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Abstract 

 

In this study, the Modified Regularized Long Wave (MRLW) equation is solved 

numerically.  The method used for the numerical solution of MRLW equation includes 

the space discretization with the Galerkin finite element method based on cubic 

trigonometric B-spline, and also the time discretization with the Crank-Nicolson 

method.  We tried to obtain a more accurate method with the help of trigonometric B-

spline for the numerical solution of the MRLW equation than the existing numerical 

methods in the first test problem.  Then, the interaction problem of the two positive 

solitary waves of the MRLW equation is considered, and the conservation constants are 

compared with the existing ones to see the correctness of the method. 

 

Keywords: Cubic trigonemetric B-splines, Galerkin method, modified regularized long 

wave equation. 

 

 

Değiştirilmiş düzenli uzun dalga denkleminin kübik trigonometrik 

B-spline fonksiyonları kullanılarak nümerik çözümü 
 

 

Özet 

 

Bu çalışmada, Modified Regularized Long Wave (MRLW) denklemi sayısal olarak 

çözülmüştür.  MRLW denkleminin sayısal çözümü için kullanılan yöntem, kübik 

trigonometrik B-spline'a dayalı Galerkin sonlu eleman yöntemi ile konum ayrıştırmasını 

ve ayrıca Crank-Nicolson yöntemiyle zaman ayrıştırmasını içerir.  İlk test probleminde 

MRLW denkleminin sayısal çözümü için trigonometrik B-spline yardımıyla mevcut 
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sayısal metotlardan daha doğru bir yöntem elde etmeye çalıştık.  Daha sonra, MRLW 

denkleminin iki pozitif solitary dalganın etkileşimi problemi göz önüne alınmış ve 

korunum sabitleri, yöntemin doğruluğunu görmek için mevcut çalışmalarla 

karşılaştırılmıştır. 

 

Anahtar kelimeler: Galerkin metodu, kübik trigonometrik B-spline, değiştirilmiş 

düzenli uzun dalga denklemi. 

 

 

1.  Introduction 

 

The numerical solution of the MRLW equation in the form 

 

𝑢𝑡 + 𝑢𝑥 + 𝜀𝑢
2𝑢𝑥 − µ 𝑢𝑥𝑥𝑡 = 0, (1) 

 

where 𝜀 and µ are positive real parameters and the subscripts 𝑥 and 𝑡 denote 

differentiations with respect to space and time, is discussed.  The space variable 𝑥 of the 

problem is defined over the interval [𝛼, 𝛽] for the numerical treatment.  

 

The following boundary conditions will be taken into account over the space region 

 

𝑢(𝛼, 𝑡) = 𝑢(𝛽, 𝑡) = 0, 
𝑡 ∈ (0, 𝑇] (2) 

𝑢𝑥(𝛼, 𝑡) = 𝑢𝑥(𝛽, 𝑡) = 0, 
 

and the following initial condition 

 

𝑢(𝑥, 0) = 𝑓(𝑥)   (3) 

 

will be described in the test problems section. 

 

The solution of the equation investigating the numerical solution is composed of 

solitary waves that protect its shape against the collision and it is also important to 

explain many physical phenomena.  Thus, the equation has been often taken up by 

numerical analysts and different solution methods have been developed.  The finite 

difference [1, 2], the homotopy perturbation [3], the Adomian decomposition [4], the 

expilicit multisymplectic [5], the He’s variational iteration [6], the meshless [7], the 

homotopy anlysis [8],  the Galerkin linear finite element [9], the second-order Fourier 

pseudospectral [10], the explicit multistep Galerkin finite element [11], the mixed 

Galerkin finite element [12], the split least-squares mixed finite element [13], the 

compact conservative [14] and the moving least square collocation [15] methods are 

some of those methods.  In addition to those ones, there are also some methods that are 

obtained by using various B-spline functions.  A collocation method is applied to solve 

numerically the MRLW equation using cubic B-splines in the reference [16].  A 

comparison of quadratic, cubic, quartic and quintic splines for solving the MRLW 

equation with collocation scheme is presented by Raslan and Hassan [17].  The 

numerical solution of MRLW equation is found using collocation method based on 

quadratic B-spline functions [18].  To obtain solitary wave solutions for the MRLW 

equation the collocation method using with quintic B-splines is used in the paper [19].  

