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Abstract 
 
Nano-particle (NP) production processes may involve the use of significant amounts of complex chemicals. A more 
advanced approach for producing metallic NP materials may be the use of high voltage arc- or spark-driven systems. 
In addition to a reduction in chemicals use, the energy use of arcs/sparks exclusively in the form of electricity may 
be significantly less than the energy needs of waste stream processing from chemical usage, handling and post-
treatment in nano-tech industry. Using exergy as a fundamental tool we assess the energy efficiency of NP material 
production, a subject obscured by lack of data and literature. One goal of this paper is to introduce a description of 
the exergy of NP materials and their processing. Silver, gold, copper, nickel, zinc and aluminium were taken as case 
studies. The results show that especially for NP material < 20 nm the surface energy of the material becomes 
significant. Moreover, a large energy penalty results from temperatures and enthalpies of NP condensation and 
solidification being lower than values for melting and evaporation of the bulk material. Comparing theoretical 
values with results from experiments shows that the specific electricity consumption is orders of magnitude higher 
than the energy penalties calculated as inevitable.  
 
Keywords: Energy efficiency; exergy; nano-particulate materials; nano-processes. 
 

1. Aims and Scope  
Unique behaviours and properties of nano-size materials 

make them very interesting for micro- as well as macro 
applications. Nano-size materials find increased markets in 
emerging products and high-tech applications. Production 
methods are developing that aim at increased output rates 
while reducing cost and improving sustainability. One 
method that is currently under investigation for the 
production of metallic nano-particle (NP) material is the use 
of high voltage arcs or sparks as an alternative for processes 
that involve the use of complex chemicals [1]. More detail 
on equipment and procedures and some first results were 
recently reported elsewhere [2,3]. A simplified process 
schematic is given in Figure 1. 

 

 

Figure 1. Schematic set-up for nano-material production 
using arc/spark discharges (after [2]). 

 
Three different electrode geometries are being tested by 

project partners: 1) an arc arrangement: a tungsten rod 
cathode and a graphite crucible acting as anode, in which 

the material to be evaporated is filled, or 2) a spark 
arrangement having two electrodes composed of the metal 
to be evaporated, or 3) a spark arrangement having one 
tungsten (non-consumable) electrode and one consumable 
electrode of the metal to be evaporated. Various carrier 
gases are used: Ar, He, N2 or N2/H2 95%/5%. Of the 
metallic materials to be processed into NPs, six elemental 
metals will be addressed in this paper: Ag, Al, Au, Cu, Ni 
and Zn. Several properties for these are given in Table A in 
the Appendix. 

In order to eventually come to a life cycle assessment 
(LCA) for NP material production routes, and properly 
appreciate the benefits of arc/spark-driven systems, the 
energy efficiency of these processes should be quantified. 
Exergy analysis is considered to be the proper tool for such 
process evaluations [4,5] with the benefit that electricity 
consumption can be clearly defined as exergy input while at 
the same time chemical conversions need not be considered 
for the arc/spark-driven process route. On the other hand, 
the small size of NP material, covering size range of 1 ~ 
100 nm (nm = 10-9 m) introduces variable thermodynamic 
properties when compared to “bulk” size material: melting 
temperatures of nano-particles are lower, and distinct 
superheating behaviour has been noticed (e.g., [6]).  

In fact, heat capacity and state parameters like internal 
energy, entropy, enthalpy, and Gibbs energy depend on NP 
material size, especially for diameter D < 20 nm, when 
approaching the atomic size d which is of the order of 0.1 
nm (1 Å). 

This is illustrated by Figure 2 with Gibbs energy of NP 
material of different sizes liquid (droplet) or solid compared 
to “bulk” size material (D >> 100 nm) at melting point 
equilibrium. (Data for 5 nm Ag nanoparticles that confirm 
this behaviour is given in [6].  
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Figure 2. Gibbs energy of nano-size droplets and solid 
particles vs. and bulk size material, showing melting point 
depression for diameter D1 << 100 nm and D2 < D1. 

