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DENSITIES FOR FINANCIAL INTERVAL-VALUED TIME
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Abstract. This study presents two interval-valued time series approaches to
construct multivariate multi-step ahead joint forecast regions based on two
bootstrap algorithms. The first approach is based on fitting a dynamic bivari-
ate system via a VAR process for minimum and maximum of the interval while
the second approach applies for mid-points and half-ranges of interval-valued
time series. As a novel perspective, we adopt two bootstrap techniques into
the proposed interval-valued time series approaches to obtain joint forecast
regions of the lower/upper bounds of the intervals. The forecasting perfor-
mances of the proposed approaches are evaluated by extensive Monte Carlo
simulations and two real-world examples: (i) monthly S&P 500 stock indices;
(ii) monthly USD/SEK exchange rates. Our results demonstrate that the pro-
posed approaches are capable of producing valid multivariate forecast regions
for interval-valued time series.

1. Introduction

In classical time series analysis, most of the quantitative forecasting techniques
have usually concentrated on single-valued time series in which each variable takes
one value at each point over time. Although single-valued data for the purposes of
modelling and forecasting are useful in some practical cases, interval-valued data
expressed in interval format contain more information compared to classic single-
valued data in many situations which the precision is required. One of the important
sources of the interval-valued data is the aggregation of large data-bases in gran-
ules such as groups, clusters and classes when the data are observed with lower and
upper bounds. Since gathering data has become much easier with the advancement
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of information technology and systems, large and complex data sets have been cre-
ated in many application areas. As a consequent, interval-valued data representing
uncertainty and variability arise in the aggregation of large data-bases to make the
data easily manageable by providing an effective summary for practitioners.
Interval-valued data have been examined within symbolic data analysis frame-

work. Some references providing a comprehensive account of the technical details
on this field include [12], [15], [16], [24], and [49]. Examples of symbolic data cover
intervals, lists, histogram, modal-valued data and trees. As pointed out by [46],
this area is related to multivariate analysis, pattern recognition and artificial in-
telligence, and deals with the extension of traditional exploratory data analysis
and statistical methods to symbolic data. The authors also note that the sym-
bolic data allow multiple values for each variable to tackle variability in the data
by introducing new types of variables (multi-valued, set-valued, interval-valued,
histogram-valued etc.). In practice, one of the most commonly encountered types
of symbolic data is the interval-valued data which has received a remarkable atten-
tion in the context of regression, multivariate analysis and time series. However,
analysis of these types of data using classic statistical methods may cause unsat-
isfactory results. Thus, various approaches have been proposed for modelling and
analyzing certain attributes (such as lower and upper bounds, centers, ranges etc.)
of the interval-valued data; see, for instance, [8], [14] and [52]. Since the paper
of [12], various regression models have been developed for fitting interval-valued
data. [12] proposed fitting a linear regression model to the centers of the intervals
of the dependent and explanatory variables under the assumption of uniformly dis-
tributed intervals. Later, two separate regression models for the lower and upper
bounds of the intervals proposed by [13] and [17]. Also, [42] considered a new
method by fitting two separate regression models on the mid-points and ranges of
the interval-valued data. Furthermore, [43] developed a modified version of the lin-
ear regression model for the range of the intervals with non-negative constraints on
the regression coeffi cients. When the interval-valued time series which is a partic-
ular type of interval-valued data gathered in an ordered sequence over time (daily,
weekly, monthly etc.) is considered, appropriate approaches used in the time se-
ries analysis are also needed for modelling and forecasting especially in economic
and financial applications. In this context, the first approach is introduced by [55]
who uses univariate ARIMA process for the bounds of intervals. Also, [56] proposed
space-time autoregressive models considering the dependence between the lower and
upper bounds of intervals, and obtained a model for the center and radius of inter-
vals using the appropriate process of the interval bounds. [46] proposed an hybrid
methodology by combining ARIMA and artificial neural network (ANN) models to
forecast time series of interval-valued data and achieved better results by improving
forecasting accuracy. Additionally, [20] built an empirical model for the daily highs
and lows of three US stock indexes based on the vector error correction models
(VECM), which is an extension of vector autoregressive models (VAR). Recently,
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a few different approaches within the interval time series forecasting framework
have been developed by implementing VAR and VECM; see, for instance, [1], [2]
and [29]. The main idea behind applying VAR or VECM is to construct a system
consisting of two variables by using the extreme nature of the interval bounds or
by center and radius of interval-valued time series so that interval forecasts can be
generated with traditional multivariate time series methods.
In financial applications, classical time series models for single-valued time series

