
* This paper was published in the ECOS09 proceedings and is printed here with modifications and with permission of the authors and 
organizers.  
** Corresponding author Vol. 13 (No. 1) / 23  

Int. J. of Thermodynamics Vol. 13 (No. 1), pp. 23-33, 2010  
ISSN 1301-9724 www.icatweb.org/journal.htm  

 
 

Quantum Thermodynamics: Non-equilibrium 3D Description of an  
Unbounded System at an Atomistic Level 

 
A. Sciacovelli2*, C. E. Smith1, M. R. von Spakovsky1**, and V. Verda2 

 
1Center for Energy Systems Research, Mechanical Engineering Department  

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.  
2Department of Energy Engineering  

Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino, ITALY 
 

E-mail: adriano.sciacovelli@polito.it, cesmith@vt.edu, michael.von.spakovsky@vt.edu, vittorio.verda@polito.it 
 

Abstract  
 
Quantum thermodynamics (QT) provides a general framework for the description of non-equilibrium phenomena at 
any level, particularly the atomistic one. This theory and its dynamical postulate are used here to extend the work 
reported in previous papers of modeling the storage of hydrogen in an isolated system, by extending the modeling to 
3D.  The system is prepared in a state with the hydrogen molecules initially far from stable equilibrium after which 
the system is allowed to relax (evolve) to a state of stable equilibrium.  The so-called energy eigenvalue problem, 
which entails a many-body problem that for dilute and moderately dense gases can be solved using virial expansion 
theory, is used to determine the energy eigenvalues and eigenstates of the system. This information is then used in 
the nonlinear Beretta equation of motion of QT to determine the evolution of the thermodynamic state of the system 
as well as the spatial distributions of the hydrogen molecules in time.  The results of our simulations provide a 
quantification of the entropy generated due to irreversibilities at an atomistic level and show in detail the trajectory 
of the state of the system as the hydrogen molecules, which are initially arranged to be far from the carbon nanotube, 
spread out in the system and eventually become more concentrated near the carbon atoms which make up the 
nanotube 
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1. Introduction 

Existing theories of physical reality, namely, mechanics 
(quantum and classical) and equilibrium thermodynamics, 
give rise to a number of disciplines including quantum 
chemistry - QC, density functional theory - DFT, statistical 
thermodynamics - ST, statistical quantum mechanics - 
SQM, statistical classical mechanics – SCM (e.g., the 
kinetic theory of gases), and molecular dynamics - MD. 
QC, DFT, and ST are used to model the equilibrium 
characteristics of systems starting from the atomistic level, 
while SQM, SCM, and MD attempt to describe the non-
equilibrium path that a system takes at the atomistic and 
mesoscopic levels. To determine the equilibrium 
characteristics, QC, DFT, and ST either apply the minimum 
energy principle or the maximum entropy principle in a 
constrained optimization to arrive at the property 
expressions of equilibrium thermodynamics but are unable 
to describe the evolution in state which a system undergoes, 
i.e., the non-equilibrium thermodynamic path which the 
system takes. SQM and SCM provide such a description, 
predicting the entropy generation via either some quantum 
master equation (e.g., the Kossakowski-Sudarshan-Gorini-
Lindblad (KSGL) equation (Kossakowski, 1972; Ingarden 
and Kossakowski, 1975; Lindblad, 1976)) or classical 
master equation (e.g., the BGK and Fokker-Planck 
equations (Liboff, 1979; Harris, 1999)) but do so at the 
expense of introducing a paradox, i.e., the so-called 
Loschmidt paradox. Thus, for example, the KSGL equation 

assumes that the entropy generation is due to a rapid erasure 
of the exogenous statistical correlations between the system 
and a weakly coupled energy reservoir (Gorini, 
Kossakowski, and Sudarshan, 1976), which, of course, 
contradicts the underlying reversible unitary dynamics of 
the equation itself. Similarly, the entropy generation 
resulting from the classical master equation is due to 
assuming a mechanism of loss of correlations between one 
collision and the next, which is necessary to obtain the 
classical Boltzmann equation from which the classical 
master equations are derived, but is incompatible with the 
assumed underlying reversible Hamiltonian-Liouville 
dynamics. In both cases, the inevitable conclusion drawn is 
that the entropy generation due to irreversibility emerges as 
a kind of statistical illusion. The sixth discipline, MD, when 
coupled with an assumption that the states of a system at 
least locally pass to some approximation through a series of 
equilibrium states, is able to provide a pseudo-
thermodynamic description of a system’s evolution in state 
but this, of course, is at best incomplete. 