The subject matter of exergy of nano particles can be 
considered novel. Thus, one goal of this paper is to 
introduce a description of the exergy of NP materials and 
processes, opening a more extensive research on this 
important and emerging concept. In this paper the increased 
surface energy of NP material is analysed as function of 
temperature and NP size for the listed six metals. This is 
compared with first results on solid NP material production 
with arc/spark discharges in a gas phase. The exergy of NP 
material is described and a few implications of NP 
production via vaporisation/ condensation processes are 
noted. 
 
2. Nano-particulate Material Thermodynamics 
2.1 Surface Energy of NP Material 

With surface atoms becoming increasingly dominant for 
smaller sizes, thermodynamic properties can be divided into 
a two parts: a bulk quantity and a surface quantity, where 
the latter can be related to the surface free energy (SFE) [6-
8]. For liquid-gas interfaces SFE commonly referred to as 
surface tension, in the current paper merely gives the 
energy difference between atoms located at the surface of 
materials compared to those in the bulk of it. Or, stated 
otherwise, it is the reversible work required to increase or 
form the interface of a material with its immediate 
surroundings with one unit area (see also [9]).  

This is indicated in Figure 2 as Gibbs energy difference 
Δ = Gsurf. Using γS for SFE (unit J/m2) as the energy of the 
outermost layer of atoms at temperature, T (K): 

 
ATGGGG Sbulksurfbulktot ⋅+=+= )(γ                  (1) 

 
where the energy (i.e. work) needed to create surface A 
(m2) is added as an isothermal, isobaric process. As energy 
is a volume-related quantity ([7,10]) alternatively 
 

d
(T) = (T) S
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γ
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can be used with unit (J/m3), for  a surface (“skin”) layer 
with a thickness of one atom diameter d and volume VS = 
A∙d (m3). Following [7] it is assumed that the surface (skin) 
layer d is assumed one atom thick, equal to the diameter of 
a sphere that corresponds to the volume of one atom in the 
bulk material [11] – see Appendix table A. 

 For the purpose of this work, the SFE values given 
below apply to a solid – gas interface unless otherwise 
indicated. Values for SFE can be found in the literature for 
temperature-dependent expressions (e.g. [10]). 
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for bulk material melting point Tmb, while for most solids b 
< 0. Data used here is collected in Table 1; other values 
found in the literature are given in Appendix B. 
 
Table 1. Thermal properties and * surface energy 
values reported in [12] (variables explained in text). 
Material Ag Al Au 
Tmb (K) 1234 934 1336 
Tvb (K) 2485 2760 3353 
γ (298 K) (J/m2) * 1.302 1.085 1.626 
γ (Tmb) (J/m2) * 1.046 0.939 1.348 
b (mJ/m2∙K) * -0.274 -0.230 -0.268 
ΔHmb (kJ/mol) 11.3 10.7 12.5 
ΔHmv (kJ/mol) 255 293 330 
P (nm) #  1.848 1.205 1.754 

Material Cu Ni Zn 
Tmb (K) 1357 1726 693 
Tvb (K) 2840 4005 1180 
γ (298 K) (J/m2) * 1.934 2.364 0.931 
γ (Tmb) (J/m2) * 1.576 1.773 0.787 
b (mJ/m2∙K) * -0.338 -0.414 -0.377 
ΔHmb (kJ/mol) 13.1 17. 2 7.35 
ΔHmv (kJ/mol) 300 378 119 
P (nm) #  1.497 1.642 1.961 

# Calculated using Eq. (5)  
 
As for the diameter-dependent thermodynamic 

properties, recent work by Xiong et al. [7,8] shows that for 
NP diameter D the surface energy decreases with diameter 
as, 
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while melting point Tm can be expressed as1 
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1 In [8], volume based values for b (eV/nm3∙K) imply using d4 as exponent 
for atomic diameter. 
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Here ΔSmb and ΔHmb are the melting entropy and enthalpy, 
respectively, of the bulk material. The melting points for 
NP material for the six metals considered here are given in 
Figure 3A.  
 The entropy and enthalpy of melting, ΔSm and ΔHm, 
depend on particle size for NP material. According to 
Xiong et al. [7,8] this can be modelled as, 
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with gas constant R and parameter P as defined in Eq. (5). 
The melting points for NP material for the six metals 
considered here are given in Figure 3B. (See also [8].) 
 