A sextic B-spline collocation algorithm have been developed for solving numerically 

MRLW equation [20].  The septic and quintic B-spline collocation methods, the 
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subdomain finite element method based on quartic B-splines, the cubic B-spline 

Galerkin and Petrov-Galerkin methods are implemented to find the numerical solution 

of the MRLW equation [21-25].  A numerical technique including quartic B-splines for 

solution of the MRLW equation has been produced by Fazal-i-Haq et all [26].  Soliman 

obtaines the solution of the same equation by quartic B-spline collocation method [27].  

Again, an another collocation method is offered for the numerical solution of the 

MRLW equation in the study [28]. Mittal and Rohila study the numerical solution of the 

MRLW by the fourth order numerical method based on cubic B-spline functions in the 

study [29]. 

 

Our aim in this study is to obtain a more accurate numerical method for obtaining the 

numerical solution of the MRLW equation. So, the Galerkin finite element and the 

Crank Nicolson methods have been used to get the fully integrated form of the MRLW 

equation by using the cubic trigonometric B-spline function. By the proposed method, 

two test problem as the investigation of the motion of single solitary wave and the 

observation of the interaction of the two solitary waves have been studied. 

 

 

2.  Application of the method 

 

During computational studies, time step 𝛥𝑡 and space step ℎ is used over the 

discretization of the space-time plane.  The exact solution of the unknown function is 

 

𝑢(𝑥𝑝, 𝑡𝑞) = 𝑢𝑝
𝑞
, 𝑝 = 0,1, … ,𝑁; 𝑞 = 0,1,2, …  

 

where 𝑥𝑝 = 𝛼 + 𝑝ℎ, 𝑡𝑞 = 𝑞𝛥 𝑡 and the notation 𝑈𝑝
𝑞
 is designated the numerical value of 

𝑢𝑝
𝑞
. 

 

2.1.  Time discretization 

With the application of the Crank Nicolson method to the MRLW equation for the time 

discretization, we have 

 

𝑢𝑞+1 +
𝛥𝑡

2
(𝑢𝑥)

𝑞+1 +
𝛥𝑡

2
𝜀𝑢𝑞+1𝑢𝑞+1(𝑢𝑥)

𝑞+1 − 𝜇(𝑢𝑥𝑥)
𝑞+1

= 𝑢𝑞 − 𝜇( 𝑢𝑥𝑥)
𝑞 −

𝛥𝑡

2
( 𝑢𝑥)

𝑞 −
𝛥𝑡

2
𝜀𝑢𝑞𝑢𝑞(𝑢𝑥)

𝑞. 
(4) 

 

2.2.  Space discretization 

For the space discretization, the region [𝛼, 𝛽] is splitted into uniformly sized 𝑁 finite 

elements by the nodes 𝑥𝑝, 𝑝 = 0,… ,𝑁 with ℎ = 𝑥𝑝+1 − 𝑥𝑝. 

 

The cubic trigonometric B-spline functions are defined at the knots as 
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𝑇𝑝 (𝑥) =
1

𝜃

{
 
 
 
 

 
 
 
 
𝜑3(𝑥𝑝−2) , [𝑥𝑝−2, 𝑥𝑝−1]

−𝜑2(𝑥𝑝 − 2)𝜑(𝑥𝑝) − 𝜑(𝑥𝑝−2)𝜑(𝑥𝑝+1)𝜑(𝑥𝑝−1)

−𝜑(𝑥𝑝+2)𝜑
2(𝑥𝑝−1) , [𝑥𝑝−1, 𝑥𝑝]

𝜑(𝑥𝑝−2)𝜑
2(𝑥𝑝+1) + 𝜑(𝑥𝑝+2)𝜑(𝑥𝑝−1)𝜑(𝑥𝑝+1)

+𝜑2(𝑥𝑝+2)𝜑(𝑥𝑝) , [𝑥𝑝, 𝑥𝑝+1]

−𝜑3( 𝑥𝑝+2) , [𝑥𝑝+1, 𝑥𝑝+2]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

where 

 

𝜃 = 𝑠𝑖𝑛 (
ℎ

2
)𝑠𝑖𝑛 (ℎ)𝑠𝑖𝑛 (

3ℎ

2
),  

𝜑(𝑥𝑝)  = 𝑠𝑖𝑛  ( 
𝑥 − 𝑥𝑝
2

) . 
 