There is an alternate theory of physical reality, however, 
namely, quantum thermodynamics (QT) (Hatsopoulos and 
Gyftopoulos, 1976a,b,c,d; Beretta, 1981; Beretta et al., 
1984) that provides a general framework for the description 
of non-equilibrium phenomena at any level, particularly the 
atomistic one. QT avoids the Loschmidt paradox, 
eschewing the exogenous statistical description for a purely 
endogenous one and completing the linear dynamics of 



24 / Vol. 13 (No. 1)  Int. Centre for Applied Thermodynamics (ICAT) 

conventional quantum mechanics with one which is fully 
non-linear (von Spakovsky, 2008). QT is used here to 
extend the work reported in previous papers (von 
Spakovsky, Smith, and Verda, 2008; Smith, Verda, and von 
Spakovsky, 2008) of modeling the storage of hydrogen in 
an isolated system, by extending the 1D and 2D modeling 
to 3D. Thus, the so-called energy eigenvalue problem, 
which describes the spatial part of the QT description and 
entails a many-body problem that for dilute and moderately 
dense gases can be solved using virial expansion theory 
(e.g., Tien and Lienhard, 1979; Hill, 1956), is solved in 3D 
to determine the primitive-level energy eigenvalues and 
eigenstates of the system. This information is then used in a 
combinatorial problem to determine the system-level 
energy eigenvalues and eigenstates, which are used in the 
nonlinear Beretta equation of motion of QT (Beretta, 1981, 
2005, 2006a,b, 2007, 2008; Beretta et al., 1984, 1985; 
Gheorghiu-Svirschevski, 2001) to determine the evolution 
of the thermodynamic state of the system that initially is 
prepared in a state with the hydrogen molecules far from 
stable equilibrium.  The spatial distributions of the 
hydrogen molecules in time are then determined using the 
solutions found from the spatial and temporal parts of the 
QT description.  The results of our simulations provide a 
quantification of the entropy generated due to 
irreversibilities at an atomistic level and show in detail the 
trajectory of the state of the system as the hydrogen 
molecules, which are initially arranged to be far from the 
carbon nanotube, spread out in the system and eventually 
become more concentrated near the carbon atoms which 
make up the nanotube.   

 
2. Application of QT TO H2 Storage on Carbon 
Nanotubes 

2.1 System Description 
The system modeled here is that of 4 H2 molecules 

contained in a 5 nm x 5 nm x 10 nm tank with a carbon 
nanotube at its center. The nanotube is constructed based on 
Frey and Doren (2005) and is characterized by a (3,3) chiral 
vector and a chiral angle of 30°. These two parameters 
define the helical arrangement of the tube. Each tube ring 
consists of 6 carbon atoms and 22 rings are considered here. 
The fundamental lattice consists of 6 hexagonal sub-cells. 
The total number of carbon atoms is 132. The radius and 
the length of the tube are 0.52 nm and 4.0 nm, respectively. 
The carbon nanotube is located at the center of the tank so 
that the center of the tube is placed at coordinate (5,2.5,2.5). 
Figure 1 presents two schematic views of the tank and the 
carbon nanotube. 

2.2 System of Governing Equations 
The governing equations for the evolution in time of the 

thermodynamic state and position of the H2 molecules are 
given, respectively, by the system of equations (one 
equation for each non-zero member i of the diagonal state 
operator or matrix  , e.g., see Beretta, 2006b; Smith and 

von Spakovsky, 2007) represented by the Beretta equation 
of motion for a single constituent system, i.e. 
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and by the energy eigenvalue problem written as  
 

 
Figure 1. Schematic of the closed, isolated system 
containing the carbon nanotube and the hydrogen gas. 
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for Li ,...,2,1 . Note that in equation (1), the brackets are 
Poisson brackets. 

Equation (1) implies both the first and the second laws 
of thermodynamics (von Spakovsky, 2008) and describes 
the non-linear dynamics of the system undergoing, for 
example, an irreversible process in the energy-entropy 
plane, something not possible with the linear dynamics of 
conventional and statistical quantum mechanics. In this 
equation, ̂  is a state operator1, Ĥ the Hamiltonian 
operator,  a scalar time constant or functional2, and /D̂  
the so-called dissipation term, which is a function of ̂ , 

̂ln , and Ĥ , and which captures the nonlinear dynamics 
by pulling the state operator in the direction of the 
projection of the gradient of the entropy functional 

  ˆlnˆkTrS   onto the hyper-plane of the constant 
energy (expectation value) of the system  HTrE ˆ̂ . 