data have been frequently used to describe the temporal evolution of price move-
ments of financial assets, the fluctuations of stock indices, equities and exchange
rates. However, using single-valued time series leads to disregard the intra-day vari-
ability or even at lower frequencies variability. On the other hand, if the highest and
lowest price series of a financial sequence are considered, then the multivariate time
series techniques such as VAR or VAR with moving average components (VARMA)
can be used for forecasting and data description. As emphasized by [53], one of the
most reliable and powerful tools are the vector autoregressions to describe the data
and forecast future values. For some recent examples of VAR forecasting in the
context of financial time series, see [5], [6], [22], [33], [35], [37], [40], [50] and [54].
Most of the early studies in the literature regarding the forecasts from VAR models
consider marginal point forecasts; see [26], [44] and [47]. On the other hand, recent
studies on VAR forecasting has focused on the forecast densities which include the
uncertainty around a point forecast; see, for example [3], [7], [21], [34] and [48]. As
stated by [38], the use of point forecasts is seriously flawed and meaningless when
the extent of the associated uncertainty is unknown. However, interval forecasts
allow for more informative inferences considering future uncertainty associated with
each forecast; see [19]. Within the multivariate time series framework, one of the
important aims is to construct joint forecast regions from VAR models. Such fore-
cast regions are obtained in the shape of ellipsoid and Bonferroni cube by using
marginal interval forecasts, see [45]. However, conventional techniques to obtain
multivariate forecast densities for each horizon impose strong assumptions such as
Gaussianity of forecast errors, known lag order and model parameters, which may
not be provided especially in financial time series. Also, the constructed forecast
densities based on VAR processes can be affected due to any departure from the as-
sumptions thus leading to unreliable results. One of the alternative computational
approaches to generate such forecast densities without considering distributional
assumptions and uncertainties caused by the model parameters and lag order is to
use well-known resampling techniques, such as bootstrap. In this context, the first
bootstrap technique based on the backward representation of the VAR model is in-
troduced by [38]. Later, [39] proposed bias-corrected forecast regions by combining
the bootstrap-after-bootstrap approach with the bias-corrected least-squares esti-
mators of VAR parameters. On the other hand, using backward form of the model
increases computational complexity and limits the implementation of bootstrap
procedure when generating bootstrap resamples. To overcome these restrictions, a
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bootstrap method (abbreviated as “FRP”) using the forward representation of the
VAR model has been suggested by [28].
In this paper, we suggest an extension of the ordered non-overlapping block boot-

strap (ONBB) proposed by [9] to construct multivariate forecast regions of financial
interval-valued time series. Also, this paper presents a well-designed comparison
between FRP and ONBB procedures by considering the dynamic structure of the
financial time series. The main difference of two bootstrap algorithms is that FRP
uses forward residuals to generate bootstrap resamples whereas ONBB based al-
gorithm is a combination of the use of ordered-nonoverlapping blocks and residual
based bootstrap. Additionally, two interval-valued time series approaches are used
to compare both methods in terms of their forecasting performances. The first
approach (Min-Max) is based on the use of the minimum and maximum values of
financial interval-valued time series while the second one (Center-Range) uses the
mid-points and radius of the intervals. The both approaches can be used to model
interval time series by specifying a dynamic bivariate system via VAR processes so
that joint forecast regions for the lower and upper bounds of the intervals can be
obtained using bootstrap techniques. The novelty of our work is that we adopt two
bootstrap techniques into the interval-valued time series to obtain joint forecast
densities of the lower/upper bounds of the intervals.
The rest of the paper is organized as follows. In Section 2, we present a detailed

