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Abstract 

 

Studies on phase equilibria data behavior of pure substances are motivation to the researchers due to importance of 

these data for the scientific and industrial applications. Several EOS were proposed and its modifications have been 

made, whose aim is to improve the correlation between experimental and calculated thermophysical properties. This 

work proposes a comparative study between the PVT calculated data using cubic and non-cubic equations of state, 

in which its original repulsive term is substituted by the Carnahan-Starling hard-sphere repulsive term; furthermore, 

generalized expression to calculate (Tr,) and (Tr,) functions are used. Experimental data of vapor pressure for 

various pure compounds were compared to the calculated vapor pressure data showing satisfactory agreement, when 

this proposed modification is employed. 
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1. Introduction 

Equations of state (EOSs) were developed to predict the 

phase equilibria of the substances (pure or mixtures), using 

its experimental data of pressure, temperature, and volume. 

However, due to particular characteristic of each 

compounds group, an equation of state is unable to describe 

the phase equilibria for all substances existing. In general, 

several researcher group chosen the van der Waals EOS 

type, in which are represented conceptually by sum of 

repulsive and attractive terms, showed by 
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wherein p, V, T, R, a and b are pressure, molar volume, 

temperature, universal constant of gases, attraction 

parameter, and molecular volume parameter, respectively. 

The parameters x and y in Eq. (1) are characteristic of each 

EOS: if x = y = 0, this equation is the van der Waals EOS 

(Abbot [1]); if x = 1 and y = 0, this equation is that 

proposed by Soave [2] and if x = 2 and y = –1, the equation 

is that one proposed by Peng and Robinson [3]. This last 

one equation of state is considered the most adequate and 

employed in to the prediction of the phase equilibria 

behavior as well as in the design and optimization of 

industrial equipments and processes [4]. 

In spite of its adequate format, several modifications in 

the original format of Peng and Robinson EOS [3] have 

been proposed such as: changes in its original alpha 

function, used to calculate attraction parameter temperature 

dependent [5-6], as well as to consider the co-volume 

temperature dependent [7-9]. All of resultant EOSs 

contribute for improvement of the phase equilibria 

calculations for both pure compounds and mixtures. A 

variety of studies involving cubic EOSs suggest that it is 

possible to generalize the adjustable parameters of various 

pure compounds [10-11]. It is common for this 

generalization to account for mathematical expressions 

(alpha-functions), whose relation is established with the 

temperature and acentric factor of the pure compounds; 

some examples of alpha functions can be found in [12-14]. 

In general, the modification of a cubic EOS consists in 

to change the attractive term, as mentioned above; but it is 

possible to modify also the repulsive term, as showed in [4] 

to improve the representation of the thermophysical 

properties of compounds. Besides to these works the 

repulsive term proposed in [15] widely figures in the 

literature as accurate and physically consistent term to 

represent the molecular repulsions contributions in the 

EOSs [16-18]. 

Taking into consideration the repulsive term proposed 

in [15], besides to temperature dependency of the attraction 

and co-volume parameters, by using a modified version of 

the generalized alpha function [12], and accounting the 

values 2 and –2 for the x and y, respectively, in the second 

term of the right side of Eq. (1), the experimental data of 

vapor pressure of industrially important non-polar pure 

compounds are correlated, whose values were obtained 

from [19-22]. The results obtained are compared with those 

presented by the cubic equation of state proposed in [5] and 

using slightly derivations. Moreover, two groups of 

adjustable parameters are presented: one specific to each 

pure compound and other generalized to all compounds 

studied here. The advantages in to use one or other 

parameters group are discussed. 

 

2. Equation of State 

Starting of the Eq. (1), the attractive and repulsive 

parameters (a and b) are accounted temperature dependents; 

the values of x and y adopted are 2 and –2, respectively. 

Furthermore, repulsive term of this equation is replaced by 
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the hard-sphere repulsion term developed by [15]. These 

considerations result in the following expression: 
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in which y = b(T)/(4V). Considering that, at the critical 

conditions, the first and second derivatives of pressure in 

relation to volume are zero [3], it is possible to obtain 
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At temperatures other than the critical conditions, yet 

 

    ,TraTa c   (5) 
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wherein a(T) and b(T) are the attraction and co-volume 

parameters, respectively, both temperature dependents. 