As to the second governing equation or system of 
equations, equation (2), Ei and ui are the system-level 
energy eigenvalues and eigenfunctions, the kx


 are the 3D 

particle position vectors, and L is the number of system-
level energy eigenvalues. It is assumed for the sake of 
simplicity that there are only translational modes of energy 
storage and degeneracies although the authors are currently 
in the process of incorporating internal modes of storage 
due to vibration and rotation that include rotational and spin 

                                                 
1 The state operator is a linear, self-adjoint, non-negative definite, unit-
trace operator (i.e. an operator whose diagonal elements sum to one) on 
Hilbert space H. At a given instance of time, it is a representation of the 
state of a system which catalogues how the energy of the system is 
distributed amongst the various energy eigenlevels of the system. This 
state operator is based on a homogeneous ensemble of identical systems, 
identically prepared, i.e. on an unambiguous preparation (Hatsopoulos and 
Gyftopoulos, 1976d). This contrasts with the state operator of statistical 
quantum mechanics, which is based on a heterogeneous ensemble of 
identical systems, not identically prepared, i.e. on an ambiguous 
preparation. The former leads to a true unification of thermodynamics and 
mechanics while the latter results merely in a bridging with a built-in 
violation of the second law of thermodynamics, i.e. a perpetual motion 
machine of the second kind. 
2 Note, that a lower bound for  and, thus, an upper bound on D̂ has been 
established from the time-energy Heisenberg uncertainty relation (Beretta, 
2001).  
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degeneracies in the quantum mechanical description. For 
the purposes of this paper, however, the Hamiltonian 
operator, which is written as 










 



n

k
nkk xxxV

m
H

1
21

2 ),...,,(
2

ˆ 
 (3) 

only represents the kinetic and potential energies of the 
translational motions of the H2 particles in the tank and the 
intermolecular interactions between H2 particles and 
between the H2 and C particles of the carbon nanotube. 

2.2.1 The energy eigenvalue problem 
As the number of particles in the system increases, the 

eigenvalue problem, which represents a multi-body 
problem, very quickly becomes computationally difficult if 
not impossible to solve. This can be circumvented by 
assuming a set of 2-body problems (Hatsopoulos and 
Gyftopoulos, 1979) which define the motions and 
interactions between pairs of H2 molecules (an H2 and its 
nearest neighbour) and between each of these two H2 
molecules and the C atoms located on the nanotube3. For 
the H2-C motions and interactions, the 2-body problem is 
given by 

MjxuxuH kjkkjk j
,...,2,1),()(ˆ 


  (4) 

for k = 1,2 (i.e., the 1st and 2nd H2) and the translational 
Hamiltonian operator by 
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where the summation includes all of the H2-C interactions 
and the potential functions )( kl xV


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Lennard-Jones potentials, i.e., 
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Both  and  are fitting parameters specific to a particular 
interaction (see Table 1), and r is the distance between 
molecules/atoms.  

Table 1: Fitting parameters for the L-J potential. 

Interaction  [J] [nm]
H2-H2 5.24 x 10-22 0.2915 
H2-C 4.502 x 10-22 0.3137 

Now, each 
jk , which appears in equation (4), is a 

paired particle or so-called primitive-level energy 
eigenvalue related to the system-level energy eigenvalues 
Eki by  





M

j
kijk ji

E
1

  (7) 

The ij occupation coefficients are the number of paired H2-
H2 molecules for a given primitive energy eigenlevel j that 
occupy a given system energy eigenlevel i. When only a 
single pair of H2 molecules are present (i.e., for N=1), all 

                                                 
3 Note that a similar approach is used when deriving stable equilibrium 
property relations from quantum thermodynamics such as, for example, the 
virial equation of state. 

the ij are one. For a closed, non-reacting system and 
2N , L is  

    )!1!!1  MNMNL  (8) 

where M is the total number of primitive energy 
eigenlevels. In general, M is infinite for the translational 
Hamiltonian operator since this operator is unbounded. 
However, for obvious computational reasons, M is assumed 
finite, an assumption which under certain conditions is 
justified as described below in the discussions surrounding 
Figure 15. 

