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Abstract  
 

A method is described that allows one to construct the dispersion of the Debye bosons (sound waves) from the known 

temperature dependence of the sound velocities. The method simply assumes that the sound velocity measured at 

temperature T gives the slope of the dispersion relation at excitation energy E = kBT. The associated reduced wave 

vector is set equal to q/q0 = a0kBT/hvL/T. In this way the dispersion of the Debye bosons can be constructed for all 

thermal energies for which sound velocities vL/T(T) are known. This can be up to melting temperature. Surprisingly, 

for metals and for insulators the dispersion of the Debye bosons can continue up to wave vector values of several 

times the zone boundary. At melting temperature the wavelength of the Debye bosons is of the order of the atomic 

diameters. The sources of the Debye bosons therefore must have atomic dimensions. Spontaneous generation of Debye 

bosons by individual atoms is, however, a completely unexplored process. Interactions with the atomistic background 

of phonons or lattice defects provide damping to the Debye bosons and make the material specific sound velocity 

vL/T(T) additionally sample and temperature dependent. For practically all solids it is observed that elastic constants 

and vL/T(T) decrease as a function of increasing temperature. For high energies the dispersion relation of the Debye 

bosons therefore becomes visibly lower than linear. Interactions between Debye bosons and phonons can modify the 

dispersion of the acoustic phonons appreciably. Because of their different symmetries the dispersion relations of 

Debye bosons and acoustic phonons can attract each other. It is observed that for low wave vector values the dispersion 

of the acoustic phonons can assume the linear wave vector dependence of the Debye bosons. At the end of the linear 

section a functional crossover to a sine-like function of wave vector occurs.  
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1. Introduction  

Sound propagation in solids, liquids and gases belongs to 

those dynamic phenomena in which atoms and interactions 

between atoms are not involved (directly). The identical 

propagation mode in all three phases of matter illustrates that 

sound waves are not coupled to the thermal motion of the 

atoms. Independence of atomistic degrees of freedom 

commonly is called universal. Universality is well known 

from the dynamics in the vicinity of critical temperatures. 

Instead of atomistic parameters (lattice constant etc.) the 

material specific mass density seems to be the only important 

parameter for sound propagation. Evidently, sound waves 

are distinguished energy degrees of freedom that are specific 

to the continuous elastic medium. Note that there are no 

atoms to be considered in the continuous elastic medium. In 

this communication we will call the sound waves in 

crystalline solids Debye bosons. Since Debye bosons are 

mass less particles they cannot be observed using inelastic 

neutron scattering. This makes experimental determination 

of the dispersion relation of the Debye bosons difficult. Here 

we propose a method to obtain the dispersion relation of the 

Debye bosons for all energies and wave vector values. The 

method simply assumes that the sound velocity measured at 

temperature T gives the slope of the dispersion relation at 

thermal energy of kBT. In this way it is possible to construct 

the dispersion of the Debye bosons for all thermal energies 

for which sound velocities are known. This can be up to 

solid-liquid transition at melting temperature Tm. Note that 

melting temperature commonly is much larger than 

conforms to the largest phonon energy. The largest phonon 

energy can be characterized by kBΘD (ΘD=Debye 

temperature). Since Tm > ΘD the dispersion of the Debye 

bosons can reach energies of several times larger than 

phonon energy. Moreover, the dispersion of the Debye 

bosons continues much beyond zone boundary. This is 

because lattice parameter and zone boundary are of no 

importance for the ballistic propagation mode of sound 

waves.  

That sound waves and phonons are independent energy 

degrees of freedom was an implicit assumption of Debye´s 

field theory of the low temperature heat capacity of solids 

[1]. In his theory of 1912 P. Debye made, tacitly, two not 

self-evident assumptions: first, that the dynamics of massive 

interacting atoms can be replaced by the dynamics of non-

interacting mass-less bosons (the ultrasonic waves) and, 

second, that all thermal energy is not in the system of the 

interacting atoms but is in the field of freely propagating 

bosons. It then suffices to consider the energy degrees of 

freedom of the field exclusively. The heat capacity of the 

solid is the heat capacity of the boson field (~T3). Under this 

condition atomistic structures are unimportant. This is the 

origin of universality. In fact, universality (in the sense of 

field theory) is the thermodynamic behavior of a field of 

freely propagating bosons. As a consequence, one has to 

distinguish between the thermal reservoir of the boson field 

and the thermal reservoir of the atomistic lattice. Coupling 

between the two systems can be assumed to be weak. As a 

further consequence, the two systems must have different 
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excitation spectra with different dispersion relations. As we 

now know, the boson field is the relevant thermal reservoir 

only below some crossover temperature at which thermal 

energy changes from phonon system to boson field [2]. This 

crossover commonly is at a temperature of 10…20 K. 