 

The global approximation to the analytical solution of the problem can be defined by 

using cubic trigonometric B-splines as 

 

𝑢(𝑥, 𝑡) ≈ 𝑈(𝑥, 𝑡) = ∑ 𝑇𝑝(𝑥)𝛿𝑝(𝑡)

𝑁+1

𝑝=−1

 (6) 

where the coefficients 𝛿𝑝 are the unknown parameters to be calculated from boundary 

conditions and the cubic trigonometric B-spline Galerkin form of the MRLW equation.  

𝑇𝑝, (p = −1,… , N + 1) and their first derivatives with respect to space variable 𝑥 vanish 

outside the interval [𝑥𝑝−1, 𝑥𝑝+2]. 

 

As can be seen from the cubic trigonometric B-spline (5), each element [𝑥𝑝, 𝑥𝑝+1] 

contains 3 splines, so an approach to exact solution 𝑢(𝑥, 𝑡) can be written as 

 

𝑈(𝑥, 𝑡) = ∑ 𝑇𝑝𝑗(𝑥)𝛿𝑗(𝑡)

𝑝+2

𝑗=𝑝−1

= 𝑇𝑝−1𝛿𝑝−1 + 𝑇𝑝𝛿𝑝 + 𝑇𝑝+1𝛿𝑝+1 + 𝑇𝑝+2𝛿𝑝+2 (7) 

 

where 𝜹𝑒 = (𝛿𝑝−1, 𝛿𝑝, 𝛿𝑝+1, 𝛿𝑝+2) are element parameters and trigonometric cubic B-

splines 𝑻𝑒 = (𝑇𝑝−1, 𝑇𝑝, 𝑇𝑝+1, 𝑇𝑝+2) are element shape functions. 

 

By Eqs. (5) and (7), the values of 𝑈𝑝 = 𝑈(𝑥𝑝, 𝑡) and its first and second derivatives at 

points 𝑥 = 𝑥𝑝 can be written as 

 

𝑈𝑝 = sin
2 (
ℎ

2
) csc(ℎ) csc (

3ℎ

2
) ( 𝛿𝑝−1 + 𝛿𝑝+1) +

2

1 + 2𝑐𝑜𝑠(ℎ)
𝛿𝑝, (8) 

𝑈𝑝
′ =

3

4
csc (

3ℎ

2
) (−𝛿𝑝−1 + 𝛿𝑝+1), (9) 

𝑈𝑝
′′ =

3(3cos2 (
ℎ
2
) − 1)

4 sin(ℎ) sin (
3ℎ
2
)
(𝛿𝑝−1 + 𝛿𝑝+1) −

3cot2 (
ℎ
2
)

2 + 4cos(ℎ)
𝛿𝑝. (10) 
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Applying Galerkin method to Eq. (4) with weight function 𝑊(𝑥) and then integrating 

by parts lead to the weak form 

 

∫ 𝑊(𝑥) (𝑈𝑞+1 +
Δ𝑡

2
(𝑈𝑥)

𝑞+1 +
Δ𝑡

2
𝜀𝑈𝑞+1 𝑈𝑞+1(𝑈𝑥)

𝑞+1) 𝑑𝑥
𝛽

𝛼
+

𝜇 ∫ 𝑊𝑥( 𝑥)(𝑈𝑥)
𝑞+1𝛽

𝛼
 𝑑𝑥 = ∫ 𝑊(𝑥) (𝑈𝑞 −

Δ𝑡

2
(𝑈𝑥)

𝑞 −
Δ𝑡

2
𝜀𝑈𝑞𝑈𝑞(𝑈𝑥)

𝑞) 𝑑𝑥
𝛽

𝛼
+

𝜇 ∫ 𝑊𝑥(𝑥)(𝑈𝑥)
𝑞𝛽

𝛼
𝑑𝑥. 

(11) 

 

With substituting the weight function by the cubic trigonometric B-spline in the Eq. 