For the paired H2-H2 motions, the 2-body problem 
expressed as 

MjxxuxxuH jj j
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and the Hamiltonian as  
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is equivalently decomposed into a reduced mass (rm) and a 
center of mass (cm) problem (e.g., Shankar, 1994) such that 

MjxuxuH kjkkjk j
,...,2,1),()(ˆ 


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Here cmrmk , so that the Hamiltonian for both the 
reduced mass and center of mass problems is written as 

)(
2

ˆ 2
kk

k
k xV

m
H





  (12) 

The respective masses and coordinates for each of these 
problems are given by 
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Note that the potential function )( kxV


in equation (12) is 

either zero for the center of mass problem or expressed by 
the 6-12 Lennard-Jones potential in equation (6) for the 
reduced mass problem. 

Once the solutions to the set of 2-body problems listed 
above have been determined, they are assembled into a set 
of primitive-level energy eigenfunctions and eigenvalues so 
that for Mj ,...,1   


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and      



cmrmk

kj j
,,2,1
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Note that equations (17) and (18) imply a certain “coarse 
graining” of the available energy eigenstates, which for the 
results presented here has been done in a rather ad hoc 
fashion based on the primary quantum numbers. A more 
systematic approach has since been developed by the 
authors and will be reported in the near future. Also note 
that when 2N  (i.e., there are 2 or more H2-H2 pairs), a 
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set of system-level energy eigenfunctions and eigenvalues 
must be determined based on the primitive-level ones. This 
is done by first determining the ij coefficients in equation 
(19) via a combinatorial problem which fills an L x M 
matrix of possible occupation energies from which the 
system-level energy eigenvalues, Ei, are found using  
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j
jijiE
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To find the system-level ui, the primitive-level uj are first 
projected from the decomposed space represented by 

),,,( 21 cmrm xxxx
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back onto 3D space represented by (
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This last result, equation (20), is a set of spatially dependent 
eigenfunctions, which are independent of time since the 
Hamiltonian operator and the boundary conditions (i.e., the 
tank and location of the carbon atoms) are fixed. 

2.2.2 The equation of motion 
Of course, to complete the thermodynamic description 

of the process which the system of Figure 1 undergoes, one 
must combine the solutions of the energy eigenvalue 
problem just described with that of the equation of motion, 
equation (1).  In addition, since this is an initial-value 
problem, an initial condition for the system, i.e., an initial 
non-equilibrium state represented by an initial state 
operator or matrix  , must be determined. This can be 
done randomly or as is done here using the procedure 
outlined in Beretta (2006b) and  Smith and von Spakovsky 
(2007), which finds a set of partially canonical equilibrium 
states and then perturbs them to find a set of initial non-
equilibrium states.  

For the system of Figure 1 and the irreversible process 
of hydrogen storage considered here, equation (1) reduces 
to  

D
dt

d ˆ1ˆ




  (21) 

for the case when  ̂  is diagonal in the Ĥ  representation4 
since in this case Ĥ commutes with ̂ . Equation (21) 
written out in terms of the eigenvalues i (probabilities) of 
̂  (for this particular case, the diagonal elements of ̂ ) 
yields (for i=1,…,L) 
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4 Indeed, according to the Beretta equation, an initial ̂ , which is diagonal 
in the Ĥ representation, remains diagonal at all times t. We consider this 
special class of diagonal initial states for simplicity and because in this 
case the eigenvalue 

i
  of ̂  is readily interpreted as the probability of 

finding the system in the system-level energy eigenvalue Ei. Nonetheless, 
it should be emphasized that the equation yields well-defined evolutions 
for arbitrary non-equilibrium initial states ̂  not necessarily diagonal in 
the Ĥ representation, i.e., when Ĥ and ̂  do not commute. 

The dissipation term in equations (21) or (22) moves the 
system’s entropy in the local direction of “steepest entropy 
ascent” Beretta (2006b) at constant energy i

L
i i EE  

1
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and composition. This is expressed explicitly in terms of 
the time evolution of i

L
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where the entropy generation term to the right of the equals 
is always non-decreasing. 