Crossover events were unknown at the time of Debye. 

This was essentially because the necessity to distinguish 

between the discrete translation symmetry of the atomistic 

solid and the continuous translation symmetry of the 

continuous solid was not yet recognized. This has 

contributed to a long standing misinterpretation of Debye´s 

field theory. Even today Debye´s field theory is widely 

considered as a low temperature approximation of lattice 

theory. As we will see this view is not correct by symmetry 

arguments. We have to attribute different translational 

symmetries (discrete and continuous) to phonons and Debye 

bosons. The different symmetries exclude that the two 

thermal reservoirs come simultaneously into play. At 

crossover of thermal energy to phonon system field theory 

has to be replaced by lattice theory. Atomistic lattice theories 

then are appropriate [3]. We should note that the Debye 

boson field has much similar with the electromagnetic 

radiation field in that the dispersion relations of the 

associated field particles are linear functions of wave vector 

and the energy densities of the two fields are ~T4.  

The two assumptions made unwittingly by Debye in 1912 

received an indirect justification only in 1974 through 

development of Renormalization Group (RG) theory mainly 

by K.G. Wilson [4,5]. As was shown by RG theory, in 

ordered magnets the dynamics of interacting (massive) spins 

has to be replaced by the dynamics of a boson field. One of 

the main issues of RG theory was that on approaching the 

magnetic ordering temperature from the paramagnetic side, 

spins and interactions between spins become unimportant for 

the dynamics (of the spins!). In other words, spin dynamics 

in ordered magnets is another example of a thermodynamic 

phenomenon that is independent of atomistic structures. 

Somewhat above ordering temperature thermal energy 

passes via a crossover event from the system of the 

interacting spins (in the Curie-Weiss regime of 

susceptibility) to a field of freely propagating bosons (in the 

critical paramagnetic range and below). The dynamics of the 

spins then is the dynamics of a boson field and therefore 

shows universality [6]. Due to a weak coupling between field 

and spins the nonrelevant spins receive their dynamics from 

the boson guiding field. This allows one to study the 

dynamics of the field by observation of the spin degrees of 

freedom. In fact, thermal decrease of the magnetic order 

parameter is controlled by the heat capacity of the boson field 

and not by inter-atomic exchange interactions. The 

nonrelevant spin system does virtually not contribute to the 

magnetic heat capacity. The heat capacity of the magnetic 

system is the heat capacity of the boson field [2,6]. RG 

theory could, however, not clarify the nature of the field 

bosons in ordered magnets. Note that the Debye boson field 

is the only boson field of solid state physics for which the 

field quanta (sound waves) are well known from practical 

experience. As we have argued elsewhere [6], the field 

quanta controlling the spin dynamics in ordered magnets are 

essentially magnetic dipole radiation emitted upon 

precession of the magnetic moments. The sources of the field 

quanta are the atomic magnetic moments, the field has 

radiation character. Not only in ordered magnets but also in 

conventional superconductors the dynamics seems to be 

determined by boson fields [2, 6]. 

In diamagnetic solids the functionality of the magnetic 

ordering temperature has shifted to T = 0. Only in the 

“critical” range above T = 0 (for temperatures below 10…20 

K) the heat capacity of the solid is the heat capacity of the 

Debye boson field and the heat capacity follows T3 function. 

Quite generally, independence of the dynamics of 

atomistic degrees of freedom (universality) indicates that the 

dynamics is that of a boson field. Freely propagating bosons 

have dispersion relations that are a simple power function of 

wave vector for all energies. This results into a finite 

temperature range for the universal power function of 

absolute temperature for the heat capacity of the boson field. 

In fact, boson dynamics is easily recognized by the finite 

validity range of the critical power functions. Note that the 

power functions predicted by atomistic theories such as 

Bloch´s T3/2 function for the thermal decrease of the 

spontaneous magnetization of the isotropic ferromagnet hold 

asymptotically at T = 0 only. Non universality of the T3/2 

function reveals further by the fact that it applies to 

ferromagnets but not to antiferromagnets. Experimentally it 

is observed that thermal decrease of the magnetic order 

parameter is universal, that is, independent of spin structure 

[2,6]. It is evident that the asymptotic exponents calculated 

by atomistic models must generally be different from the 

observed universal exponents of the field dynamics. 

Atomistic models such as the Brillouin function give only a 

very crude account of the spontaneous magnetization. 

Debye bosons and phonons are distinguished by different 

propagation modes. Note that the propagation mode defines 

the dispersion relation of the particles. While field quanta 

propagate ballistic, independent of atomistic structures, 

phonons propagate from lattice site to lattice site. In other 

words, field bosons and phonons are distinguished by 

different translational symmetries (continuous and discrete). 