information on the interval time series approaches and describe bootstrap proce-
dures considered in this study to obtain multivariate forecast regions of interval-
valued time series. Extensive Monte Carlo simulation under different data gen-
erating processes are conducted and the results are presented in Section 3. Two
real-world examples: monthly S&P 500 stock indices and USD/SEK exchange rates
are studied to evaluate the finite sample performances of the proposed methods,
and the results are reported in Section 4. Finally, some concluding remarks are
given in Section 5.

2. Methodology

An interval-valued time series {Yt}Tt=1 is a realization of interval-valued variables
collected in consecutive time points and described as a two-dimensional vector of
time series Yt = {

(
XL
t , X

U
t

)′
;XL

t ≤ XU
t } ∈ R2 where XU

t and XL
t , repectively,

denote the upper and lower boundaries of the interval process. Thus, for t =
1, · · · , T , the interval-valued time series is expressed as[

XL
1 , X

U
1

]
,
[
XL
2 , X

U
2

]
, · · · ,

[
XL
T , X

U
T

]
(1)

where T denotes the sample size. Then, the interval stochastic process, {Yt} =
{· · · , Yt−1, Yt, Yt+1, · · · } is represented in the form of bivariate VAR model of order
p (VAR(p)) as follows:

Yt = µY + ΦY,1Yt−1 + · · ·+ ΦY,pYt−p + εY,t, t = −p+ 1, · · · , T (2)
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where ΦY,i = (φL, φU )
′ with ΦY,i =

[ φLL,i φUL,i
φLU,i φ

U
U,i

]
for i = 1, · · · , p denote 2 × 2

matrix of the parameters satisfying the stationarity restrictions, µY = (µL, µU )
′

is a vector including intercept terms, and εY,t =
(
εLt , ε

U
t

)′
is a white noise se-

quence of 2 × 1 independent vectors with non-singular covariance matrix ΣY ε.
The non-singularity assumption of the covariance matrix Σε has been discussed
by [18], [51], [30] and [57]. [30] investigated the pitfalls in cointegration tests in
systems with the singular error covariance matrix. Also, [57] examined the char-
acterization of Granger non-causality tests in VAR models when the assumption
of non-singularity of the covariance matrix of the VAR innovations is violated. As
noted by [57], although the non-singularity assumption is considered as a mild
requirement, the dynamic systems with singular covariance matrix are frequently
encountered in economic settings when the number of endogenous variables are
greater than the number of unobserved shocks. However, as pointed out by [18]
and [51], providing the nonsingular covariance matrix in time series analysis re-
quires a modest condition that is γ (h) → 0 when h → ∞ with γ (0) > 0, where
γ (h) = cov(Xt, Xt+h) denote the autocovariance function of the process, {Xt}. In
this study, we assume the non-singular covariance matrix of the innovations for
stationary VAR models since an easily verifiable and realistic condition is needed
for ensuring the non-singular covariance matrix for time series data as noted in [18]
and [51].
Let {Zt} = {· · · , Zt−1, Zt, Zt+1, · · · } with Zt = (Ct, Rt)

′ ∈ R2 represents the
two-dimensional vector of time series consisting of the center (Ct) and half range

(Rt) of the interval-valued time series at time t, where Ct =
XL
t +X

U
t

2 and Rt =
XU
t −X

L
t

2 , respectively. Throughout this paper, we assume that the bounds of in-
terval process are weakly stationary, which also implies the weak stationarity of
center (midpoint) and half range (radius) of the interval time series as the linear
combinations of stationary components. Similar to Equation 2, {Zt} follows the
VAR(p) model with coeffi cient matrix, ΦZ,i = (φC , φR)

