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Abstract 

We propose a reaction-diffusion model to study the front propagation of viruses growing in 
a bacterial colony. From a mesoscopic description we consider that viruses spread accord-
ing to non-Markovian random walks and thus we obtain a set of hyperbolic reaction-
diffusion equations of three components. There is an excellent agreement between our pre-
dictions and experimental results. However, this agreement does not exist when random 
walks are Markovian and the resulting reaction-diffusion equations are of parabolic type. 
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1. Introduction 

Reaction-diffusion equations have been 

studied extensively as mathematical models of 

systems with reactions and diffusion across a 

wide scope of applications. Most studies consider 

that the transport process is described by Fick’s 

law. The resulting parabolic reaction-diffusion 

equation (Fisher’s equation) admits travelling 

wave solutions propagating with a constant speed 

which grows unboundedly with the reaction rate. 

More recently, it has been shown (Fort and Mé-

ndez, 2002a) that Fisher’s equation always over-

estimates the value of the front speed in neglect-

ing the waiting time between jumps in compari-

son with the characteristic evolution time. How-

ever, in many processes of biological interest both 

characteristic times may be of the same order, i.e. 

cannot be neglected. The first-order correction 

converts the reaction-diffusion equation into one 

of hyperbolic type. This equation predicts fronts 

propagating with constant speed exhibiting an 

upper bound in the fast reaction limit. In some 

ecological applications we have shown that the 

front speed of hyperbolic reaction-diffusion equa-

tions (HRD) are in better agreement with the 

observed data than that obtained from Fisher’s 

equation (Ortega-Cejas et al., 2004).  HRD equa-

tions can be obtained from the framework of 

Extended Irreversible Thermodynamics (EIT) 

(Jou et al., 2001) where the space of thermody-

namic variables incorporates the thermodynamic 

fluxes as well as the equilibrium variables. The 

existence of a time-delay (linked to the mean 

waiting time in a mesoscopic description) is the 

key element to guarantee the causality of the 

transport equations predicted by EIT. In many  

 

physical problems, this time-delay is very small in 

comparison with the macroscopic time scale. 

However, the biological system we address here 

provides a good example where this time-delay is 

very important and necessary to obtain a good 

agreement between the theoretical predictions and 

the experimental results.   

We investigate the spreading dynamics of 

viruses which infect host bacteria. We obtain the 

same system of equations as in Fort and Méndez 

(2002b) but from mesoscopic derivation. In par-

ticular, we show how non-Markovian random 

walks for viruses dispersal give rise to macro-

scopic HRD equations. The process we want to 

model consists of two steps: (i) the virus-bacteria 

interaction and (ii) the virus dispersal within the 

bacterial colony. We derive from a mesoscopic 

level a hyperbolic reaction-diffusion equation for 

the virus concentration and we also show that 

parabolic equations are inadequate as they do not 

take into account the time elapsed between the 

adsorption of a virus to a bacterium and the re-

lease of newborn viruses to the medium. This 

time will be estimated to be on the order of 20 

minutes which is not negligible with respect to an 

evolution in time of about a few hours.  It is well 

known from virology that the virus reproduction 

within host bacteria causes the death of the bacte-

ria and it is observed experimentally that the in-

vaded area (plaque) can be regarded as a propa-

gating front with constant speed (Yin and 

McCaskill, 1992).  

The plaque is formed due to the adsorption 

of viruses to host bacteria, their replication within 

and the spread of the new generation after lysis. 
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We deal, in particular, with virus phages such as 

T7 for which plaques grow unboundedly in a 

medium containing agar-immobilized stationary-

phase host bacteria.   

Our model consists of three species: viruses 

(V), host bacteria (B) and infected bacteria (I). 

Their interactions (lytic cycle) can be summarised 

as follows:  

 1 2+ → → ⋅k k
V B I Y V  (1) 

where Y is the number of new viruses released per 

virus particle (yield or burst size), 
1
k  is the rate 

constant of adsorption of viruses to a host bacteria 

and 2k  is the death rate constant of infected bac-

teria. 