The two translational symmetries are, so to say, the 

generators of the two particles. What we have to learn is that 

continuous translational invariance of the infinite solid has 

to be accepted as a specific, particle generating symmetry. 

This symmetry applies to all crystalline solids and entails 

excitation spectra in addition to the atomistic excitations. 

Phonons are the excitations of the discrete atomistic lattice 

while Debye bosons are the excitations of the elastic 

continuum. Continuous translational invariance of the elastic 

continuum implies that the momenta of the Debye bosons are 

conserved quantities.  

Normally bosons become the relevant excitations only in 

the vicinity of a critical temperature. Note in particular that 

T = 0 is also a critical point with boson dynamics over a finite 

range of absolute temperature. It is important to note that the 

different translational symmetries of Debye bosons and 

phonons apply to all wave vector values. Rotational degrees 

of freedom commonly are local modes and do not become 

relevant for the universal (long range) boson dynamics. In 

other words, by symmetry reasons field theory and lattice 

theory never become identical even in the limit of an infinite 

wavelength. This does not exclude that, by chance, the 

critical exponents predicted by the two theories can be 

identical. However, the critical power functions of the 

atomistic theories hold asymptotically only. As a 

consequence of their different symmetries, the dispersion 

relations of the two particles are well distinguished for all 

energies even when their dispersions become identical for 

small wave vector values. Note that inelastic neutron 

scattering is sensitive to phonons only. This is because 

impact of neutrons is a microscopic excitation process by 



 
Int. J. of Thermodynamics (IJoT)   Vol. 18 (No. 4) / 279 

which local atomistic modes are excited. Sound injection 

into the solid evidently is a macroscopic excitation process 

whereby bosons are generated. 

Since boson field and lattice system have different 

excitation spectra we may ask: which excitation spectrum 

defines the experimentally observed heat capacity. At this 

point another important issue of RG theory becomes 

important: the principle of relevance. Due to their different 

symmetries the two excitation spectra become relevant 

alternatively only. Relevance therefore can be considered as 

a dynamic symmetry selection rule. In other words, thermal 

energy is either in the boson field or in the atomistic system 

of phonons. Relevance has the dramatic consequence that the 

population of all available energy states of field and 

atomistic system cannot be according to the Boltzmann 

factor but must be subject to a selection rule. When phonons 

are the relevant excitations the boson field accumulates no 

longer thermal energy and its heat capacity tends to zero. The 

fact that the heat capacity of all solids reasonably saturates at 

atomistic Dulong-Petit limit shows that the T3 function of the 

heat capacity of the Debye boson field has dropped to zero. 

In other words, at ambient temperature the dispersion 

relation of the Debye bosons is no longer thermally 

populated and its heat capacity is negligible. The important 

consequence of relevance is that at any temperature the 

dynamics can be classified by one or the other symmetry. A 

mix of symmetries does not occur. Which system is relevant 

depends on which system has the lower excitation energy. 

Since the dispersion of the Debye bosons essentially remains 

linear for all energies but the dispersion of the acoustic 

phonons saturates towards zone boundary, phonons have 

lower excitation energies at ambient temperature and are the 

relevant excitations. Only for temperatures of lower than 

10…20 K Debye bosons are relevant, and the heat capacity 

of phonons is negligible. We can assume that the heat 

capacity of the boson field essentially drops to zero at 

crossover of thermal energy to phonons at 10…20 K. On the 

other hand, the energy states of the phonon system become 

depopulated below crossover to field dynamics. 

The two dynamic symmetries do, however, not hold 

perfectly. As is well known, symmetry violations are quite 

common in all parts of physics. Nevertheless, symmetries are 

indispensable basic concepts to start with. Debye boson field 

and phonon system are not independent of each other but 

interact visibly. Interactions of Debye bosons either with 

phonons or lattice defects provide damping to the Debye 

bosons and have two effects: they shorten the mean free path 

of the Debye bosons and decrease their velocity. In fact, 

decrease of sound velocity with increasing temperature is a 

clear indication of phonon-Debye boson interaction and/or 

scattering at lattice defects [7]. As a consequence, the 

dispersion of the Debye bosons increases slightly lower than 

linear. If Debye bosons would propagate unperturbed their 

mean free path would be infinite and sound velocity would 

be a constant for all temperatures. In this case the dispersion 

would be exactly linear for all energies. This is as for the 

electromagnetic radiation field in vacuum. One could call the 

Stefan-Boltzmann T4 function for the energy density of the 

electromagnetic radiation field universal because it is due to 

a boson field (photons) and holds over a large temperature 

range. Only for extremely high photon energies deviations 

from linearity could become visible.   