′ where ΦZ,i =
[ φCC,i φRC,i
φCR,i φ

R
R,i

]
,

i = 1, · · · , p if

Zt = µZ + ΦZ,1Zt−1 + · · ·+ ΦZ,pZt−p + εZ,t, t = −p+ 1, · · · , T (3)

where µZ = (µC , µR)
′ and εZ,t =

(
εCt , ε

R
t

)′
with non-singular covariance matrix

ΣZε.
The method of Ordinary Least Squares (OLS) is applied to estimate the un-

known parameters of VAR(p) processes, β̂Y =
(
µ̂Y , Φ̂Y,1, · · · , Φ̂Y,p

)′
and β̂Z =(

µ̂Z , Φ̂Z,i, . . . , Φ̂Z,p

)′
considering the stationarity conditions given by [36]. Then,

the point predictors of YT (h) =
(
XL
T (h) , XU

T (h)
)′
and ZT (h) = (CT (h) , RT (h))

′

given the information available up to time T can be obtained based on the law of
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iterated projections as follows.

ŶT (h) = µ̂Y + Φ̂Y,1ŶT−1 (h) + · · ·+ Φ̂Y,pŶT−p (h) (4)

ẐT (h) = µ̂Z + Φ̂Z,1ẐT−1 (h) + · · ·+ Φ̂Z,pẐT−p (h) (5)

where h is the forecast horizon, ŶT (j) = YT+j and ẐT (j) = ZT+j for j ≤ 0.
XL
T (h), XU

T (h), CT (h) and RT (h) can be approximated by using the components,

ŶT (h) =
(
X̂L
T (h) , X̂U

T (h)
)′
and ẐT (h) =

(
ĈT (h) , R̂T (h)

)′
, as follows.

X̂L
T (h) = ĈT (h)− R̂T (h) ĈT (h) =

X̂L
T (h) + X̂U

T (h)

2

X̂U
T (h) = ĈT (h) + R̂T (h) R̂T (h) =

X̂U
T (h)− X̂L

T (h)

2

Multivariate time series forecasting methods to construct joint forecast densi-
ties for a given horizon create regions of elliptical form and/or Bonferroni cube
( [45]). On the other hand, obtaining these ellipsoids becomes intractable when the
number of variables in the system and/or prediction steps are greater than two.
Additionally, the constructed prediction ellipsoids using prediction densities has an
unknown form for non-Gaussian errors thus leading to unreliable results. There-
fore, the Bonferroni forecast cube is proposed by [45] to provide more appropriate
forecast regions when dealing with asymmetric error distributions. Thus, we ob-
tained only Bonferroni forecast regions to evaluate the finite sample properties of
our proposed procedures. Construction of such forecast regions may be affected due
to departures from the assumptions and lead to incorrect results, see [25] and [28].
Alternatively, the bootstrap method can be used to obtain multivariate forecast
regions since it is not required full knowledge of the underlying data and distribu-
tional assumptions. In this study, the bootstrap methods proposed by [28] and [9]
are used to construct joint forecast regions in interval-valued time series. The com-
plete algorithm of the ONBB based forecast regions for VAR(p) models defined in
Equations 2 and 3 are described as follows:

Step 1. For a realization of VAR(p) process, determine the optimal-lag order p
by using information criteria such as Akaike information criterion (AIC),
Bayesian information criterion (BIC), Akaike’s Final Prediction Error Cri-
terion (FPE), and Hannan-Quinn information criterion (HQC). Then, cal-

culate the OLS estimates of the parameter vectors β̂Y =
(
µ̂Y , Φ̂Y,1, · · · , Φ̂Y,p

)′
and β̂Z =

(
µ̂Z , Φ̂Z,i, . . . , Φ̂Z,p

)′
.

Step 2. Obtain the corresponding vector of residuals ε̂Y,t and ε̂Z,t for t = p +

1, · · · , T . Let F̂εY,t and F̂εZ,t be the empirical distribution functions of the
centered and re-scaled residuals.
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Step 3. Obtain ONBB series Y ∗ = {Y ∗1 , · · · , Y ∗T } with Y ∗t ′ =
(
1, Y ∗′t−1, · · · , Y ∗′t−p

)
and Z∗ = {Z∗1 , · · · , Z∗T } with Z∗t ′ =

(
1, Z∗′t−1, · · · , Z∗′t−p

)
for t = 1, · · · , T ;

see [9] and [10] for more details.