(11) and adding the expression (7) in it, the following approximation is obtained over 

the element [𝑥𝑝, 𝑥𝑝+1] 

 

∑ {(∫ 𝑇𝑖𝑇𝑗𝑑𝑥
𝑥𝑝+1
𝑥𝑝

) 𝛿𝑗
𝑞+1

+ 𝜇 (∫ 𝑇𝑖
′𝑇𝑗
′𝑑𝑥

𝑥𝑝+1
𝑥𝑝

) 𝛿𝑗
𝑞+1

+
𝑝+2
𝑗=𝑝−1

Δ𝑡

2
(∫ 𝑇𝑖𝑇𝑗

′𝑑𝑥
𝑥𝑝+1
𝑥𝑝

) 𝛿𝑗
𝑞+1

+

Δ𝑡

2
𝜀 ∑ ∑ (∫ 𝑇𝑖(𝑇𝑘𝛿𝑘

𝑞+1
)(𝑇𝑙𝛿𝑙

𝑞+1
)𝑇𝑗

′𝑑𝑥
𝑥𝑝+1
𝑥𝑝

) 𝛿𝑗
𝑞+1𝑝+2

𝑙=𝑝−1
𝑝+2
𝑘=𝑝−1 } −

∑ {(∫ 𝑇𝑖𝑇𝑗𝑑𝑥
𝑥𝑝+1
𝑥𝑝

) 𝛿𝑗
𝑞
+ 𝜇 (∫ 𝑇𝑖

′𝑇𝑗
′𝑑𝑥

𝑥𝑝+1
𝑥𝑝

) 𝛿𝑗
𝑞
−
Δ𝑡

2
(∫ 𝑇𝑖𝑇𝑗

′𝑑𝑥
𝑥𝑝+1
𝑥𝑝

) 𝛿𝑗
𝑞
−

𝑝+2
𝑗=𝑝−1

Δ𝑡

2
𝜀 ∑ ∑ (∫ 𝑇𝑖(𝑇𝑘𝛿𝑘

𝑞
)(𝑇𝑙𝛿𝑙

𝑞
)𝑇𝑗

′𝑑𝑥
𝑥𝑝+1
𝑥𝑝

) 𝛿𝑗
𝑞𝑝+2

𝑙=𝑝−1
𝑝+2
𝑘=𝑝−1 }, 

(12) 

 

where 𝑖, 𝑗, 𝑘 and 𝑙 take only the values 𝑝 − 1, 𝑝, 𝑝 + 1, 𝑝 + 2. 

 

(12) can be written in the matrix form as 

 

[𝑨𝑒 + 𝜇𝑫𝑒 +
Δ𝑡

2
𝑩𝑒 +

Δ𝑡

2
𝜀𝑪𝑒((𝜹𝑒)𝑞+1)] (𝜹𝑒)𝑞+1

− [𝑨𝑒 + 𝜇𝑫𝑒 −
Δ𝑡

2
𝑩𝑒 −

Δ𝑡

2
𝜀𝑪𝑒((𝜹𝑒)𝑞)] (𝜹𝑒)𝑞 

(13) 

 

together with the following expressions: 

 

𝐴𝑖𝑗
𝑒 = ∫ 𝑇𝑖𝑇𝑗𝑑𝑥

𝑥𝑝+1

𝑥𝑝

, 𝐵𝑖𝑗
𝑒 = ∫ 𝑇𝑖𝑇𝑗

′𝑑𝑥

𝑥𝑝+1

𝑥𝑝

 , 

𝐶𝑖𝑗
𝑒 ((𝛿𝑒)𝑞+1) = ∫ 𝑇𝑖(𝑇𝑘𝛿𝑘

𝑞+1
)(𝑇𝑙𝛿𝑙

𝑞+1
)𝑇𝑗

′𝑑𝑥

𝑥𝑝+1

𝑥𝑝

 

𝐷𝑖𝑗
𝑒 = ∫ 𝑇𝑖

′𝑇𝑗
′𝑑𝑥

𝑥𝑝+1

𝑥𝑝

, (𝜹𝑒)𝑞+1 = (𝛿𝑝−1
𝑞+1

, 𝛿𝑝
𝑞+1

, 𝛿𝑝+1
𝑞+1

, 𝛿𝑝+2
𝑞+1

)
𝑇
 

 

 

By combining all elements, the nonlinear matrix equation is achieved 

 

[𝑨 + 𝜇𝑫 +
Δ𝑡

2
𝑩 +

Δ𝑡

2
𝜀𝑪(𝜹𝑞+1)] 𝜹𝑞+1 = [𝑨 + 𝜇𝑫 −

Δ𝑡

2
𝑩 −

Δ𝑡

2
𝜀𝑪(𝜹𝑞)] 𝜹𝑞 (14) 

 

where global element parameters 
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𝜹 = (𝛿−1, 𝛿0, … , 𝛿𝑁, 𝛿𝑁+1)
𝑇  

 

and 𝑨,𝑩, 𝑪,𝑫 are derived from the corresponding element matrices 𝑨𝑒 ,  𝑩𝑒, 𝑪𝑒 and 𝑫𝑒. 