With these values, it is possible to calculate (Tr,) and 

(Tr,) which are functions dimensionless of reduced 

temperature. It is common in the literature the term (Tr,) 

represented in Eq. (5) to be designed by alpha function. So, 

in this work, (Tr,) in Eq. (6) is designated by beta 

function. 

The expressions used to represent the alpha and beta 

functions ((Tr,) and (Tr,)) are based on the modified 

version of the Mathias and Copeman [12] generalized 

expression, 
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and 
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In these expressions, it is possible to note the maximum 

value allowed for Tr is 1.0, since square roots of the 

negative numbers are indeterminate. So, the proposed EOS 

is not valid up to the critical conditions. Each function has 

its proper adjustable parameter group (A’s and B’s) which is 

structured as a power series in the acentric factor (ω) 

truncated at 2
nd

 order 
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From (Tr) and (Tr) values at each Tr, using Eqs. (5) 

and (6), it is possible to calculate the A and B adjustable 

parameters of Eqs. (7) and (8), which are specific of each 

pure compound; in this way, if various pure compounds are 

used, various A’s and B’s adjustable parameters groups are 

obtained. Each pure compound has its particular acentric 

factor (). So, employing these parameters in Eqs. (9) and 

(10), generalized alpha and beta functions are obtained in 

relation to the pure compounds studied in this work. 

There are some limiting conditions and general trends 

which must be satisfied by any equation of state [23]. The 

first criterion analyzed is to verify if the limPV RT , as 

P → 0, at any temperature. Considering Eq. (2) multiplied 

by volume (V) 
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the following limit condition is observed at any temperature 
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since b / (4V)  0 and a/(V + 2b –2(b
2
)/V)  0 as V  . 

The second criterion analyzed is to verify if 

lim / /
T
V T R P


  at any pressure. Rearranging Eq. (3) 
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the limit condition below is observed at any pressure 
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since b / (4V)  0 as V   and (aV)/(PT)  0 as T  . 

The third criterion analyzed is associated to the 

inflexion point of the critical isotherm curve. 

Mathematically,  
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Applying the proposed Eq. (2) at the critical conditions 
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and considering the Eqs. (8) and (9) it is possible to obtain 

expressions for a, b and R in terms of VC, PC and TC: 
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From these expressions it follows that 
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The fourth criterion is to verify if (P x T) curves 

(isometrics) are linear, since this behavior is normally 

verified except at very high densities. Mathematically, 
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The a and b parameters of the Eq. (2) are temperature 

dependent and the conditions showed in Eqs. (21) and (22) 

are not satisfied. Consequently, Eq. (2) is unable neither to 

describe heat capacities near the critical point nor to 

reproduce isochoric inflection points; this information is 

based on [23]. 

 

3. Results and Discussions 

The methods and procedures for determination of a(T) 

and b(T) as well as A’s and B’s adjustable parameters are 

described above. Applying these procedures to the Eqs. (2) 

to (10), it is possible to calculate the parameters A’s and B’s 

of each pure substance, which are showed in Table 1, 

wherein the critical pressures and temperatures as well as 

acentric factors and deviations obtained using both the Eq. 

(2) and adjustable parameters A’s and B’s of each substance 

are represented. It is important to emphasize that the Tr 

range adopted in present work is 0.40 ≤ Tr ≤ 1.00 as well as 

the modification proposed in the EOS satisfies only its 

application to behavior study of situations below to or up to 

the critical conditions of pure compounds. 

It is important to salient that the pure compounds 

presented in Table 1 are the same studied by [5]; 

inclusively, the Tr range employed is slightly wider, since 

in this work 0.40 ≤ Tr ≤ 1.00 (versus 0.50 ≤ Tr ≤ 0.99 

presented in [5]); this criterion is adopted so that 

comparisons can be established. Using only acentric factor 

and critical properties of pure compounds, it is possible to 

calculate the pressure vapor at any temperature. 

The expression used to calculate the average absolute 

deviations (AAD) using experimental vapor pressure of 

pure compounds (Pex) and the Eq. (2), with the application 

of the generalized alpha and beta functions represented by 

Eqs. (7) and (8) (Pcalc), is represented by: 
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Table 1. Adjustable Parameters Eqs. (7) and (8) for Eq. (2) from Pure Compounds Data. 

