperatures on the hot 
and cold side of the cycles To and Ti and on the 
power used Pi. The reversible estimate of the 

heat efficiency of the heat engine does not de-
pend on Pi . 

0i

i
i TT

T
r

−
=  (14) 

Here and later on we measure temperatures 
in the Kelvin scale.  

The more accurate lower estimate for the 
efficiency of a heat pump and a refrigerator cy-
cle, which takes into account the irreversibility 
of heat transfer was obtained in Rozonoer and 
Tsirlin (1983) and Berry et al. (2000). For New-
ton’s law of heat transfer with the heat transfer 
coefficient ko for the heat removal from the envi-
ronment and ki for the heat supply into the room, 
this estimate for a heat pump has the following 
form (Berry et al. 2000): 

⎟
⎠
⎞−

−−

⎜
⎜

⎝

⎛
−

−
+

+
+

+=

4
)TT(kP

16
)TT(kP

2
)TT(kP.

.
P2
11)P,T,T(r

0i
i

2
0i

2

i
0i2

i

i
ii0i

 (15) 

here 
2

0i

0i
i

)kk(
kk4

k
+

=  is the equivalent heat 

transfer coefficient. 

For refrigerator 0i TT <  and its efficiency 

ir
(  is expressed in terms of defined in (16) as ir

1)P,T,T(rr i0iii −=
( . The equality (17) follows 
from the known relation between the efficiency 
of the refrigerating cycle and the efficiency of 
heat pump (Berry et al. 2000). In particular, for a 
reversible cycle:  

1r
TT

T
r 0

i
0i

i0
i −=

−
=(  
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Let us rewrite condition (2) in the following 
form:  

n,,1i

,0)P,T,T(rP)T,T(q
n

0j
ii0iijiij

K=

=+∑
=  (16) 

In the problem (13), (16), (4), the unknown 
variables are powers  ( ) and the 
temperatures of the intermediate rooms 

( ). 

0Pi ≥ n,,1i K=

iT n,,1mi K+=

If  ∑
=

<
n

0j
ij ,0q

then the air-conditioner for the i-th room oper-
ates as a heat pump and its has the form (15).  ir

If   ∑
=

>
n

0j
ij ,0q

then it operates as a refrigerator, with 0i TT < . 
The efficiencies  in conditions (16) and all 
equations that follow them should be replaced 
with refrigerators’ efficiencies: 

ir

1)P,T,T(rr i0iii −−=
(

 (17) 

Note that the temperatures T0 and Ti in 
equation (17) changed places.  

The Lagrange function of the problem (13), 
(14), (4)  has the form: 

[ ]∑ ∑
= = ⎭

⎬
⎫

⎩
⎨
⎧

λ+λ+=
1
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n
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which yields the following optimality conditions: 
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These conditions jointly with the conditions 
(16) and expressions (15) and (17) determine the 
unknown variables. 

If a reversible efficiency estimate is used, 
then the problem is simplified and the system 
(16), (18), (19) leads to the following equations:  
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Thus the temperatures of the intermediate 
rooms are:  
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This system of equations allows us to find 
all the temperatures because all the temperatures 
for mi ≤ are fixed (see (12)). After finding the 
temperatures the powers can be found from the 
conditions (20) for all . n,,1i K=

5.  Example 2 

Consider the building shown in Figure 3. 
The temperatures are T0=253 K and T1=293 K 
and the heat transfer coefficients are: 

K
W3000KKK 210 === and  

K
W08.942010 =α=α and  

K
W1802112 =α=α .  

It is required to find the temperature T2 in 
the second room and the powers of heat pumps/ 
refrigerators. 

The problem of minimal energy used to 
drive heat pumps has the following form:  

minPPI 21 →+=  

subject to heat balance  

0)P,T,T(rP
)T,T(q)T,T(q

11011

21120110

=+
++  
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Figure 3.  The plan and the computational structure of the building used in Example 2 

 
Now power can be expressed in terms of T2 as 
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Thus, the optimality criterion I depends on 
T2 only and attends its minimum at T2=282 K. 

Substitution of the obtained temperature 
T2 into the expressions for the powers yields 
P1= 910.36 W and P2=79.32 W. 

6.  Conclusion 

In this paper we demonstrated that if the 
building is heated from a single-temperature heat 
source (single air-conditioner/heat pump, electri-
cal heating, heating using hot water/air, natural 
gas heating), then for any law of heat transfer it 
is most energy efficient to supply heat only into 
the set of rooms where the temperatures are 
fixed. The temperatures in the intermediate 
rooms are allowed to attain any value freely and 
are determined by the conditions of heat transfer. 

If separate air-conditions/heat pumps are 
used for heating/cooling, then it is most efficient 
to use some power to establish optimal tempera-
tures in the intermediate non-target set of rooms.  

The obtained formulas allow us to find 
these temperatures and to estimate the lower 

bound on the total energy consumption for ther-
mostatting of the building. 
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