2. Mesoscopic and Macroscopic Equations  

2.1. Kinetic equations 

In order to deduce the interaction term be-

tween the three reacting species, let us consider a 

homogeneous medium composed initially of 

infected bacteria and a few free viruses. The ad-

sorption process can be described by the equation 

 1
d[ ]

[ ][ ]
d

V
k V B

t
= − , (2) 

where brackets mean species’ concentrations 

which depend only on time t. As for each ad-

sorbed bacteria, one virus is “removed” and one 

has d[ ]/d d[ ]/dV t B t=  that can be integrated to 

obtain [ ] [ ]B V C= + , where C is an integration 

constant. Integrating Equation (2) one gets the 

expression 
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where 0 0[ ] [ ]C B V= − , 0 0[ ] [ ]tB B ==  and 

0 0[ ] [ ]tV V == . For the virus replication we con-

sider the logistic growth equation 

 2
max

d[ ] [ ]
[ ] 1

d [ ]

V V
k V

t V

 
= − 

 
 (4) 

If adsorption takes place at  0=t  and we 

define the delay time τ  as the time elapsed from 

the adsorption and the replication of  max / 2V  

viruses, its solution reads  

 ( )2
1

( )
max[ ( )] [ ] 1

k t
V t V e

τ −− −= + . (5) 

On the other hand, from the conservation of 

the number of viruses and infected bacteria one 

has max max[ ( )] [ ( )] [ ] [ ]V t Y I t V Y I+ = =  which can 

be introduced into Equation (4) to yield 
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d[ ] d[ ] [ ]
[ ] 1

d d [ ]

V I I
Y k Y I

t t I

 
= − = − 

 
. (6) 

Finally, the set of kinetic equations reads 
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with 
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 1[ ][ ]BF k V B≡ − , (8b) 
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2.2. Dispersal equation 

In order to propose an equation for the virus 

dispersal in agar we start form the mesoscopic 

equation for the virus number at point x at time t 

obtained from the continuous-time random walk 

with reaction (Fedotov and Méndez, 2002a) 
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where ( , )Ψ x t is the probability density function 

(PDF) of performing a jump of length x after 

waiting a time t and ( )φ t  is the survival probabil-

ity which can be written in the form 

0
( ) 1 d ( )φ ϕ′ ′= − ∫

t
t t t  with ( )ϕ t  the waiting time 

PDF. Transforming (9) by Fourier–Laplace and 

dividing by ( )ϕ s one has 
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 (10) 

where we have assumed that jump lengths and 

waiting times are decoupled random variables, i.e. 

( , ) ( ) ( )Ψ Φ ϕ=k s k s . To be more explicit we take 

a Gaussian PDF of jumps 
22 2( ) 1 2τΦ τ−= −�

D kk e D k  in the diffusive limit 

and the non-Markovian waiting-time PDF 
2 /( ) ( / ) τϕ τ −= tt t e , where τ  stands for the char-

acteristic waiting time between jumps. Note that 
we have intentionally taken the same notation for 

this time as for the half reproduction time for 

viruses because this means that they reproduce 
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when they are at the sedentary stage only. Intro-

ducing the above definitions into Equation (10) 

and inverting with Fourier–Laplace we 

get
21

2
τ ∂ + ∂t tV V  

2 1
2x V t VD V F Fτ= ∂ + + ∂ , that is, 

the hyperbolic reaction-diffusion equation (Jou et 

al., 2001) for the viruses. As the diffusion of vi-

ruses is hindered by the presence of a suspension 

of spheroids (host bacteria) we must take into 

account Fricke’s equation 
*(1 ) /(1 / )ς= − +D f D f , where 0 max[ ] /[ ]f B B=  

is the concentration of bacteria relative to its 

maximum possible value for a fixed nutrient con-

centration, ς  is a parameter which takes care of 

the shape of bacteria and is equal to 1.67 for E. 

coli, and *D  is the diffusion coefficient for free 

viruses in agar.  

3. Parameter estimation and results 

The adsorption rate between T7 and E. coli 

was estimated from fitting Equation (3) to 

experimental data (Shishido et al., 1975) as shown 

in Figure 1 (inset). As a result, we obtained 
9

1 (1.29 0.59) 10−= ± ×k  ml/min. 

Figure 1. One-step growth curve; inset: adsorp-

tion curve; experimental data are obtained for the 

interaction between T7 and E. coli. 