2.2.3 Evolution in time of the thermodynamic state and 
position 

Finally, with all the eigenvalues I  of the state operator 
̂  known at each instant of time t and the translational 
eigenfunctions ui as a function of space x


, the probability 

distribution function ),( tx


  for the evolution in time and 
space of the state of the hydrogen particles is found from  

2
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The first moment of this distribution function, which is 
used in the results presented below, is the mass density 
expressed as a function of time by 




dV

ndVm
t

H 2
)(


  (25) 

where 2Hm  is the mass of a hydrogen molecule and n the 
number of these molecules in the system. 

3. Numerical Approach 

3.1 Numerical Approach for Solving the Energy 
Eigenvalue Problems for Translation 

The governing equations represented by the eigenvalue 
problem for translation (equation (2)) are numerically 
solved by the finite-element method (FEM). A proper weak 
formulation is used in order to apply FEM to this problem, 
i.e., 

׬ ݑ׏ · ݒ׏ Ԧݔ݀ ൅ ׬ ܸሺݔԦሻݑ Ԧݔ݀ݒ ൌ ߳ ׬  Ԧ (26)ݔ݀ݒݑ

where ݒ is called the test function and ߳ is the eigenvalue 
considered. The solution ݑ has been approximated by 
second order Lagrange polynomials ߮௝, namely,

  
Ԧሻݔሺݑ ൌ  ∑ Ԧሻே೓ݔ௝߮௝ሺݑ

௝ୀଵ  (27) 

From equations (26) and (27), the following generalized 
eigenvalue problem can be deduced: 

ሬԦݑ෡ܭ ൌ  ሬԦ (28)ݑ෡ܯ߳ 

where ݑሬԦ ൌ ൫ݑ௝൯, ܭ෡ is the stiffness matrix, and ܯ෡  is the 
mass matrix, the elements of which are given by 

௜௝ܭ ൌ ׬ ௜߮׏ · ׏ ߮௝݀ݔԦ ൅ ׬ ܸሺݔԦሻ߮௜߮௝݀ݔԦ (29) 

௜௝ܯ ൌ ׬ ߮௜ ߮௝݀ݔԦ (30) 
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In the case of the center of mass (cm) problem, the potential 
is zero, i.e.,   0xV


. In this latter case, the stiffness matrix 

is the following: 

xdK jiijcm


  ,  (31) 

Matrices ܭ෡ and ܯ෡  are properly modified to match the 
boundary conditions. The generalized eigenvalue problem 
(equation (2)) is solved by the Arnoldi algorithm (Arnoldi, 
1951; Quarteroni, Sacco, and Saleri, 2000) applied to a 
shifted and inverted matrix with restarts until the 
eigenvalues are found. Solutions are considered to be 
converged after the residuals are less than 1.0x10-6. The 
adopted grid consists of an unstructured mesh of 149,000 
elements to ensure a grid independent solution.  

3.2 Numerical Approach for Solving the Beretta 
Equation of Motion 

A system of 10,000 first order ordinary differential 
equations (ODEs) are generated from the Beretta equation 
of motion of equation (22) and used to determine the 
evolution in state of the system in Figure 1. This system of 
equations is solved numerically forward and backwards in 
time using a Runge-Kutta 4,5 (RKF45) method, starting 
from an arbitrarily chosen dimensionless time of t* = -2. 
This Runge–Kutta–Fehlberg method (Fehlberg, 1969, 1970; 
Hairer, Nørsett, and Wanner, 1993) uses a fourth order 
approach together with a fifth order one by employing all of 
the points of the former plus one additional calculation 
required by a Runga-Kutta 5 method. The RKF45 method 
is, thus, able to estimate and control the error in the solution 
and determine an appropriate step size automatically. This 
makes the method efficient for ordinary problems of 
automated numerical integration of ODEs.  

4. Results 
Figures 2 to 7 show the evolution in time of the 

probability distribution function (equation (24)) for the 
system of Figure 1 comprised of four hydrogen molecules 
(N=2) and the 132 carbon atoms that make up the carbon 
nanotube. The two cases shown are distinguished by their 
beginning non-equilibrium states at t*=-2. Note that Figures 
2 to 7, which appear in grayscale here, were originally 
published in color in the ECOS09 proceedings. They can be 
found in color in the journal paper published on–line at 
http://www.icatweb.org/j_content.htm. To distinguish the 
various regions in grayscale, note that the large dark 
background areas are regions of near zero probability 
density whereas the lighter color areas are regions of 
medium probability density. The small dark elliptical 
shaped areas completely contained within the lighter areas 
are regions with the highest probability densities. Thus, for 
case 1, at the initial state, one can see in Figure 2 that the 
highest values of the probability distribution function and, 
therefore, the highest densities of hydrogen occur at two 
places in the tank, one to the left of the carbon nanotube’s 
center about halfway between the tube and the tank wall 
and the other to the right of this center, also situated about 
halfway between the tube and the opposite tank wall. There 
is very little if any hydrogen inside the carbon nanotube. 
Figure 3, on the other hand, shows that for case 2, the initial 
non-equilibrium state has the highest probability densities 
of hydrogen occurring in only one place in the tank, i.e., up 
and to the left of the carbon nanotube’s center about three 
quarters of the way between the tube and the tank wall. 