Another clear indication of interactions between Debye 

bosons and phonons is given when the dispersion of the 

acoustic phonons starts not as sine function of wave vector 

but as a linear function of wave vector over a considerable 

wave vector range. Because the slope of the linear section 

agrees with the measured sound velocity it can be concluded 

that phonon dispersion has adapted to the linear dispersion 

of the Debye bosons. Note that dispersion lines of particles 

with different symmetries (discrete and continuous) can 

attract each other. Dispersion lines of particles with the same 

symmetry avoid each other. Interestingly, boson dispersion 

attracts phonon dispersion and not vice versa. Linearity in 

the acoustic phonon dispersion can hold up to excitation 

energies that are much larger than corresponds to the validity 

range of the T3 function of the heat capacity of the boson 

field. This allows verification of the linear dispersion of the 

Debye bosons from the known phonon dispersions up to 

energies where Debye bosons are no longer relevant, and the 

heat capacity of the boson field is zero. This shows that 

phonon dispersion can be attracted by the thermally 

unoccupied boson dispersion.  

At the end of the linear section of the phonon dispersion 

an analytical crossover to sine function of wave vector 

follows. However, in order to get good phenomenological 

description of the experimental data it is necessary to add a 

phase shift to the argument of the sine function. The phase 

shift indicates finite Debye boson-phonon interactions for all 

q-values. In order to understand the phase shift we have to 

consider that for freely propagating bosons lattice parameter 

and zone boundary have no significance. Insignificance of 

zone boundary for the boson field gets transferred partly to 

the phonon system via interaction of the two systems and can 

rationalize the phase shift. The phase shift can be considered 

as a measure of the strength of Debye boson-phonon 

interaction. It is evident that for strong Debye boson-phonon 

interaction lattice theories cannot give correct description of 

the phonon dispersions. In the dispersion relation of the 

Debye bosons the corresponding functional crossover events 

are much weaker than in the phonon dispersions (see Figure 

3 and Figure 5).  

 

2. Analysis of Experimental Data  

Debye boson-phonon interactions occasionally are weak 

and do not produce anomalies in the phonon dispersions. 

Under this condition lattice theories can give reasonable 

description of the phonon dispersions [3]. The rare gas solids 

[8-11] and CsCl [12] are examples of a vanishing Debye 

boson-phonon interaction. For these solids the acoustic 

phonons are perfectly described by sine functions of wave 

vector. This conforms to lattice theory for inter-atomic forces 

limited to nearest neighbors. 

In most solids Debye boson-phonon interaction is 

stronger for longitudinal polarization than for transverse 

polarization. Often the acoustic phonons with transverse 

polarization follow perfect sine function of wave vector. As 

an example Figure 1 shows neutron scattering data of the 

acoustic phonons for LiF measured along cube edge at room 

temperature [13]. For transverse polarization (dots) phonon 

dispersion is excellently described by sine function of wave 

vector (solid curve). Interactions with Debye bosons 

therefore are weak. Consistent with weak interactions 

between Debye bosons and phonons is a relatively weak 

temperature dependence of sound velocity vT(T) (compare 

Figure 3 and Figure 5). The initial slope of the sine function 

agrees perfectly with the measured sound velocity [14]. Note 

that sound velocity and phonon dispersions are measured by 

completely different experimental methods on different 

samples.  
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Figure 1.  Dispersions of the acoustic phonons with 

transverse (T) and longitudinal (L) polarization of LiF 

measured along cube axis at T=298 K [13]. For transverse 

polarization (dots) phonon dispersion is perfectly described 

by sine function of wave vector. In the dispersion relation 

with longitudinal polarization (circles) a functional 

crossover from linear dependence to sine-like dependence 

occurs. This is indicative of Debye boson-phonon interaction 

(see text). 

 

For longitudinal polarization (circles), phonon dispersion 

deviates visibly from sine function. In conformity with many 

empirical analyses of phonon dispersion data, the phonon 

branch with longitudinal polarization consists of two 

sections with different functions of wave vector. This 

behavior can be called an analytical or functional crossover. 