 Pc (bar) Tc (K)  A1 A2 A3 B1 B2 B3 
AAD 

% 

Methane 46.00 190.5 0.011 0.1407 -0.7345 1.2291 -0.1648 0.2489 0.1223 1.00 

Ethane 48.64 305.4 0.099 0.0411 -0.0730 0.5088 -0.2606 0.7059 -0.3949 0.19 

Propane 42.56 369.8 0.153 0.0994 -0.3777 1.0618 -0.2834 0.8997 -0.6646 0.11 

n-Butane 37.90 425.2 0.199 0.0203 0.2426 0.1670 -0.2852 1.0028 -0.8531 0.27 

i-Butane 36.58 408.1 0.183 0.0831 -0.2041 0.8386 -0.2818 0.9991 -0.8655 0.16 

n-Heptane 27.36 540.1 0.349 0.0140 0.5691 -0.1722 -0.2509 1.0713 -1.1399 0.40 

n-Octane 24.82 568.8 0.398 0.1179 -0.0886 0.9658 -0.2273 1.0065 -1.1125 0.22 

Ethylene 50.46 282.6 0.089 0.1145 -0.5546 1.1871 -0.2291 0.4847 -0.0798 0.08 

Propylene 46.00 364.9 0.144 -0.0228 0.3851 -0.0623 -0.2987 0.9666 -0.7538 0.31 

Argon 48.73 150.8 0.001 0.1729 -0.9537 1.5295 -0.1307 0.0543 0.3321 0.11 

Xenon 49.17 289.7 0.008 0.1620 -0.8703 1.4325 -0.1526 0.1944 0.2222 0.08 

Carbon Dioxide 73.76 304.2 0.239 0.2226 -1.3955 3.0514 -0.0324 -1.3031 2.7177 0.13 

Sulfur Dioxide 79.84 430.8 0.256 -0.0316 0.4703 0.0283 -0.2318 0.0551 0.8698 0.41 

Oxygen 50.36 154.6 0.025 0.1714 -0.9394 1.5628 -0.0936 -0.2981 0.9169 0.21 

Nitrogen 33.84 126.2 0.039 0.1621 -0.8865 1.5407 -0.0998 -0.2900 0.9612 0.13 

Dichlorotetrafluoroethane 33.03 418.6 0.263 0.0084 0.3658 0.1428 -0.3095 1.1712 -1.0962 0.23 

Chlorodifluoromethane 49.85 369.3 0.221 0.0247 0.1057 0.5237 -0.3052 0.8126 -0.3861 0.18 

Toluene 41.04 591.7 0.263 -0.0038 0.5117 -0.1468 -0.2862 1.1230 -1.0957 0.36 

Benzene 48.94 562.2 0.212 0.0170 0.2724 0.1591 -0.2922 1.0391 -0.8987 0.31 
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Table 2. Comparison between Deviations in Experimental and Calculated Vapor Pressure Using an EOS. 
 

Eqs. (2) and (7) + 

(8) 

Nasrifar and  
Moshfeghian [5] EOS 

+ Eqs. (7) + (8) 

Nasrifar and  

Moshfeghian [5] EOS + 

(Mathias & Copeman, 

[12] α and β functions 

Eq. (2) + Mathias and 
Copeman [12] α and 

β functions 

Nasrifar and  
Moshfeghian 

[5] EOS 

Compound AAD (%) AAD (%) AAD (%) AAD (%) AAD (%) 

Methane 0.09 0.20 0.11 0.49 1.36 
Ethane 0.12 0.12 0.21 0.49 1.22 

Propane 0.24 0.64 0.27 0.68 0.78 

n-Butane 0.24 0.25 0.33 0.68 1.54 
i-Butane 0.26 0.45 0.30 0.71 1.20 

n-Heptane 0.21 0.22 0.27 0.71 1.77 

n-Octane 0.30 0.55 0.26 0.76 3.00 
Ethylene 0.14 0.39 0.20 0.48 2.00 

Propylene 0.19 0.28 0.26 0.59 0.53 

Argon 0.11 0.16 0.13 0.72 0.62 
Xenon 0.08 0.18 0.08 0.66 0.69 

Carbon Dioxide 0.18 0.23 0.57 1.00 0.59 

Sulfur Dioxide 0.27 0.28 0.35 0.72 1.75 
Oxygen 0.18 0.19 0.17 0.57 1.09 

Nitrogen 0.12 0.16 0.12 0.56 0.86 

Dichlorotetrafluoroethane 0.21 0.29 0.33 0.54 0.38 
Chlorodifluoromethane 0.20 0.22 0.33 0.54 1.33 

Toluene 0.24 0.25 0.32 0.69 1.41 

Benzene 0.24 0.26 0.33 0.72 0.42 

AVERAGE 0.19 0.28 0.28 0.65 1.19 

 

in which Np is the number of experimental vapor pressure 

points of each pure compound. In present work the 

minimum Np value employed is 20. The AAD values are 

showed in Table 2. 