 
 

 
Figure 3.  Size-dependent melting points (A) and melting 
enthalpy (B) for six nano-particulate metals). 

Figure 3 shows that especially for D < 20 nm significant 
changes occur in the melting behaviour of NP materials. 
The description given here for melting can be extended to 
evaporation: the size dependent evaporation temperature for 
NP material can be expressed as [8]: 
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For spherical NP with diameter D, A = π∙D2 (m2); for 
other shapes the surface can be described as A = α∙Asphere, 
with α > 1 [13]. Alternatively, a fractal dimension may be 
used. Here, only spherical, non-agglomerated NP is 
considered. Moreover, elastic contraction during NP 
formation may decrease the surface energy but this small 
effect is not taken into consideration here [10,13]. 
 
2.2 Exergy of (Solid) Material 

Exergy analysis, based on the Second Law of 
Thermodynamics, allows for calculating the maximum 
power or useful work that can be produced from a given 
energy form in a reference surroundings at temperature Tº, 
pressure pº etc. [5]. If no chemical conversions need to be 
considered (as is the case for NP production using arc/spark 
discharges) the material exergy can be described by its 
physical exergy, Exphys, 
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with enthalpy H and entropy S. The exergy of solid and 
liquid materials can be assumed independent of pressure, 
H(p,T) ≈ H(T). Physical exergy for the six metals 
considered here is given in Figure 4, produced using data 
from Gibbs energy minimisation software HSC [14].  The 
melting points are clearly visible as “jumps” in the curves. 
Note the unit: kJ/kg. 
 

 
Figure 4. Physical exergy of six metals (melting points 
clearly visible). 

 
2.3 Exergy of (Solid) Nano-particulate Material 

Since the creation of surface requires work as quantified 
by the surface energy, the exergy for NP material ExNP with 
diameter D can be related to that of the bulk material by, 

 

D°)· A°(T°D)· A - γ(T+ γEx
D°)· A°· d(T° γD)· A· d -(T+ γ = ExEx

SSbulk 

VVbulk NP

,,
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=
     (9) 

 
with surface free energy (SFE) γV (J/m3) or γS (J/m2) for a 
surface layer volume Vsurf = A∙d (m3) with atomic diameter 
d (m).  Pure metal NP material is produced from pure 
metal, both assumed to be perfect crystals without defects. 
Therefore Exbulk is here considered to be the exergy of the 
pure metal at conditions (T,p), and used as a reference 
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point. Energy effects of material not being “endless” at 
small sizes are all assumed to be accounted for via surface 
energy γ.   

 Because for the reference state in nature it can be 
safely assumed that A° << A (and D° >> D, an unnecessary 
constraint), Eq. (9) simplifies to,

surfbulk Sbulk 

Vbulk NP

+ ExExD)· A(T+ γEx
D)· A· d (T+ γ = ExEx
== ,

,     (10) 

 The definition of surface energy makes it useful work, 
being a mechanical effect that involves energy that also 
when thermal equilibrium exists or is restored can be 
exchanged as work with the environment. 
 

 
 

 
Figure 5. The total physical exergy (A) and surface energy 
(B) of solid nano-copper. 

