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Abstract

In this study, the Modified Regularized Long Wave (MRLW) equation is solved
numerically. The method used for the numerical solution of MRLW equation includes
the space discretization with the Galerkin finite element method based on cubic
trigonometric B-spline, and also the time discretization with the Crank-Nicolson
method. We tried to obtain a more accurate method with the help of trigonometric B-
spline for the numerical solution of the MRLW equation than the existing numerical
methods in the first test problem. Then, the interaction problem of the two positive
solitary waves of the MRLW equation is considered, and the conservation constants are
compared with the existing ones to see the correctness of the method.

Keywords: Cubic trigonemetric B-splines, Galerkin method, modified regularized long
wave equation.

Degistirilmis diizenli uzun dalga denkleminin kiibik trigonometrik
B-spline fonksiyonlar1 kullanilarak niimerik ¢6ziimii

Ozet

Bu ¢alismada, Modified Regularized Long Wave (MRLW) denklemi sayisal olarak
¢oziilmiistiir.  MRLW denkleminin sayisal ¢oziimii i¢in kullanilan yontem, kiibik
trigonometrik B-spline'a dayali Galerkin sonlu eleman yéntemi ile konum ayristirmasint
ve ayrica Crank-Nicolson yontemiyle zaman ayristirmasini icerir. Ilk test probleminde
MRLW denkleminin sayisal ¢oziimii icin trigonometrik B-spline yardimiyla mevcut
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sayisal metotlardan daha dogru bir yontem elde etmeye ¢alistik. Daha sonra, MRLW
denkleminin iki pozitif solitary dalganin etkilesimi problemi goz dniine alinmis Ve
korunum sabitleri, yontemin dogrulugunu gérmek icin mevcut ¢aliymalarla
karsilastiriimistir.

Anahtar kelimeler: Galerkin metodu, kiibik trigonometrik B-spline, degistirilmis
diizenli uzun dalga denklemi.

1. Introduction
The numerical solution of the MRLW equation in the form
Up + Uy + UPU, — P Uy = 0, (1)

where ¢ and p are positive real parameters and the subscripts x and t denote
differentiations with respect to space and time, is discussed. The space variable x of the
problem is defined over the interval [a, ] for the numerical treatment.

The following boundary conditions will be taken into account over the space region

u(a, t) = u(B,t) =0,
(e t) =y (1) =0, L EOT] )

and the following initial condition

u(x,0) = f(x) 3)
will be described in the test problems section.

The solution of the equation investigating the numerical solution is composed of
solitary waves that protect its shape against the collision and it is also important to
explain many physical phenomena. Thus, the equation has been often taken up by
numerical analysts and different solution methods have been developed. The finite
difference [1, 2], the homotopy perturbation [3], the Adomian decomposition [4], the
expilicit multisymplectic [5], the He’s variational iteration [6], the meshless [7], the
homotopy anlysis [8], the Galerkin linear finite element [9], the second-order Fourier
pseudospectral [10], the explicit multistep Galerkin finite element [11], the mixed
Galerkin finite element [12], the split least-squares mixed finite element [13], the
compact conservative [14] and the moving least square collocation [15] methods are
some of those methods. In addition to those ones, there are also some methods that are
obtained by using various B-spline functions. A collocation method is applied to solve
numerically the MRLW equation using cubic B-splines in the reference [16]. A
comparison of quadratic, cubic, quartic and quintic splines for solving the MRLW
equation with collocation scheme is presented by Raslan and Hassan [17]. The
numerical solution of MRLW equation is found using collocation method based on
quadratic B-spline functions [18]. To obtain solitary wave solutions for the MRLW
equation the collocation method using with quintic B-splines is used in the paper [19].
A sextic B-spline collocation algorithm have been developed for solving numerically
MRLW equation [20]. The septic and quintic B-spline collocation methods, the
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subdomain finite element method based on quartic B-splines, the cubic B-spline
Galerkin and Petrov-Galerkin methods are implemented to find the numerical solution
of the MRLW equation [21-25]. A numerical technique including quartic B-splines for
solution of the MRLW equation has been produced by Fazal-i-Haq et all [26]. Soliman
obtaines the solution of the same equation by quartic B-spline collocation method [27].
Again, an another collocation method is offered for the numerical solution of the
MRLW equation in the study [28]. Mittal and Rohila study the numerical solution of the
MRLW by the fourth order numerical method based on cubic B-spline functions in the
study [29].