An analytical crossover is indicative of two contributions to 

the phonon dispersions. In fact, in the low wave vector range 

a fairly linear function of wave vector can be seen. The slope 

of this line agrees reasonably with the measured sound 

velocity [14]. Note that sound velocities (and elastic 

constants) depend somewhat on the crystal perfection of the 

investigated sample. Beyond analytical crossover at about 

0.43q/q0 phonon dispersion is well described by sine 

function of wave vector. However, adequate description of 

experimental data requests that a phenomenological phase 

shift is added to the argument of the sine function. The phase 

shift is a general phenomenon in materials with strong Debye 

boson-phonon interaction (see also Figure 7). For LiF the 

phase shift amounts to +4% only and is relatively small 

compared to the examples to follow (compare Figure 6). We 

therefore defer discussion of this point to the following 

examples with a much larger phase shift. Evidently, the 

phase shift is a measure for the Debye boson-phonon 

interaction strength. In other words, a strong Debye boson 

phonon interaction is noticeable for all wave vector values.  

As a conclusion, the phonon dispersion curve with 

longitudinal polarization consists of two sections. In the low 

wave vector range the phonon dispersion is defined by 

Debye bosons and in the large wave vector range by inter-

atomic forces. It is evidently not possible to describe the 

whole phonon dispersion branch by only one theory. Similar 

analytical crossover events can be identified in the magnon 

dispersions of magnetic materials [15]. 
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Figure 2.  Dispersion of the acoustic phonons with 

transverse polarization (circles) of LiF measured along cube 

edge at T=298 K [13]. For transverse polarization Debye 

boson-phonon interaction is weak. Sound velocity vT is only 

weakly temperature dependent and Debye boson dispersion 

extends nearly linearly up to q/qmax=2.18. Construction of 

the dispersion of the Debye bosons from sound velocity data 

up to melting temperature (Tm) is given by filled symbols and 

by triangles [7,14]. Note that Tm=1121 K corresponds to 

≈23.3 THz. At Tm the wavelength of the Debye bosons is 1.84 

Å (a0=4.0173Å). 

 

Figure 2 extends the dispersion of the Debye bosons with 

transverse polarization to larger wave vector values (and 

energies) than Figure 1. Note that the abscissa expands up to 

~2.18 times the zone boundary. Figure 2 compiles calculated 

dispersion data of the Debye bosons with transversal 

polarization from different sound velocity data sets (dots 

[14], triangles [7]). 

As we have mentioned, for the construction of the 

dispersion of the Debye bosons from the known sound 

velocities we set the dispersion energy of the Debye bosons 

equal to E = kBT with T as temperature at which sound 

velocity has been measured. Sound velocities vL/T(T) 

therefore enter the expression of the reduced wave vector 

q/q0 only. Considering that at zone boundary the energy of 

the sound waves is E = vL/T·h/a0 with h = Planck´s constant 

and a0 = lattice parameter, the complete expression for the 

dispersion relation of the sound waves reads E = kBT 

=vL/T·h/a0·q/q0. As reduced wave vector one obtains: q/q0 = 

a0·kBT/hvL/T.        

It is evident that for constant sound velocity the 

dispersion energy of the Debye bosons (kBT) is proportional 

to the reduced wave vector q/q0. The dispersion is exactly 

linear. For decreasing sound velocity as a function of 

increasing temperature the reduced wave vector increases 

stronger than dispersion energy kBT. The dispersion of the 

Debye bosons therefore becomes slightly weaker than linear. 

Figure 2 includes the calculated dispersion of the Debye 

bosons using the known data for the temperature dependence 

of the sound velocity vT(T) [7, 14].  

As can be seen in Figure 2, the dispersion of the Debye 

bosons reaches energies of much larger than phonon energy 

and continues up to 2.18 times of zone boundary. Note that 

Tm = 1121 K but ΘD = 740 K. At zone boundary (q/qmax=1) 

no definite anomaly is visible in the dispersion of the Debye 

bosons. This conforms to the lattice structure independent 
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propagation mode of sound waves. Note that for energies of 

the zone boundary the dispersion of the Debye bosons is no 

longer thermally populated. Beyond zone boundary sound 

waves have wavelengths of shorter than lattice parameter. 

Dispersion until q/qmax=2.18 indicates that the sources of the 

Debye bosons must have dimensions of the order of the 

atomic diameters. From q/q0 = 2.18 at dispersion energy of 

kBTm (Tm = 1121 K) it follows that at Tm the wavelength of 

the Debye bosons is λT(Tm) = 1.84 Å using a0 = 4.0173 Å as 

lattice parameter. The calculated value for λT conforms to the 

atomic diameters [16,17]. Since Debye´s low temperature T3 

function is observed also in strongly anisotropic solids the 

Debye boson field is an isotropic (scalar) field, and the 

sources of the field quanta must be essentially spherical. It is 

therefore suggestive to identify the nearly spherical atomic 

cores as the sources of the Debye bosons [16,17]. On the 

other hand, nothing is known about the elastic properties of 

single atoms. It is only clear that gravitational forces are 

essential in the atomic shell. In particular, it is completely 

unexplored how atoms can emit sound waves. This problem 

has to be solved by a future quantum elastodynamics in 

analogy to the well-developed quantum electrodynamics. It 

is, however, clear that all elastic properties of solids are 

macroscopic phenomena that have to be ascribed to Debye 

bosons and not to the discrete atomistic lattice. This becomes 

evident from the simple relation between elastic constants 

and sound velocities. Only the anisotropy of the elastic 

continuum has atomistic origin. 