 
The more common γS (J/m2) will be used below; 

combining Eqs. (10) and (4) gives, 
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This is used for further assessment, here given for two 
metals: Cu and Ag. Results are readily produced likewise 
for the other metals. Presented will be surface exergy per 
mass (kJ/kg). For material with density ρ (kg/m3) composed 
of n (-) identical spheres with diameter D, the specific 
surface A (m2/kg) equals: 
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2.4 Exergy of (Solid) Nano-particulate Cu and Ag 

With the above-given information the physical exergy 
of NP metals were calculated and results are given for 
copper and silver in Figures 5 and 6, respectively, plotted 
for temperatures up to the melting point - which decreases 
with D. It follows that for D < 50 nm the surface energy 
(exergy) given in the top (A) figures, calculated using     
Eq.(11) contributes significantly to the total physical exergy 
as given in the bottom (B) figures calculated using Eq. (10). 
 

 
 

 
Figure 6. The total physical exergy (A) and surface energy 
(B) of solid nano-silver. 
 
 Eventually, a NP product material is obtained at 
ambient conditions for post-production handling and 
shipment to further users. As bulk-size metal material is 
used as input the minimum energy input requirements for 
NP material production can be read from the surface energy 
graphs in Figures 5 and 6. Processing a given mass of 10 
nm NP material requires five times more surface energy 
than producing 50 nm NP material for a given temperature. 
This linear relation follows from Eq. (12). 
 
3. Nano-particulate Material Production Using Arc/ 
Spark Discharge 
3.1 Theory vs. Experimental Results 

The values produced above can be mirrored against 
experimental data reported in [2,3] for Ag, Cu and Zn, as 
summarised in Table 2; data for Cu using discharges 
ranging from sparks via glow discharges to arcs are 
summarised in Figure 7. 
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Likewise, for  45 nm Ag Figure 6B gives an energy 
input requirement for surface energy of ~10 kJ/kg (~ 0.003 
kWh/kg) while the experimental specific electricity 

consumption (SEC) varies from 3 to ~200 kWh/g, i.e. ~11 - 
~720 GJ/kg. The SEC is 1.1×106 – 72×106 times the NP 
material surface energy

For Cu, using various spark/glow/arc discharges, increasing 
the production rate by a factor of 1000 from 2 mg/h to 2 g/h 
gave an SEC increase of a factor 100, from 9 to 0.9 kWh/g. 
to 0.9 kWh/g. 
 
Table 2. Specific electricity consumption (SEC) during   
arc-driven NP production [2,3]. 
Material Ag Al Au Cu Ni Zn 
NP size 
(nm)*  

45   65;      
10 - 200 

 80 - 
400 

SEC 
(kWh/g) 

3 - 
~200 

  ~1 - 
~200 

 0.1 
- 10 

* Scanning electron microscopy (SEM) 
 

At the same time, NP mean size increased from 20 to 
100 nm – see also Figure 7 (Hontañon et al., 2013). More 
recently obtained values for SEC for Ag, Cu and Ni are of 
the order of 0.5 – 0.8 kWh/g, and ~ 0.03 kWh/g for Zn, 
respectively [15].  

Nonetheless, only a small fraction of the electrical 
energy input for (here) arc-driven NP production can be 
allocated to the increased surface area and surface energy. 

 

 
Figure 7. Specific electricity consumption (SEC) for copper 
NP production using various arc/glow/spark discharge 
systems. 
 
3.2 Exergy Losses during Condensation/Solidification 

One contribution to exergy losses results from the fact 
that melting and evaporation of the material during NP 
production occurs at significantly higher temperatures than 
condensation, (i.e. NP formation), and solidification for fine 
particles – see Eqs. (5) and (7). Moreover, the heats 
(enthalpies) released during NP material condensation and 
solidification are lower as well – see Eq. (6). This is 
illustrated in Figure 8 that shows a typical temperature 
history for material evaporated and later condensed as NP 
material.  The figure shows the suppressed temperatures for 
condensation and solidification, and the lowered heat 
effects in entropy production, and hence an energy penalty. 