Our aim in this study is to obtain a more accurate numerical method for obtaining the
numerical solution of the MRLW equation. So, the Galerkin finite element and the
Crank Nicolson methods have been used to get the fully integrated form of the MRLW
equation by using the cubic trigonometric B-spline function. By the proposed method,
two test problem as the investigation of the motion of single solitary wave and the
observation of the interaction of the two solitary waves have been studied.

2. Application of the method

During computational studies, time step At and space step h is used over the
discretization of the space-time plane. The exact solution of the unknown function is

u(xp ty) =ul,p=01,..,N;g =0,12,..

where x,, = a + ph,t, = qA t and the notation U;,’ is designated the numerical value of

q

‘Llp.

2.1. Time discretization
With the application of the Crank Nicolson method to the MRLW equation for the time
discretization, we have

At At
uq+1 + ? (ux)q+1 + 7guq+1uq+1(ux)q+1 _ .u(uxx)q+1 (4)

t
=uf — .u(uxx)q - ?(ux)q - ?guquq(ux)q-

2.2. Space discretization
For the space discretization, the region [a, ] is splitted into uniformly sized N finite
elements by the nodes x,,p = 0, ..., N with h = x, ., — x,.

The cubic trigonometric B-spline functions are defined at the knots as
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(¢°(xp-2) -2, %p-1]
—0?(xp = 2)9(xp) = @ (xp-2) P (Xp11) @ (2p-1)
1 —@(xp42) 0% (%p-1) [oep-1, 3,
Tp (x) = 5< <p(xp_2)<p2(xp+1) + (p(xp+2)(p(xp_1)(p(xp+1) )
+‘/’2(xp+2)‘/’(xp) : [xp'xp+1]
_(pg( xp+2) ’ [xp+1'xp+2]
\0 otherwise

where

- h . 3h
0 = sin (E)sm (h)sin (7),
X —Xp
2 ).

@ (xp) = sin (

The global approximation to the analytical solution of the problem can be defined by
using cubic trigonometric B-splines as

N+1

w0 ~ UG = ) T80 (6)

p=-1
where the coefficients &, are the unknown parameters to be calculated from boundary

conditions and the cubic trigonometric B-spline Galerkin form of the MRLW equation.
T,, (p = —1,...,N + 1) and their first derivatives with respect to space variable x vanish

outside the interval [x,_1, x,42]-

As can be seen from the cubic trigonometric B-spline (5), each element [xp,xp+1]
contains 3 splines, so an approach to exact solution u(x, t) can be written as

p+2

UGt = D Ty (8O = TyrByos + Ty + TyiaBpin + Tysabpia @
j=p-1

where 6° = (5p_1,5p,5p+1,6p+2) are element parameters and trigonometric cubic B-
splines T® = (T,_1, Ty, Tp41, Tp42) are element shape functions.

By Egs. (5) and (7), the values of U, = U (xp, t) and its first and second derivatives at
points x = x,, can be written as

h 3h
— cin2 (= i _
U, = sin (2> csc(h) csc( > ) (6p—1+6ps1) + 1T 2c0s(h) 8y, (8)
3 3h
Uz,, = ZCSC (7) (_6p—1 + 6p+1)’ (9)

3 (3cos? h -1 3cot? h
DRI

4 sin(h) sin (7)

Uy = (10)
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Applying Galerkin method to Eq. (4) with weight function W (x) and then integrating
by parts lead to the weak form

[Pw @) (U + S U+ + 2 eUs+ YT (U,) T+ ) dx +

A x)(Ux)q“ dx = [ W) (V1 - Z W - FevWI W) dx+  (11)
i Jy W) (U7 dx.