Step 4. Calculate the ONBB estimators β̂
∗
Y =

(
µ̂∗Y , Φ̂

∗
Y,1, · · · , Φ̂∗Y,p

)′
and β̂

∗
Z =(

µ̂∗Z , Φ̂
∗
Z,i, . . . , Φ̂

∗
Z,p

)′
using the bootstrap observations obtained from Step

3 as follows

β̂
∗
Y = (Y ∗′Y ∗)

−1
Y ∗′Ỹ ∗

β̂
∗
Z = (Z∗′Z∗)

−1
Z∗′Z̃∗

where Ỹ ∗ = Y ∗β̂Y + ε̂∗Y , Z̃
∗ = Z∗β̂Z + ε̂∗Z , and ε̂

∗
Y,t and ε̂

∗
Z,t are random

samples from F̂εY,t and F̂εZ,t , respectively.
Step 5. Compute h = 1, 2, · · · step ahead bootstrap replicates of future observa-

tions, Ŷ ∗T (h) and Ẑ∗T (h), with the following recursions:

Ŷ ∗T (h) = µ̂∗Y + Φ̂∗Y,1Ŷ
∗
T−1 (h) + · · · , Φ̂∗Y,pŶ ∗T−p (h) + ε̂∗Y,T+h

Ẑ∗T (h) = µ̂∗Z + Φ̂∗Z,1Ẑ
∗
T−1 (h) + · · · , Φ̂∗Z,pẐ∗T−p (h) + ε̂∗Z,T+h

where Ŷ ∗T (h) = YT+h and Ẑ∗T (h) = ZT+h for h ≤ 0. Note that ε̂∗Y,T+h and
ε̂∗Z,T+h are randomly drawn residuals from F̂εY,t and F̂εZ,t , respectively.

Step 6. Repeat Steps 3-5 for B times to generate bootstrap replications{
Ŷ ∗,1T (h) , · · · , Ŷ ∗,BT (h)

}
and

{
Ẑ∗,1T (h) , · · · , Ẑ∗,BT (h)

}
for each h, where

B denotes the number of bootstrap replicates.

As stated before, the main difference between the ONBB and FRP procedures
is that FRP utilizes the residuals obtained from the forward representation of the
model, whereas the ONBB based algorithm uses the ONBB and residual based
bootstrap methods to obtain bootstrap replicates. Hence, for the FRP method, we
present only the Steps 3-4 in the algorithm described above.

Step 3. Generate the bootstrap series {Y ∗1 , · · · , Y ∗T } and {Z∗1 , · · · , Z∗T } for t =
1, · · · , T as follows:

Y ∗t = µ̂Y + Φ̂Y,1Y
∗
t−1 + · · ·+ Φ̂Y,pY

∗
t−p + ε∗Y,t

Z∗t = µ̂Z + Φ̂Z,1Z
∗
t−1 + · · ·+ Φ̂Z,pZ

∗
t−p + ε∗Z,t

where Y ∗t = Yt and Z∗t = Zt for t = −p + 1, · · · , 0. Also, ε∗Y,t and ε∗Z,t are
randomly drawn residuals from F̂εY,t and F̂εZ,t , respectively.

Step 4. Calculate the bootstrap OLS estimators β̂
∗
Y =

(
µ̂∗Y , Φ̂

∗
Y,1, · · · , Φ̂∗Y,p

)′
and

β̂
∗
Z =

(
µ̂∗Z , Φ̂

∗
Z,i, . . . , Φ̂

∗
Z,p

)′
using the observations obtained in the previous

step.