With the exergy ExQ of heat Q of temperature T and 
surroundings temperature Tº given by [5]: 
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the exergy requirement for melting of the (bulk) material 
and the exergy (later) released during NP solidification are: 
 

 
Figure 8. Temperature history of material evaporation and 
condensation into nano-particles. 
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Here, Tm,NP and ΔHm,NP are given as functions of NP 
diameter in Eqs. (5) and (6). For the difference between 
entropy change for bulk and NP-size material evaporation 
and condensation, 

 
 
 

        (16) 
 
 

 
with parameter P given in Eq. (5). With entropy production 
known, the energy input requirements, i.e., the exergy 
losses, are readily calculated:  

 
                      (17) 
 

The lower exergy released during solidification is shown in 
Figure 9A. The exergy difference gives an energy penalty 
as presented in Figure 9B. Especially for NP material finer 
than 20 nm a significant exergy loss is found that is of the 
same order as the energy “stored” in the material as 
increased surface energy.  

A similar yet somewhat smaller (as a result of higher 
temperatures) exergy loss will result from the evaporation 
of the bulk material compared to the condensation. 

 
4. Conclusions 

A description is given for the physical exergy of nano-
particulate (NP) material, with increased surface energy as 
the obvious starting point. Small particle size, cluster 
structure, and the high surface energy will have serious 
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impacts as shown here. Six metals, for which arc/spark 
driven production methods are being developed, were taken 
as test cases. Recently developed knowledge for the 
relations between surface energy, temperature, heat of 

melting, evaporation, and nano-particle size is used to 
calculate the exergy of the increased surface of NP material, 
and the losses 

during production as a result of depression of melting (and 
boiling) points. Especially for NP < 20 nm the effect of the 
very small sizes becomes significant. 

 

 
 

 
 
Figure 9. Size-dependent (A) and the difference between 
exergy of melting and exergy of condensation (B) for six 
nano-particulate metals 
 

A comparison with first experimental data shows that 
specific electricity consumption (SEC) is at least five orders 
of magnitude higher than what can be accounted for with 
the given analysis. Clearly, more loss factors must be 
identified and accounted for this NP production method. 
Fortunately, the absence of chemical conversions makes it 
unnecessary to extend the assessment to more complicated 
chemical exergy. 
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Nomenclature 
A    surface area, m2 
b   parameter defined in Eq. (3), mJ/m2∙K 
d    atomic diameter, m 
D    particle diameter, m 
Ex    exergy, kJ/mol or  kJ/kg 
G    Gibbs energy, kJ/mol or  kJ/kg  
H    enthalpy, kJ/mol or  kJ/kg 

NAvogradro  Avogadro’s number 6.02×1023 
p    pressure, bar 
P   parameter defined in Eq. (5), nm 
Q    heat, kJ/mol or  kJ/kg 
R   gas constant 8.314 J/mol∙K 
S   entropy, J/mol∙K or J/kg∙K 
T   temperature, K  or °C 
Greek symbols 
α  shape factor, - 
γ  surface (free) energy, J/m2 
Δ  difference 
ρ  density, kg/m3 
Subscripts and superscripts 
a  air 
bulk bulk 
chem chemical 
m  melt 
NP  nano-particle 
phys physical 
Q  heat 
S   surface 
surf surface 
tot  total 
v  vapour, vaporisation 
V  volume 
º  ambient surroundings 
 
Appendix 
Table A. Molar mass, melting point and  atomic diameter of 
the metals in this study. 
Material Ag Al Au Cu Ni Zn 
Molar mass  
(g/mol) 

107.87 26.98 196.97 63.55 58.69 65.39 

Melting 
point  (°C) 

961 660 1063 1084 1453 420 

Solid density 
(kg/m3) 

10940 2712 19320 8940 8908 7135 

Atomic 
diameter 
(nm) [11] 

0.320 0.317 0.319 0.283 0.275 0.308 

 
Table B. Surface energy values reported in the 
literature, not used in calculations above. 
Material Ag 

[13] 
Al 
[13] 

Au 
[13] 

Ni 
[10] 

γ (0 K)  (J/m2)  1.250 1.200 1.550   
γ (298 K) (J/m2)  1.205 1.146 1.058  
γ (Tmb) (J/m2)     1.823 
b (mJ/m2∙K)  -0.15  -0.18  -0.14  -0.46  
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