Again, there is very little if any hydrogen inside the carbon 
nanotube.    

 

 

 

 

 

Figure 2. A plot for case 1 of the probability density 
(probability distribution function) of particle position as a 
function of position at t*=-2 with N=2, M=143, and l0,000 
system-level energy eigenlevels utilized. 

 

 

 

 

Figure 3. A plot for case 2 of the probability density 
(probability distribution function) of particle position as a 
function of position at t*=-2 with N=2, M=143, and l0,000 
system-level energy eigenlevels utilized. 
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Figure 4. A plot for case 1 of the probability density 
(probability distribution function) of particle position as a 
function of position at t*=-0.5 with N=2, M=143, and 
l0,000 system-level energy eigenlevels utilized. 

 

 

Figure 5. A plot for case 2 of the probability density 
(probability distribution function) of particle position as a 
function of position at t*=-0.5 with N=2, M=143, and 
l0,000 system-level energy eigenlevels utilized. 

From the initial states for cases 1 and 2, the state of the 
system evolves in time.  Figures 4 and 5 show the states of 
the system at the intermediate time of t*=-0.5. As can be 
seen in Figure 4, for case 1, the state of the system has 
evolved to the point that the value of the probability 
distribution function and, thus, the density of hydrogen has 
significantly increased in the interior of the carbon 
nanotube (i.e., from about zero to 0.62 x 10-4 kg/m3). There 
is still a somewhat higher density to the left of the nanotube 
and another mirrored on the right of the tube (the 

orientation of the second figure does not allow one see the 
latter but it is there) but both are diminished from the values 
seen in Figure 2 at the initial time.  

As to case 2 and the state of the system at t*=-0.5, 
Figure 5 shows that the value of the probability distribution 
function and, thus, the density of hydrogen has also 
significantly increased in the interior of the carbon 
nanotube and has, in fact, increased more than was the case 
for case 1 (i.e., from about zero to 0.78 x 10-4 kg/m3). This 
higher concentration or density results in a much lower 
density to the left and the right of the nanotube than is still 
present at  t*=-0.5 for case 1. Thus, for case 2, the system 
appears to be evolving more quickly towards stable 
equilibrium. 

Figures 6 and 7 show the final state of the system at 
stable equilibrium for cases 1 and 2. As should be evident 
from the figures, the states of the system depicted are 
identical as would be expected since for a given value of 
the system expectation energy and for fixed composition 
and parameters (e.g., total volume), there is one and only 
one stable equilibrium state, i.e., it is unique (Hatsopoulos 
and Keenan, 1965; Hatsopoulos and Gyftopoulos, 
1976a;Gyftopoulos and Beretta, 1991, 2005). This is in 
effect a statement of the Second Law of thermodynamics, 
which was initially proposed by Hatsopopulos and Keenan 
(1965). Furthermore, as is evident from these figures, the 
highest values of the probability distribution function and, 
thus, the hydrogen densities occur in the middle part of the 
tube and very little of the hydrogen is found any longer 
outside of the carbon nanotube.  In fact, the hydrogen 
density inside the tube has more than doubled to 2.0 x 10-4 
kg/m3 from its previous value at t*=-0.5. This can be seen 
more clearly in Figure 8, which shows the evolution of the 
hydrogen mass density as a function of time. Furthermore, 
the greater densities observed here in the interior of the tube 
at stable equilibrium are consistent with what has been 
observed both in a limited number of experiments and in, 
for example, the molecular dynamic (MD) simulations 
published in the literature (Banerjee and Puri, 2008). Note 
also that the temperature at stable equilibrium is about 16.7 
oK which means that the hydrogen quantum molecular 
model used here although incomplete is nonetheless 
consistent with a gaseous state for the hydrogen5 since 
hydrogen has a triple point temperature of 14 oK at 0.07 
atm.  