 

By obtaining the initial vector 𝛿0 = (𝛿−1
0 , … , 𝛿𝑁

0 , 𝛿𝑁+1
0 ) using the boundary and initial 

conditions, the unknowns 𝛿𝑞+1 can be calculating using the recurrence relation (14), 

repeatedly. Since the obtained system (14) is an implicit system, we have tried to 

increase the accuracy of the algorithm by using an inner iteration with the following 

algorithm: 

 

i. 𝑆𝑒𝑡 𝑒𝑟𝑟𝑜𝑟 = 1 𝑎𝑛𝑑 𝛿𝑝
∗ = 𝛿𝑝

𝑞+1
 𝑖𝑛 𝑪(𝜹𝑞+1) 𝑎𝑛𝑑 𝑡𝑎𝑘𝑖𝑛𝑔 𝛿𝑝

∗ = 𝛿𝑝
𝑞
 𝑡ℎ𝑒𝑛 

ii. 𝑊ℎ𝑖𝑙𝑒 𝑒𝑟𝑟𝑜𝑟 > 10−10 𝑑𝑜 iii 𝑎𝑛𝑑 iv 

iii. 𝐹𝑖𝑛𝑑 𝑈𝑝
𝑞+1

 

iv. 𝐹𝑖𝑛𝑑 max
𝑝
|𝑈𝑝

𝑞+1
− 𝑈𝑝

∗| 𝑎𝑛𝑑 𝑠𝑒𝑡 𝛿𝑝
∗ = 𝛿𝑝

𝑞+1
   

v. 𝑆𝑡𝑜𝑝 𝑎𝑛𝑑 𝑔𝑜 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

 

 

3.  Stability analysis 

 

A Von Neumann stability analysis has been performed for the present method. A typical 

row member of the linearized equation corresponding to Eq. (14) can be given by 

 

𝛾1𝛿𝑝−3
𝑞+1

+ 𝛾2𝛿𝑝−2
𝑞+1

+ 𝛾3𝛿𝑝−1
𝑞+1

+ 𝛾4𝛿𝑝
𝑞+1

+ 𝛾5𝛿𝑝+1
𝑞+1

+ 𝛾6𝛿𝑝+2
𝑞+1

+ 𝛾7𝛿𝑝+3
𝑞+1

=

𝛾7𝛿𝑝−3
𝑞

+ 𝛾5𝛿𝑝−2
𝑞

+ 𝛾5𝛿𝑝−1
𝑞

+ 𝛾4𝛿𝑝
𝑞
+ 𝛾3𝛿𝑝+1

𝑞
+ 𝛾2𝛿𝑝+2

𝑞
+ 𝛾1𝛿𝑝+3

𝑞
, 

(15) 

 

where the parameters 𝛾𝑖 , 𝑖 = 1,… ,7 are determined from system (14), in which these 

values are not prefered to document here due to being too long. 

 

Substituting the Fourier mode 𝛿𝑝
𝑞
= 𝛿̂𝑞𝑒𝑖𝑝𝑘ℎ , 𝑖 = √−1 into Eq. (15) which becomes 

 

𝛿̂𝑞+1 = 𝜌𝛿̂𝑞. 