According to the weak temperature dependence of vT(T) 

(Figure 3) the dispersion of the Debye bosons deviates fairly 

weakly from linearity. In fact, vT(T) is perfectly temperature 

independent up to a rather sharp crossover temperature at TCO 

= 195 K. At this thermal energy (~4 THz) the dispersions of 

Debye bosons and phonons start deviating visibly from each 

other (see Figure 2). Unfortunately phonon dispersions are 

not accurate enough to reveal a similarly weak analytical 

crossover as in Figure 3. Instead, fit by sine function holds 

with good accuracy for all wave vector values. 

The stronger Debye boson-phonon interaction for 

longitudinal polarization manifests in a twofold way: as we 

have seen in Figure 1, the acoustic phonons do no longer 

follow perfect sine function of wave vector and the velocity 

of the sound waves shows stronger temperature dependence 

than for transverse polarization (compare Figures 3 and 5). 

As a consequence, the dispersion of the Debye bosons is 

stronger curved (compare Figures 2 and 4). Comparison of 

Figures 2 and 4 shows that for longitudinal polarization the 

phonon dispersion is visibly attracted by the Debye boson 

dispersion. It is evident that due to the functional crossover 

phonon dispersion relation cannot be described by lattice 

theory alone. As will be shown in Figure 8, for a very strong 

Debye boson-phonon interaction phonons can assume the 

linear dispersion of the Debye bosons up to zone boundary.       
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Figure 4. Dispersion of the acoustic phonons with 

longitudinal polarization measured at room temperature 

along cube edge of LiF (circles) [13]. For longitudinal 

polarization Debye boson-phonon interaction is stronger 

than for transverse polarization. This gives rise to a stronger 

curvature of the calculated dispersion of the Debye bosons 

(triangles). Phonon dispersion is visibly attracted by the 

Debye boson dispersion. Boson dispersion reaches wave 

vector values of up to q/qmax=2.7.  
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Figure 3. 

 

Quantitative interpretation of the temperature 

dependence of the sound velocities is difficult because we 

have to distinguish between an intrinsic scattering of sound 

waves due to interaction with phonons and a sample 

dependent scattering due to interaction with impurities and 

lattice defects. Impurity scattering makes experimental data 

of the sound velocities (and of the elastic constants) badly 

reproducible [7]. Nevertheless crossover events between 

different functions of temperature can often be identified in 

the temperature dependence of the sound velocities. In 

Figure 5 crossover from low temperature T2.5 function to 

linear function can be identified. As a consequence, sound 

velocity is not really temperature independent even for T→0. 

This lets the dispersion of the Debye bosons deviate weakly 

from linearity just from the beginning and entails weak 

deviations from T3 function in the heat capacity of the Debye 

boson field. 

At melting temperature of LiF the velocity of the Debye 

bosons with longitudinal polarization is vL = 3328 m/sec. The 

wavelength of the Debye bosons therefore is λL(Tm) = 1.42 

Å. 

Very interesting phonon dispersions are observed for 

niobium [18]. Niobium is an exception in that Debye boson-

phonon interaction is stronger for transverse polarization. 

Figure 6 shows neutron scattering data along face diagonal 

of Nb. In the acoustic phonon branch with transverse 

polarization (crosses) the analytical crossover from linear 

dispersion to sine function is unusually pronounced. The 

fitted phase shift in the argument of the sine function is as 

large as -20% of the wave vector value at zone boundary. For 

the branch with longitudinal polarization the corresponding 

phase shift is +7.5%. Dispersion of the Debye bosons 

calculated from the temperature dependence of the sound 

velocities is given by dots [19].  

As can be seen in Figure 6, the energy of the Debye 

bosons with transverse polarization is ~3.9 THz at zone 

boundary. This corresponds to a temperature of ~190 K. In 

other words, for the construction of the dispersion of the 

Debye bosons with transverse polarization sound velocity 

data of the range 0 < T < 190 K were needed only. Sound 

velocities have, of course, been measured up to much higher 

temperatures [7] (melting temperature of Nb is Tm = 2741 K, 

~57 THz). As for LiF the dispersion of the Debye bosons for 

Nb continues much beyond zone boundary. At Tm the 

velocity of sound waves with transverse polarization is 

vT(Tm) = 1933 m/sec. The wavelength is λT = .35 Å. From 

vL(Tm)=4736 m/sec it follows λL(Tm)=0.82 Å. The lattice 

parameter is a0=3.30Å. As a consequence, for metallic Nb 

with high melting temperature the wavelengths of the Debye 

bosons at melting temperature are distinctly shorter than for 

insulating LiF. 
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Figure 6.  Acoustic phonon dispersions of niobium measured 

along face diagonal at T = 300 K (crosses, open points) [18]. 