Now, in order to assess the irreversibilities which 
occurred during the two thermodynamic processes depicted 
in the previous figures, one can examine the rate of entropy 
generation shown in Figures 9a (case 1) and 9b (case 2) as 
well as the change in the entropy due to irreversibilities 
shown in Figures 10a (case 1) and 10b (case 2). The vast 
majority of the entropy creation and, thus, the increase in 
the entropy of the system occurs in a time interval of t*=-2 
to t*=-0. This corresponds with the largest number of 
energy eigenlevels coming into play, taking up a share of 
the overall system's energy and becoming occupied as the  

                                                 
5  Obviously, the very simple quantum molecular model used in this paper 
is inadequate for describing all phases nor does it take into consideration 
the symmetric and anti-symmetric spin characteristics which result in the 
ortho- and para- forms of hydrogen, the latter being the predominant form 
of hydrogen at stable equilibrium. As mentioned earlier, a refinement of 
the quantum molecular model is currently underway and results for this 
updated model will be published in the near future. 
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Figure 6. A plot for case 1 of the probability density 
(probability distribution function) of particle position as a 
function of position at t*=5 with N=2, M=143, and l0,000 
system-level energy eigenlevels utilized. 

 

 

  

 

 

Figure 7. A plot for case 2 of the probability density 
(probability distribution function) of particle position as a 
function of position at t*=5 with N=2, M=143, and l0,000 
system-level energy eigenlevels utilized. 

state of the system moves towards the stable equilibrium 
canonical distribution (see Figures 11 and 12). The total 
entropy generation for case 1 is computed to be 7.164x10-23 
J/K and is smaller than that which occurs for case 2, which 
is found to be 8.687x10-23 J/K, a 21.2% increase over the 
first process. One of the implications of this is that if one 
could choose the initial state (or more importantly the final 
state if the process were reversed and one were discharging 
instead of charging the tank) intelligently one could control 
the thermodynamic path that the system followed and as a 
result reduce the losses incurred during the process. 
 
 

 

Figure 8. Plot of the mass density of hydrogen stored inside 
the carbon nanotube as a function of time.   
 
 

 
(a) 

 

(b) 

Figure 9. Time evolution of the entropy generation rate for 
cases 1 ((a)) and 2 ((b)) with N=2, M=143, and l0,000 
system energy eigenlevels utilized. 
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(a) 

  
(b) 

Figure 10. Time evolution of the entropy for cases 1 ((a)) 
and 2 ((b)) with N=2, M=143, and 10,000 system energy 
eigenlevels utilized. 

 
(a) 

      
(b) 

Figure 11. Time evolution of the probabilities of the state 
operator for cases 1 ((a)) and 2 ((b)) with N=2, M=143, 
and l0,000 system-level energy eigenlevels utilized. 

 
(a) 

 
(b) 

Figure 12. A zoomed-in plot of the time evolution of the 
probabilities of the state operator for cases 1 ((a)) and 2 
((b)) with N=2, M=143, and l0,000 system-level energy 
eigenlevels utilized. 

 
As already mentioned above, Figures 11 and 12 show 

the occupation histories of the energy eigenlevels for cases 
1 and 2, i.e., they show the evolution of the thermodynamic 
state operator in time. As can be seen in Figures 11a and 
11b, not all of the system-level energy eigenlevels are 
occupied at the early times and only gradually become 
occupied beginning at about t*=-2.5, increasing their 
occupations until stable equilibrium is reached. This can be 
seen more clearly in the zoomed-in shot of Figures 12a and 
12b. Figure 12b (case 2) in particular shows that at the 
earliest times (those approaching the primordial state at 
t*=-5, i.e., the so-called “ancestral” state from which all 
succeeding states of the system originate), only two energy 
eigenlevels are occupied. This changes dramatically at 
about t*=-2.5 when many more come on-line. 

Now in order to view the evolution in state of the 
system in Figure 1 in another more traditional light, the 
probability density distribution of energies is calculated for 
the non-equilibrium states through which the system passes 
as well as for the stable equilibrium state at which the 
system arrives.   The results for the latter state and for two 
of the non-equilibrium states are shown in Figures 13 (case 
1) to 14 (case 2). As can be seen in these figures, there is an 
evolution from a non-Maxwellian type of distribution at 
t*=-2 and at t*=-0.5 to a Maxwellian type of distribution at 
stable equilibrium. This is what one would expect but what 
is significant here is that one does not have to guess at the 
distributions since they fall directly out of the 
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physics/thermodynamics of the problem captured by both 
the Beretta equation of motion and the energy eigenvalue 
problem associated with the behavior of the hydrogen 
molecules relative to each   other and to the carbon atoms in 
the tank.  