 

Here, the growth factor 𝜌 is determined as 

 

𝜌 =
𝑎 + 𝑖𝑏

𝑎 − 𝑖𝑏
 

 

where 

 

𝑎 =
1

96𝜃2
(((576𝜇 − 4864) sin (

ℎ

2
) + (−864𝜇ℎ − 3456ℎ) cos(𝑘ℎ)) cos (

ℎ

2
)
7
+

((1440𝜇 + 6272) cos(𝑘ℎ) sin (
ℎ

2
) + 3456ℎ + 864𝜇ℎ) cos (

ℎ

2
)
6
+ (((−1008𝜇 −

704) cos(2𝑘ℎ) − 2880𝜇 + 5888) sin (
ℎ

2
) + (1080𝜇ℎ + 5088ℎ) cos(𝑘ℎ)) cos (

ℎ

2
)
5
+

((−5920 − 936𝜇) cos(𝑘ℎ) sin (
ℎ

2
) + (960ℎ + 432𝜇ℎ) cos(2𝑘ℎ) − 864𝜇ℎ −

4224ℎ) cos (
ℎ

2
)
4
+ (((1152𝜇 − 512) cos(2𝑘ℎ) + 2232𝜇 − 2720) sin (

ℎ

2
) + (−918𝜇ℎ −
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3672ℎ) cos(𝑘ℎ) + (−54𝜇ℎ − 24ℎ) cos(3𝑘ℎ)) cos (
ℎ

2
)
3
+ (((522𝜇 + 1352) cos(𝑘ℎ) +

(126𝜇 + 88) cos(3𝑘ℎ)) sin (
1

2
ℎ) + (−720ℎ − 324𝜇ℎ) cos(2𝑘ℎ) + 1248ℎ +

216𝜇ℎ) cos (
ℎ

2
)
2
+ (((−468 ∗ 𝜇 + 496) cos(2𝑘ℎ) − 468𝜇 + 496) sin (

ℎ

2
) + (1140ℎ +

297𝜇ℎ) cos(𝑘ℎ) + (27𝜇ℎ − 36ℎ) cos(3𝑘ℎ)) cos (
ℎ

2
) + ((−216𝜇 + 96) cos(𝑘ℎ) +

(32 − 72𝜇) cos(3𝑘ℎ)) sin (
ℎ

2
) + (120ℎ + 54𝜇ℎ) cos(2𝑘ℎ) + 120ℎ + 54𝜇ℎ), 

𝑏 =
−3∆𝑡(𝜀𝜆+1)

32𝜃2
(96 sin(𝑘ℎ) cos (

ℎ

2
)
7
+ (96 sin(𝑘ℎ) sin (

ℎ

2
) ℎ − 48 sin(2𝑘ℎ)) cos (

ℎ

2
)
6
−

168 sin(𝑘ℎ) ∗ cos (
ℎ

2
)
5
+ (72 sin(2𝑘ℎ) − 136 sin(𝑘ℎ) sin (

ℎ

2
) ℎ) cos (

ℎ

2
)
4
+ (6 sin(3𝑘ℎ) −

32 sin(2𝑘ℎ) sin (
ℎ

2
) ℎ + 78 sin(𝑘ℎ)) cos (

ℎ

2
)
3
+ ((54 sin(𝑘ℎ) ℎ + 2 sin(3𝑘ℎ) ℎ) sin (

ℎ

2
) −

24 sin(2𝑘ℎ)) cos (
ℎ

2
)
2
+ (−6 sin(𝑘ℎ) − 6 sin(3𝑘ℎ) + 20 sin(2𝑘ℎ) sin (

ℎ

2
) ℎ) cos (

ℎ

2
) +

(sin(𝑘ℎ) ℎ + sin(3𝑘ℎ) ℎ) sin (
ℎ

2
)). 

 

Since the magnitude of the growth factor is |𝜌| = 1, the proposed method is an 

unconditionally stable method. 

 

 

4.  Test problems 

 

The error norm 

 

𝐿∞ = max
𝑝
|up − Up|  

 

is used to see the accuracy of the proposed method.  The order of convergence is 

measured by the following formulas 

 

order =
𝑙𝑜𝑔|(𝐿∞)ℎ𝑖/(𝐿∞)ℎ𝑖−1|

𝑙𝑜𝑔|ℎ𝑖/ℎ𝑖−1|
, order =

𝑙𝑜𝑔|(𝐿∞)∆𝑡𝑖/(𝐿∞)∆𝑡𝑖−1|

𝑙𝑜𝑔|∆𝑡𝑖/∆𝑡𝑖−1|
.  