With substituting the weight function by the cubic trigonometric B-spline in the Eq.

(11) and adding the expression (7) in it, the following approximation is obtained over
the element [x,, x,41]

25”; 1 {(fxpﬂ TiT; dx) s+ (f;;?ﬂ Ti'Tj'dx) 5jq+1 +

%(f;IHl T,T} dx) 591 4
D

Egzllzt; 1zzlo+pz 1( xp+1T(Tk q+1)(Tl q+1)T dx ) q+1} (12)
25”; 1{(fxp+1 Tde) 59 + 1 (fxp+1 T T dx )661 At (f;;pﬂ TiT]-'dx) 6jq _

SeXn S ([P r(nesd) (o )T dx) 57,
where i, j, k and [ take only the valuesp — 1,p,p + 1,p + 2.

(12) can be written in the matrix form as

At At
A° + uD° + = B° + 5 £Co (897 (87

13)
At At (
- [Ae +uD® - B - 7gce((<se)q)] (59)1
together with the following expressions:
Xp+1 Xp+1
A = f T,Tydx, Bf; = f T,T} dx,
xp xp
Xp+1
C5((69)7%Y) = j Ti(Te 67 ) (1,8 74) T dx
Xp
e R +1 _ (£4+1 5q+1 gq+1 oq+1n\T
Dj; = TiTjdx'(‘se)q (5p 1'5 6p+1'6 +2)
Xp
By combining all elements, the nonlinear matrix equation is achieved
At At At At
[A + uD + 73 + 75(:(6‘1“)] 691 = [A + uD — 73 - ?56(6‘7)] &9 (14)

where global element parameters
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6 = (5_1, 50, ey 6N’ 5N+1)T
and A, B, C, D are derived from the corresponding element matrices A¢, B¢, C° and D®.

By obtaining the initial vector §° = (8%, ..., 8%, 85.1) using the boundary and initial
conditions, the unknowns §9*1 can be calculating using the recurrence relation (14),
repeatedly. Since the obtained system (14) is an implicit system, we have tried to
increase the accuracy of the algorithm by using an inner iteration with the following
algorithm:

i. Seterror=1andé, = 6;,”1 in C(87*1) and taking &;, = &, then
ii.  While error > 10710 do iii and iv
iii.  Find Ul
iv. Find m§x|Ug+1 - U,

P q+1
and set 6p = 5p

V. Stop and go to next time step

p

3. Stability analysis

A Von Neumann stability analysis has been performed for the present method. A typical
row member of the linearized equation corresponding to Eq. (14) can be given by

V18 s + V28 s + Va8l +vaby  +VsSyin +VeOpia + V70pis = (15)

V78p—3 + V50,5 + VsOp_y +VaSp + V38,1 +V28,,5 +V18p,s,

where the parameters y;,i = 1, ...,7 are determined from system (14), in which these
values are not prefered to document here due to being too long.

Substituting the Fourier mode &7 = §9¢™P*", i = v/—1 into Eq. (15) which becomes
591 = péa.

Here, the growth factor p is determined as

_a+t ib
P=a_ib
where
7
a=— (((576y — 4864) sin (g) + (—864uh — 3456h) cos(kh)) cos (g) +

6
((144ou +6272) cos(kh) sin () + 3456h + 864uh) cos(2) + (((—1008;1 -

5
704) cos(2kh) — 2880y + 5888) sin (5 ) + (1080uh + 5088h) cos(kh)) cos(3) +
((—5920 — 9360) cos(kh) sin (") + (960h + 432uh) cos(2kh) — 864uh —

2

4224h) cos (g)4 + (((1152u — 512) cos(2kh) + 2232 — 2720) sin () + (~918yh -

131



BAUN Fen Bil. Enst. Dergisi, 21(1), 126-138, (2019)