By fitting (5) to the one-step-growth curve 

for the replication of T7 within E. coli (Yin, 1993) 

(the main curve in Figure 1) we get 
1

2 1.39min−=k , τ = 18.4 min and 

max 0[ ] /[ ] 34.5Y V V= = . The diffusion coefficient 

of T7 in agar can be approximated to that of P22 

because it is very similar to T7 in size and shape 

(Ackermann, 1976), and shape (Ackermann, 

1976), * 8 24 10 cm /s−= ×D . The set of evolution 

equations for the number of viruses, host bacteria 

and infected bacteria 
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Figure 2. Theoretical (lines) versus experimental 

results for the front velocity. 

with the interaction terms defined as in (7),  de-

scribes a propagating front invading the unstable 

state 0(0,[ ],0)B . The dimensionless front speed c 

(the front speed is calculated by multiplying c 

by 2Dk ) is calculated by computing the mini-

mum value of c for any 0λ >  from the character-

istic equation (Fort and Méndez, 2002b) 

 ( ) ( ){ }3 * 2 2 * 21 1
2 2

1 1 1 1c c cλ τ λ τ κ − + − + +   

 { }*1
2

1 1 ( 1) ( 1) 0λ κ τ κ − + − − + − = c Y Y ,(12) 

where the dimensionless quantities are defined as 
*

2kτ τ=  and 1 2 max/( `[ ] )k f k Bκ = . 

In Figure 2 we plot our results obtained 

from Equation (11) for the two extreme values of  

1k  (solid and dashed lines) together with the 

parabolic case where 0τ = . Symbols represent the 

experimental results (Yin and McCaskill, 1992) 

for Bmax = 10
7 ml–1 (Figure 2a) and Bmax = 10

8 

ml–1 (Figure 2b). As is observed, our hyperbolic 

model agrees notably better than the parabolic one, 

reflecting the importance of considering the time-

delay τ  in the model. 

4. Conclusions 

Our model provides a satisfactory explana-

tion for the growth of virus plaques. It is based on 

considering a non-Markovian waiting-time PDF 

and extends previous models that use parabolic 

equations (Yin and McCaskill, 1992). From the 

basis of the experimental knowledge, waiting 
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times are assumed to be equal to the times elapsed 

between adsorption and lysis. As a consequence, 

our model accounts for a dichotomy between 

dispersal and reproduction processes which has 

also been observed, for example, in cancer cells 

(Fedotov and Iomin, 2007).  This dichotomy only 

exists on the level of averages and allows us to 

identify the mean waiting time as the mean infec-

tion time. It is important to stress that this is pos-

sible due to the non-Markovian character of the 

underlying random walk of the viruses. The re-

search reported here can be useful for the 

characterisation of mutant virus strains in terms of 

front speeds and the modelling of front shapes in 

virus infections.  

Nomenclature 

[B] Concentration of bacteria, cfu/ml 

C Integration constant 

c Dimensionless front speed 

D Effective diffusion coefficient, cm
2
/s 

D
*
 Diffusion coefficient in agar, cm

2
/s 

f Concentration fraction of bacteria 

relative to the maximum value 

FB Kinetic term for bacteria, cfu ml
–1
 min

–1
 

FI Kinetic term for infected bacteria, cfu 

ml
–1
 min

–1
 

FV Kinetic term for viruses, pfu ml
–1
 min

–1
 

g Arbitrary function 

[I] Concentration of infected bacteria, 

cfu/ml 

k Wave number, cm
–1
 

k1 Constant rate of adsorption, min
–1
 

k2 Constant rate of lysis, min
–1
 

s Laplace variable, cm
–1
 

t Time, s 

V(x,t), [V]    Concentration of viruses, pfu/ml 

x Space, cm 

Y Yield, burst size or number of new vi-

ruses released per bacteria 

Greek symbols 

φ Survival probability 

Φ Dispersal kernel, cm
–1 

ϕ Waiting time distribution, min
–1 

κ Dimensionless group 

λ Dimensionless front shape 

τ Time delay, min
–1
 

τ∗ Dimensionless time delay, min
–1 

Ψ PDF of jump lengths and waiting times, 

cm
–1
min

–1 

ς Bacteria’s shape dimensionless parame-

ter 

Suffixes 

0 Initial time 

B Bacteria 

I Infected bacteria 

t = 0 Initial time 

V Viruses 

max Maximum value 
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