In the branch with transverse polarization (T) the analytical 

crossover from linear dispersion to sine function (including 

a phase shift) is unusually pronounced. Dispersion of the 

Debye bosons calculated from sound velocities are given by 

dots [19]. Since in the energy range shown of up to 6.5 THz 

(~312 K) sound velocities depend only weakly on 

temperature, deviations from linear dispersion can nearly 

not be recognized. 

     

NaI is another example of unusually strong Debye boson-

phonon interactions [20]. As for most solids Debye boson-

phonon interaction is strongest for longitudinal polarization. 

The linear section in the dispersion of the acoustic phonon 

branch with longitudinal polarization holds up to an 

enormous large energy of ~2·THz. This corresponds to a 

thermal energy of 96 K. At this thermal energy phonons are 

the relevant excitations and the Debye boson dispersion is no 

longer thermally populated. For transverse polarization the 

linear section of dispersion holds up to much smaller 

energies only. Beyond linear section description by sine 

function of wave vector including a phase shift gives 

reasonable description of the experimental data. The fitted 

phase shift is another measure for the strength of Debye 

boson-phonon interaction. As a conclusion, Debye boson-

phonon interaction opens the unique opportunity to verify 

the linear dispersion of the Debye bosons using inelastic 

neutron scattering. The possibility of exciting sound waves 

at all temperatures, out of thermal equilibrium, shows that 

the nearly linear dispersion of the Debye bosons must 

continue beyond the linear section in the phonon dispersion. 

As a conclusion, interaction of phonons with an empty 

Debye boson dispersion, therefore, proves possible.     
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Figure 7. Dispersion of the acoustic phonons of NaI along 

cube edge for longitudinal and transverse polarization [20]. 

The linear dispersions agree with the measured sound 

velocities [7]. This shows that phonons are attracted by the 

dispersion of the Debye bosons. At the limits of the linear 

dispersion an analytical crossover to sine function of wave 

vector follows. To be consistent with the experimental data 

an absolute constant has to be added to the argument of the 

sine function. 
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Figure 8.  Acoustic phonon dispersions along hexagonal axis 

of terbium measured at T = 300 K (Tc=229 K) [21]. Within 

experimental accuracy the branch with longitudinal 

polarization has perfectly assumed the linear dispersion of 

the Debye bosons up to zone boundary. The slope of this line 

agrees with the measured sound velocity [7]. For transverse 

polarization linear dispersion holds for a smaller q-range 

only. 

 

Another example of extremely strong Debye boson-

phonon interactions is hexagonal terbium [21]. As Figure 8 

shows, within experimental accuracy, the longitudinal 

acoustic phonon branch along hexagonal axis shows perfect 

linear wave vector dependence up to zone boundary. In other 

words, phonon dispersion has completely adapted to the 

nonpopulated Debye boson dispersion. The slope of this line 

agrees with the sound velocity, vL [7]. Data of Figure 8 are 

for T = 300 K which is above magnetic ordering temperature 

of terbium of Tc = 229 K. For transverse polarization Debye 

boson-phonon interaction is weaker than for longitudinal 

polarization and the linear section of the phonon dispersion 

holds over a smaller wave vector range. Analytical crossover 

to sine function is not clearly resolved. Nevertheless fit by 

sine function including a phase shift gives reasonable 

description of the few experimental data points.  

 

3. Conclusions 

Solids have a twofold nature. On the one hand, we know 

from crystallography, that they are buildup of discrete 

atomistic units but, on the other hand, they exhibit properties 

as a continuous medium. The elastic properties of solids and 

thermal conductivity as well are typical macroscopic 

phenomena of the continuous or infinite solid. In the theory 

of elasticity atoms need not to be considered. Heat flow in 

solids can be described by a simple (macroscopic) 

differential equation. In other words, there are 

thermodynamic phenomena in solids, such as sound 

propagation or thermal conductivity, in which atoms and 

interactions between atoms are not involved. This is the 

proper definition of universality. Universality is the 

thermodynamic behavior of a field of freely propagating 

bosons and, so to say, a macroscopic phenomenon. In other 

words, elasticity and heat transport (in insulators) are due to 

Debye bosons. Note that thermal conductivity of insulators 

tends to zero for temperatures of larger than 10…20 K where 

Debye bosons are no longer the relevant excitations. 