In Table 2, besides to deviations calculated using the 

proposed modified equation of state (column 2), it is 

possible to observe deviations obtained between calculated 

and experimental vapor pressure data, using the following 

combinations: Nasrifar and Moshfeghian EOS [5] + Eqs. 

(7) and (8) (column 3), Nasrifar and Moshfeghian EOS [5] 

+ Mathias and Copeman alpha and beta functions [12] 

(column 4), Eq. (2) + Mathias and Copeman α and β 

functions {12] (column 5), and Nasrifar and Moshfeghian 

EOS [5] (column 6). 

Comparing each pure compound, it is possible to 

observe that the calculated deviations presented in column 

2 are smallest than those presented in the columns 3 to 6. In 

relation to the average values deviation (presented in last 

line of the Table 2), the value obtained in the column 2 is 

also smaller than those showed in another columns. These 

features can be attributed to the proposed modifications 

presented in Eq. (2): a repulsive term with better physical 

consistency and the attraction and repulsion parameters 

accounted temperature dependent. 

Another likely cause of the deviations improvement 

values in the calculations of the vapor pressure data can be 

due to substitution of the alpha function accounted in 

original Nasrifar and Moshfeghian [5] by the (Tr) and 

(Tr) functions showed in the Eqs. (7) and (8). This 

situation can help to verify if the use of an alpha and beta 

functions more elaborated mathematically, such as the 

Mathias and Copeman expression [12], can enhance the 

representation of the pure compound vapor pressure data. In 

relation to the average deviations presented in last line of 

the Table 1, its values are similar in both columns 3 and 4. 

This reveals that if ever alpha and beta functions here 

studied were employed, the improvement label of the 

results is satisfactory. 

Comparatively to the column 6, the deviations obtained 

in the column 5 are better. This shows that to employ a 

more consistent repulsive term, and alpha and beta 

functions, can help to improve the vapor pressure calculated 

data. However, the study of these modifications show that 

the Eq. (2), combined to Mathias and Copeman [12] 

mathematical structure, not improved the results in relation 

to those presented in the columns 2 to 4. Perhaps the 

Mathias & Copeman alpha and beta functions are 

inadequate in combination with the Carnahan and Starling 

[15] repulsive term, using the attractive term proposed by 

Nasrifar and Moshfeghian [5]. This alternative can be 

treated as a real possibility of verification, since the 

combination of the Eqs. (2), (7) and (8) brought satisfactory 

results in the deviation calculations of vapor pressure. In 

this way, the influence of the attractive term must be 

studied carefully. 

In the reference [5], as well as in works of Coquelet et 

al. [14] and Chiavone-Filho et al. [24], EOS and/or 

generalized alpha functions are proposed. In these works, 

the AAD in terms of vapor pressure for various pure 

compounds are showed and compared to the deviations 

obtained by Soave [2] and Peng and Robinson [3] EOSs. 

(To illustrate, methane is accounted as an example and 

percentage deviations values are showed in [2-3], 

respectively: in the Nasrifar and Moshfeghian [5], 1.71 % 

and 2.08 %; in Coquelet et al. [14], 1.54 % and 0.70 %; in 

Chiavone-Filho et al. [24] – only for Peng and Robinson [3] 

– 2.32 %.) 

Taking to consideration the deviations values obtained 

using the Eqs. (2), (7) and (8), it is possible to observe a 

sensible improvement in the results when compared with 

deviations presented in [2-3], [5], [14], and [24]. This 

improvement can be attributed to the substitution of 

original repulsive term in equation (1) by Carnahan-Starling 

repulsion term, whose theoretical importance and correct 

representation of intermolecular repulsions behavior in real 

fluids is confirmed in several works in the literature [6], 

[13], and [15-18].  

Another fact contributes to this improvement: the 

correct choice of the EOS and generalized functions 

temperature dependence as well as of the Tr range studied. 