 

4.1.  First test problem 

For the investigation of a motion of single solitary wave for the MRLW equation, let 

take one of the solutions of the MRLW equation as follows together with the initial 

condition 

 

𝑢(𝑥, 𝑡) = √
6𝑐

𝜀
sech(𝑘[𝑥 − 𝑥̃0 − (𝑐 + 1)𝑡]), (16) 

𝑢(𝑥, 0) = √
6𝑐

𝜀
sech(𝑘[𝑥 − 𝑥̃0]), (17) 
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where 1 + 𝑐 is the wave velocity, √
6𝑐

𝜀
 is amplitude of the solitary wave, 𝑥̃0 is peak 

position of the initially centered wave and 𝑘 = √
𝑐

µ(𝑐+1)
.  This solution propagates 

towards the right across the interval [𝛼, 𝛽] over the up to the time 𝑇 without change of 

shape at a steady velocity ν (see Fig. 1).  The Eq. (16) satisfies three conservation laws 

matching to the following given integrals [30]: 

 

𝐼1 = ∫ 𝑢𝑑𝑥
∞

−∞

≈ ∫ 𝑈𝑑𝑥
𝛽

𝛼

, 

𝐼2 = ∫ (𝑢2 + 𝜇(𝑢𝑥)
2)𝑑𝑥

∞

−∞

≈ ∫ (𝑈2 + 𝜇(𝑈𝑥)
2)𝑑𝑥

𝛽

𝛼

, 

𝐼3 = ∫ (𝑢4 − 6 
𝜇

𝜀
(𝑢𝑥)

2) 𝑑𝑥
∞

−∞

≈ ∫ (𝑈4 − 6 
𝜇

𝜀
(𝑈𝑥)

2) 𝑑𝑥
𝛽

𝛼

. 

(18) 

 

The trapezoidal rule is used in the calculation of the integrals there. 

 

 
 

Figure 1. 𝑈(𝑥, 𝑡) at various time with ℎ = 0.2, ∆𝑡 = 0.025. 

 

The invariants (18) for the MRLW equation can be determined analytically using the 

initial condition (17) as 

 

𝐼1 =
𝜋𝐴

𝑘
, 

𝐼2 =
2𝐴2

𝑘
+
2𝜇𝑘𝐴2

3
, 

𝐼3 =
4𝐴2

3𝑘𝜀
(𝐴2𝜀 − 3𝜇𝑘2). 

 

 

The parameters been in single solitary wave simulation are taken as 𝜀 = 6, 𝜇 = 1, 𝑥̃0 =
40 and the amplitude 𝐴 = 1 in the solution domain [0,100] and the time period [0,10]. 
 

Absolute error for the first test problem is seen in Fig. 2 at time 𝑡 = 10.  By comparison 

is made with the results given by the other finite elements methods based on various B-
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spline functions in Table 1, the present method seems to be better.  According to the 

Tables 2 and 3, when the value of the time and space steps are reduced, the error norms 

decrease for the proposed method. It can also be seen that the order of convergence for 

Crank-Nicolson method is almost two in Table 2 and for Galerkin method based on 

cubic trigonometric B-spline function is almost four in Table 3. 

 

 
 

Figure 2. Absolute error at time 𝑡 = 10 with ℎ = 0.2, ∆ 𝑡 = 0.025 

 

Table 1. Error norm 𝐿∞  and invariants at time 𝑡 = 10 (0 ≤ 𝑥 ≤ 100, ℎ = 0.2, ∆𝑡 =
0.025, 𝜀 = 6, 𝜇 = 1, 𝑐 = 1). 
 

 𝐿∞ × 10
3 𝐼1 𝐼2 𝐼3 

present(𝑡 = 0) 0 4.44288294 3.29889722 1.41514799 

present 0.85 4.44288308 3.29983306 1.41421337 

[16] 5.44 4.44288 3.29983 1.41420 

[18] 1.25 4.445176 3.302476 1.417411 

[21] 1.08 4.4431919 3.3003022 1.4146930 

[28] 9.06 4.4428821 3.2997861 1.4141511 

exact  4.44288294 3.29983165 1.41421356 

 

Table 2. Rate of convergence for  ℎ = 0.05, 𝜀 = 6, 𝜇 = 1, 𝑐 = 1, 𝑡 = 10, 0 ≤ 𝑥 ≤ 100.  
 