The atomistic background is, however, not completely 

negligible. The absolute values of the sound velocities as 

well as the anisotropy of the elastic continuum are material 

specific characteristics due to the atomistic structure. 

Moreover, scattering at lattice defects provide a sample 

dependent damping to the Debye bosons and let sound 

velocity and heat transport depend on the structural 

perfection of the sample. Different sound velocities along 

different crystallographic directions could, formally, be 

described by an anisotropic index of refraction. The 

anisotropy of the elastic constants is material specific. In 

spite of anisotropic elastic constants (anisotropic sound 

velocities), the heat capacity of the Debye boson field always 

is ~T3.  

As we have seen, the sources of the Debye bosons must 

have atomistic dimensions. This seems to apply to other 

types of field quanta as well. For instance, the sources of the 

electromagnetic radiation field are electric dipoles, 

commonly associated with transitions between different 

electronic orbitals. In magnetism the field quanta are 

magnetic dipole radiation emitted upon precession of the 

ordered spins [6]. In this communication we have obtained 

indication that the (spontaneous) sources of the Debye boson 

must be the individual atoms. Since the T3 function of the 

heat capacity of the Debye boson field is observed also in 

strongly anisotropic crystals it can be concluded that the 

Debye boson field always is isotropic and therefore can be 

characterized as a scalar field. The radiation characteristic of 

the field sources therefore must essentially be isotropic. The 

sources of the Debye bosons must have spherical shape. It is 

tempting to conclude that the sources of the Debye bosons 

are the nearly spherical atomic cores [16,17]. Modeling the 

atomic core by a homogeneous elastic sphere, comparison 

with available calculations of the vibrational modes of such 

small spheres (quantum dots) is useful [22]. It is found that 
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in small spheres there are two types of vibrational modes: a 

spheroidal or dilatation mode and a torsional or surface 

mode. The two modes are Raman active [23]. However, 

emission of sound waves by such vibrational modes is a 

completely unexplored process. Emission of field quanta 

requests coupling of the localized vibrational modes to the 

elastic continuum. On the other hand, it is clear that in 

addition to the electrostatic forces, gravitational forces are 

also important in atoms. Note that the radiation characteristic 

of the sources of the electromagnetic radiation field, the 

electric dipoles, is planar. In magnetism the radiation 

characteristic of the field sources, the processing magnetic 

moments, is axial. Magnetic dipole radiation is emitted along 

precession axis. This provides vector character to the field. 

The global boson field in ordered magnets can assume any 

dimension [15]. 

Debye bosons (sound waves) can be induced out of 

thermal equilibrium at high temperatures where they do not 

contribute to heat capacity. Equivalently, solids exhibit 

elastic properties at all temperatures rather independent of 

whether the Debye dispersion relation is thermally populated 

or not. Note that the elastic properties are reactions upon 

external manipulations of the sample. For temperatures of 

larger than 10…20 K the Debye boson field is 

thermodynamically no longer relevant and its heat capacity 

tends to zero. Break down of the heat capacity of the boson 

field can be assumed to happen at crossover to phonons. 

Nevertheless the not populated dispersion of the Debye 

bosons can attract the dispersion of the acoustic phonons. 

This allows verification of the very nearly linear dispersion 

of the Debye bosons from inelastic neutron scattering data. 

Note that inelastic neutron scattering is incapable of 

detecting the mass less Debye bosons. For sound velocity 

and elastic constants as well it seems to be unimportant 

whether the dispersion of the Debye bosons is thermally 

populated or not. 

The sound velocities that can be measured up to melting 

temperature [7] shows that the dispersion of the Debye 

bosons continues up to thermal energy of kBTm. This is a 

much larger energy than the largest phonon energy, 

characterized by Debye temperature ΘD. Since the zone 

boundary is of no importance on the freely propagating 

bosons, the dispersion of the Debye bosons can continue 

beyond zone boundary. For LiF sound velocities at melting 

temperature of Tm = 1121 K are vT = 4192 m/sec and vL = 3328 

m/sec along [1,0,0] direction [7]. At Tm the wavelengths of 

the sound waves are λT~1.8 Å and λL~1.4 Å, respectively. 

This is less than half of the lattice parameter of a0 = 4.0173 

Å. For metallic niobium with Tm = 2760 K the wavelengths 

of sound waves at melting temperature along [1,0,0] 

direction are 0.82 Å and 0.33 Å (a0 = 3.30 Å). As a 

conclusion, at melting temperature the wavelength of the 

(nonrelevant) sound waves is of the order of the atomic 

diameters or even lower. 
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