It is well known that generalized alpha and beta functions 

not always represent accurately vapor pressure data 

behavior for Tr near 1.0. In present work, the generalized 

functions, employed in the Eq. (2), can be considered as an 
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adequate choice due to its capability in to reproduce vapor 

pressure values in critical conditions, i.e., Tr = 1.0, 

demonstrated in the deviations showed in the first column 

of  the Table 2. 

It is noteworthy that the reduced temperature is limited 

to 1.0 in present work because our intention is: a) to verify 

the applicability of a modified version of the Mathias and 

Copeman alpha function [12], in which accounts square 

roots in its structure, preventing negative numbers be 

employed in the calculations (for this reason Tr should not 

exceed 1.0), and (b) to apply the results only for studies 

involving conditions well below to the critical conditions 

(such as liquid phase and lower pressures, around 1.0 bar). 

In Eqs. (24) to (29) are represented the parameters to 

calculate the generalized alpha and beta functions, 

employing Eqs. (9) and (10), as a function of the acentric 

factor. 

 
2

1 0.17649 1.15920 2.34959A         (24) 

2
2 0.96461 7.26811 11.31294A          (25) 

2
3 1.53234 7.38994 12.59803A        (26) 

 
2

1 0.12484 1.19070 2.47238B          (27) 

2
2 0.03375 4.35137 5.71397B         (28) 

2
3 0.38277 3.48972 0.68399B         (29) 

 

Interesting predicted result obtained, using Eq. (2), for 

the critical compressibility factor: Zc = 0.2809; it is in good 

agreement with the experimental values reported for the 

majority of gases [27]. This value is physically more 

adequate than those obtained in [12] for the modification of 

van der Waals and Soave EOSs repulsive terms. In [17], 

after the changing of the repulsive term in the Dieterici 

EOS proposed in [15], it was found a value for Zc = 0.2705, 

which is very close to obtained here. 

The parameters specific to each pure compound and the 

generalized parameters can be used to calculate the vapor 

pressure of the pure compounds studied in present work. 

Considering a pure compound in the Tables 1 and 2 it is 

possible to note, in some cases, that the calculated 

deviations are higher when the parameters used are specific 

to it; in another cases, to employ generalized parameters to 

the calculations generate deviations greater than those 

obtained when specific parameters are accounted. In this 

way, it is possible to choice what parameters must be used, 

according to the convenience of the calculations and of the 

results to be obtained. In some situations, the requirement is 

to have precision in the calculated results, and in another 

cases, it is desirable to facilitate the calculations, even if 

occurs the accuracy decrease of the results. Thus, it is up to 

the researcher to choose the method to be adopted in the 

calculations of the thermophysical properties. 

 

4. Conclusions 

Substitution of the repulsion term in a cubic equation of 

state by an appropriate theoretical repulsive term using 

generalized alpha and beta functions proposed by Mathias 

and Copeman [12] and Eqs. (7) and (8), shows a possibility 

to improve the correlative capability of an EOS in vapor-

pressure data calculations for non-polar pure compounds, 

especially for behaviors up to critical conditions (0.40 ≤ Tr 

≤ 1.00); these calculated data are in satisfactory agreement 

with the experimental data of non-polar pure compounds 

vapor pressure studied in this work. 

The deviations observed shows that the modified EOS 

proposed here is adequate and can be compared to the 

correlative capability of the equations of state proposed by 

Soave [2] and Peng and Robinson [3], besides to the results 

obtained by EOSs presented in [12], [6], [25-26], [14]. The 

adequate choice of an equation of state as well as 

generalized alpha function, associated to account the co-

volume temperature dependent, contributes to decrease the 

differences between experimental and calculated data of 

thermophysical properties of equilibrium. 

According to the Deiters and De Reuck guidelines [23], 

some criteria must be accounted for the development of 

equations of state to describe the PVT pure compounds data 

behavior. As reported above, at least three criterions 

presented in this publication were satisfied by the EOS 

proposed here. However, we know that it is necessary a 

detailed study in relation to another criterion to reinforce 

the validation of the applicability range of an equation of 

state. Inclusively, the next step of our research is related to 

the calculations of the liquid and vapor volume, since 

previous studies realized shows satisfactory agreement with 

experimental data for this pure compound property, by 

using the EOS here reported. 
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