 
 

   

(a) 

   

(b) 

 

(c) 

Figure 13. Plot of the probability density distribution of 
energies at t*=-2 ((a)), t*=-0.5 ((b)), and t*=10 ((c)) for 
case 1 with N=2 and M varying between 143 and 10,000. 

 
Finally, to determine the minimum number of finite 

energy eigenlevels required for modeling the evolution of 
state of the system to an acceptable level of accuracy, a plot 
of the system energy E (an expectation value) versus the 
system entropy S (also an expectation value) is made for 
different numbers of eigenlevels including the so-called 
limit curve of an infinite number of levels. The results are 
shown in Figure 15 along with the maximum 
thermodynamic temperature at which the accuracy for a 

given number of finite energy eigenlevels begins to 
decrease. As can be seen, with 10,000 system energy 
eigenlevels utilized, the system can be modelled with good 
results for temperatures at stable equilibrium up to about 17 
K. After that, the stable equilibrium curve for 10,000 levels 
begins to diverge significantly from the limit curve which is 
based on an infinite number of levels. To achieve higher 
temperatures, more system energy eigenlevels would have 
to be used. It should also be emphasized here that the 
thermodynamic temperature only has meaning at stable 
equilibrium and is not defined for non-equilibrium states. 
This, however, unlike in other approaches (e.g., MD), poses 
no problem for describing the thermodynamic evolution of 
state of the system since the equation of motion, the Beretta 
equation, does not require it. 

 
 
 
 

 

(a) 

  

(b) 

    

(c) 

Figure 14. Plot of the probability density distribution of 
energies at t*=-2 ((a)), t*=-0.5 ((b)), and t*=10 ((c)) for 
case 2 with N=2 and M varying between 143 and 10,000. 
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Figure 15. Expectation energy E versus the expectation 
entropy S for the 3D tank with N=2 and M=143 and the 
number of system-level energy eigenlevels varying between 
100 and 10,000. 

 
5. CONCLUSIONS 
 Quantum thermodynamics has been applied 
successfully in this paper to modeling in 3D the 
thermodynamic evolution in state and position of an 
atomistic or nanoscale system of hydrogen molecules 
contained in a tank at the center of which is a carbon 
nanotube. The thermodynamic description in time which 
results provides the exact path taken by the system in 
relaxing from some initial state far from stable equilibrium 
to a final state of stable equilibrium. The ability to do this at 
this level of description is unique to this paradigm of 
physics and thermodynamics since all other existing 
paradigms are in one way or another either equilibrium 
limited (i.e., require some assumption of local equilibrium 
or eschew this assumption for some maximization or 
minimization principle) or base their non-equilibrium 
description on a loss of information in the exogenous 
statistics, which inevitably leads to the conclusion that the 
entropy generation due to irreversibility emerges as a kind 
of  statistical illusion.  

Finally, the successful application of this new paradigm 
has been limited to date since any number of issues or 
problems remain to be resolved including how this 
paradigm can be applied to a much wider range of practical 
problems of interest (reacting systems, open systems, 
systems undergoing non-work interactions, high 
temperature systems, etc.). We are presently working on 
many of these issues. 

Nomenclature 

D̂  dissipation operator 
 E expectation energy 
 Ei system-level energy eigenvalue 
Ĥ  Hamiltonian operator 
  modified Planck constant  
k Boltzmann’s constant 
L number of system-level energy eigenlevels  
M number of primitive-level energy eigenlevels 
m mass 
N number of primitives 
n number of particles or molecules 
P(e) probability density distribution of energies 
S expectation entropy 
t time 

t* dimensionless time equal to t/ 
)(xu


 energy eigenfunction 
)(xV


 interparticle potential function 
x


 coordinate vector 
 x x-coordinate 
 y y-coordinate 

Greek 

j primitive-level energy eigenvalue 
),( tx


  probability distribution function of particle 

position in time  

ij  occupation coefficients 
̂  state operator 
  fitting parameter  for the L-J potential  
  scalar time constant or functional  
  fitting parameter for the L-J potential 
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