3672h) cos(kh) + (—54uh — 24h) cos(3kh)) cos (h)3 + (((522;1 + 1352) cos(kh) +

2
(1261 + 88) cos(3kh)) sin (3 1) + (—720h — 324y1h) cos(2kh) + 1248h +
2
216yh) cos(3) + (((—468 « jL + 496) cos(2kh) — 468y + 496) sin (3 ) + (1140h +

2
297uh) cos(kh) + (27uh — 36h) cos(3kh)) cos (%) + ((—216;1 + 96) cos(kh) +
(32—72u) cos(3kh)) sin (g) + (120h + 54uh) cos(2kh) + 120h + 54uh>,

b= %‘;H) (96 sin(kh) cos (2)7 + (96 sin(kh) sin (%) h — 48 sin(Zkh)) cos (%)6 —

5
168 sin(kh) * cos (g) + (72 sin(2kh) — 136 sin(kh) sin (g) h) cos (2)4 + (6 sin(3kh) —
3
32 sin(2kh) sin (%) h+78 sin(kh)) cos (g) + ((54 sin(kh) h + 2 sin(3kh) h) sin (%) —
2
24 sin(Zkh)) cos (g) + (—6 sin(kh) — 6 sin(3kh) + 20 sin(2kh) sin (2) h) cos (%) +
: : . (h
(sin(kh) h + sin(3kh) h) sin (5))
Since the magnitude of the growth factor is |p| = 1, the proposed method is an
unconditionally stable method.

4. Test problems

The error norm
L, = mz;;lx|up — Up|

is used to see the accuracy of the proposed method. The order of convergence is
measured by the following formulas

order = log|(L°°)hi/(L°0)hi_1| order = log|(Loo)Ati/(Loo)Ati_1|
loglhi/h;i_4| ’ log|At;/At;_4]

4.1. First test problem

For the investigation of a motion of single solitary wave for the MRLW equation, let
take one of the solutions of the MRLW equation as follows together with the initial
condition

u(x, t) = \/%sech(k[x — %o — (c + Dt)), (16)

u(x,0) = \/%sech(k[x — %D, 17)
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where 1 + ¢ is the wave velocity, \/% is amplitude of the solitary wave, %, is peak

C
u(c+1)’
towards the right across the interval [, 5] over the up to the time T without change of
shape at a steady velocity v (see Fig. 1). The Eq. (16) satisfies three conservation laws
matching to the following given integrals [30]:

oo B
I =f udx zl Udx,
o «

o ;
L = f @2 + p(u)D)dx ~ f (U + p(U)D)dx, (18)

I; = f_o:o (u4 -6 g(ux)z) dx = jj (U4 -6 g(Ux)Z) dx.

position of the initially centered wave and k = This solution propagates

The trapezoidal rule is used in the calculation of the integrals there.

20 30 40 50 60 70 80
Figure 1. U(x, t) at various time with h = 0.2, At = 0.025.

The invariants (18) for the MRLW equation can be determined analytically using the
initial condition (17) as

I _mA
1_k'
242 2ukA?
12:_+ y
k 3

442
I, = — (A%s — 3uk?).
3 3ke( € uk?)

The parameters been in single solitary wave simulation are takenas ¢ = 6,u = 1,%, =
40 and the amplitude A = 1 in the solution domain [0,100] and the time period [0,10].

Absolute error for the first test problem is seen in Fig. 2 at time t = 10. By comparison
is made with the results given by the other finite elements methods based on various B-

133



BAUN Fen Bil. Enst. Dergisi, 21(1), 126-138, (2019)

spline functions in Table 1, the present method seems to be better. According to the
Tables 2 and 3, when the value of the time and space steps are reduced, the error norms
decrease for the proposed method. It can also be seen that the order of convergence for
Crank-Nicolson method is almost two in Table 2 and for Galerkin method based on
cubic trigonometric B-spline function is almost four in Table 3.

| X 10~
_ 087 ||'|
g || f
0.6 i
[ |
2047 "I
— |
< [ 11

027 |I|I |
[, WAV, S
0 20 40 60 80 100
X

Figure 2. Absolute error attime t = 10 with h = 0.2,At = 0.025

Table 1. Error norm L, and invariants at time t =10 (0 < x < 100,h = 0.2,At =
0.025, e =6, u=1,c=1).