∆𝑡 𝐿∞ order 

0.2 0.044635  

0.1 0.013084 1.770405 

0.05 0.003351 1.965127 

0.025 0.000841 1.993839 

0.01 0.000135 1.998888 

0.005 0.000034 1.999298 
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Table 3. Rate of convergence for ∆𝑡 = 0.0005, 𝜀 = 6, 𝜇 = 1, 𝑐 = 1, 𝑡 = 10, 0 ≤ 𝑥 ≤
100.  
 

ℎ 𝐿∞ order 

2 0.0970894  

1 0.0052516 4.2084889 

0. 5 0.0002417 4.4411820 

0. 2 0.0000058 4.0774062 

0.1 0.0000006 3.2251087 

 

 

4.2.  Second test problem 

As a second test problem, the problem of the interaction of two positive solitary waves 

is discussed for the MRLW equation.  For this, the following initial condition given by 

the linear sum of two separate solitary waves at different amplitudes is used. 

 

𝑢(𝑥, 0) = 𝐴1 sech(𝑘1[𝑥 − 𝑥1]) + 𝐴2 sech(𝑘2[𝑥 − 𝑥2]) (19) 

 

where 𝐴𝑖 = √
6𝑐𝑖

𝜀
, 𝑘𝑖 = √

𝑐𝑖

𝜇(𝑐𝑖+1)
, 𝑖 = 1,2, and 𝑥𝑖 , 𝑐𝑖 are arbitrary constants. 

 

For our computational works, the parameters are chosen as 𝜀 = 6, 𝜇 = 1, 𝑐1 = 4, 𝑐2 =
1, 𝑥1 = 25, 𝑥2 = 55, ∆𝑡 = 0.02 and ℎ = 0.2 in the space domain [0,150] and the time 

period 0 ≤ 𝑡 ≤ 20.  With these parameters, two singular waves which peak positions 

are 𝑥 = 20 and 50 occurs as seen in Fig. 3.  As the amplitude of the first solitary wave 

is small compared to the second one, the collision of those takes place around time 𝑡 =
10.  It is seen in Fig. 3 that these waves, which are separated from each other, then 

maintain their amplitudes. 

 

 
 

Figure 3. Interaction of two solitary waves. 

 

The analytical invariants can be found using the initial condition (19) and the integrals 

(18) as 

 

𝐼1 =
𝜋

𝑘1𝑘2
(𝑘2𝐴1 + 𝑘1𝐴2), 

𝐼2 =
2

𝑘1𝑘2
(𝑘2𝐴1

2 + 𝑘1𝐴2
2) +

2 𝜇

3𝑘1𝑘2
(𝑘1

2𝑘2𝐴1
2 + 𝑘1𝑘2

2𝐴2
2), 
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𝐼3 =
4

3𝑘1𝑘2𝜀
( 𝜀𝑘1𝐴2

4 − 3 𝜇𝑘1𝑘2
2𝐴2

2 + 𝜀𝑘2𝐴1
4 − 3𝜇𝑘1

2𝑘2𝐴1
2). 

 

In Table 4, the comparison of analytical invariants is given.  Accordingly, it can be said 

that the invariants are in harmony with the exact values. 

 

 

5.  Conclusion 

 

The MRLW equation has been solved numerically by the method includes the space 

discretization with the Galerkin finite element method based on cubic trigonometric B-

spline, and also the time discretization with the Crank-Nicolson method.  The proposed 

method has tested on the propagation of single solitary wave and the interaction of two 

solitary waves.  As a result, when the successful results of the proposed method are 

taken into consideration, high accuracy can be obtained if numerical solutions of 

equations with similar characteristics are obtained with this method. 

 

Table 4. Comparison of invariants for the interaction of two solitary waves. 

 

 Present [26] 

𝑡 𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3 

0 11.4677 14.6292 22.8805 11.4677 14.6293 22.8804 

4 11.4680 14.6312 22.8883 11.4677 14.6192 22.8403 

8 11.4684 14.6361 22.9019 11.4677 14.6068 22.7879 

12 11.4686 14.6343 22.9007 11.4677 14.6031 22.7758 

16 11.4689 14.6363 22.9084 11.4677 14.5930 22.7361 

20 11.4692 14.6382 22.9162 11.4677 14.5831 22.6965 

exact 11.4677 14.6292 22.8805    
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