Lo, X 103 I L Iy
present(t =0) |0 4.44288294 3.29889722 1.41514799
present 0.85 4.44288308 3.29983306 1.41421337
[16] 5.44 4.44288 3.29983 1.41420
[18] 1.25 4.445176 3.302476 1417411
[21] 1.08 4.4431919 3.3003022 1.4146930
[28] 9.06 4.4428821 3.2997861 1.4141511
exact 4.44288294 3.29983165 1.41421356

Table 2. Rate of convergence for h = 0.05,e =6, u=1,c=1,t =10,0 < x < 100.

At Lo order

0.2 0.044635

0.1 0.013084 1.770405
0.05 0.003351 1.965127
0.025 0.000841 1.993839
0.01 0.000135 1.998888
0.005 0.000034 1.999298
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Table 3. Rate of convergence for At = 0.0005,e=6,u=1,c=1,t=10,0<x <
100.

h Lo order

2 0.0970894

1 0.0052516 4.2084889
0.5 0.0002417 4.4411820
0.2 0.0000058 4.0774062
0.1 0.0000006 3.2251087

4.2. Second test problem

As a second test problem, the problem of the interaction of two positive solitary waves
is discussed for the MRLW equation. For this, the following initial condition given by
the linear sum of two separate solitary waves at different amplitudes is used.

u(x,0) = A; sech(kq[x — x;]) + A, sech(k,[x — x;]) (19)

where A; = /%,ki = /H(Cc_il),i = 1,2, and x;, c; are arbitrary constants.

For our computational works, the parameters are chosen as ¢ = 6,u = 1,¢; = 4,¢c, =
1,x;, = 25,x, = 55,At = 0.02 and h = 0.2 in the space domain [0,150] and the time
period 0 < t < 20. With these parameters, two singular waves which peak positions
are x = 20 and 50 occurs as seen in Fig. 3. As the amplitude of the first solitary wave
is small compared to the second one, the collision of those takes place around time t =
10. It is seen in Fig. 3 that these waves, which are separated from each other, then
maintain their amplitudes.

Figure 3. Interaction of two solitary waves.

The analytical invariants can be found using the initial condition (19) and the integrals
(18) as

s
L= Ik, (k2A; + k1 A),
2u
I, = Kk, (kAT + ki A3) + lez (k?k, A% + kyk3A3),
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172

In Table 4, the comparison of analytical invariants is given. Accordingly, it can be said
that the invariants are in harmony with the exact values.

5. Conclusion

The MRLW equation has been solved numerically by the method includes the space
discretization with the Galerkin finite element method based on cubic trigonometric B-
spline, and also the time discretization with the Crank-Nicolson method. The proposed
method has tested on the propagation of single solitary wave and the interaction of two
solitary waves. As a result, when the successful results of the proposed method are
taken into consideration, high accuracy can be obtained if numerical solutions of
equations with similar characteristics are obtained with this method.

Table 4. Comparison of invariants for the interaction of two solitary waves.

Present [26]

I L I3 I L, I3

11.4677 | 14.6292 |22.8805 |11.4677 |14.6293 |22.8804

114680 | 14.6312 |22.8883 | 11.4677 |14.6192 |22.8403
8 11.4684 | 14.6361 |22.9019 |11.4677 |14.6068 |22.7879
12 114686 | 14.6343 |22.9007 | 11.4677 |14.6031 |22.7758
16 11.4689 | 14.6363 | 22.9084 | 11.4677 |14.5930 |22.7361
20 11.4692 | 14.6382 |22.9162 |11.4677 |14.5831 |22.6965

exact 11.4677 | 14.6292 | 22.8805

»O|+
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