BOOTSTRAP BASED MULTI-STEP AHEAD JOINT FORECAST DENSITIES 163

Then, the bootstrap Bonferroni cube (BBC) with at least 100(1−α)% nominal
coverage are obtained as follows:

BBCY,T+h =
{
YT+h|YT+h ∈ ∪2j=1

[
q∗j (τ), q∗j (1− τ)

]}
BBCZ,T+h =

{
ZT+h|ZT+h ∈ ∪2j=1

[
q∗j (τ), q∗j (1− τ)

]}
where q∗j (τ)’s are the τth percentiles of the generated bootstrap distributions of the

jth elements of
{
Ŷ ∗,mT (h)

}B
m=1

and
{
Ẑ∗,mT (h)

}B
m=1

.

3. Numerical Results

In order to assess the finite sample performances of proposed approaches in ob-
taining joint forecast regions, we conduct a simulation study under six different ex-
perimental designs as presented in Table 1. The bivariate data generating processes
consisting of center and half-range processes are designed considering the character-
istics of the financial time series. For this purpose, center processes are generated
from a known structure, an autoregressive model of order 2 (AR(2)), based on the
assumption of uniformly distributed half-range interval time series with different
choices of parameter values. For each of these configurations, we consider three
error distributions: N(0, 1), t(5) and χ2(4), and two sample sizes: T = 100, 300.
The sample size T should be suffi ciently large for estimating the many parameters
of the unrestricted VAR models since the number of parameters to be estimated,
kp2 + p, seriously increases with increasing number of equations, k (k = 2 for bi-
variate VAR models) and the number of lags (order of the VAR model), p ( [4]). In
addition, in blocking techniques, the dependence structure of the original data can
be preserved within the consecutive observations in each block, and the boostrap
samples do not reflect this dependency structure if the block length ` is too small
( [41]). Moreover, the size of block length ` is determined based on the sample size
T to obtain consistent estimates of the model parameters, and it should increase
when the sample size increases. Thus, the sample size can not be too small to
apply ONBB method, and thus, we use the aforementioned sample sizes as in [28]
and [11]. For ONBB method, three block lengths are chosen as ` = T 1/3, T 1/4, T 1/5

as proposed by [31] since the performances of block resampling techniques are sen-
sitive to block length selection. For each configuration, MC = 2000 Monte Carlo
simulations with B = 2000 bootstrap replications are performed. For many pur-
poses, such as estimation of standard errors and constructing confidence intervals,
B = 1000 bootstrap samples are enough as noted in [27] and [32]. Also, for de-
termining the appropriate number of bootstrap samples, [23] proposed a pretest
procedure to minimize experimental randomness when performing bootstrap tests.
The authors emphasizes that using a finite number of bootstrap replicates may
lead to some loss of power and the power of the test always increases as the number
of bootstrap repetitions increases. In this study, we use 2000 bootstrap samples
as in the study of [28] since we extend the FRP method to interval-valued data.
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The significance level γ is determined as 0.05 to construct 95% Bonferroni forecast
cubes for forecast horizons h = 1, 2, · · · , 10. The performance of the ONBB based
procedure is compared with the method of FRP by means of coverage probability
and volume of the Bonferroni forecast cube.
To compare the performances of forecast cubes, bivariate VAR(p) processes are

generated based on the parameter settings given in Table 1. Then, the coverage
probabilities of bootstrap Bonferroni cubes (C∗(BBC)) are calculated based on
the generated bootstrap distribution of the future values Ŷ ∗,mT (h) and Ẑ∗,mT (h) for
each forecast horizon h = 1, · · · , 10 and m = 1, · · · , B as follows.

C∗,h(BBCY ) =
1

MC

MC∑
i=1

{
Y iT+h|Y iT+h ∈ ∪2j=1

[
q∗j (γ), q∗j (1− γ)

]}
C∗,h(BBCZ) =

1

MC

MC∑
i=1

{
ZiT+h|ZiT+h ∈ ∪2j=1

[
q∗j (γ), q∗j (1− γ)

]}

Table 1. Parameter settings for data generation process

Experimental designs Center process (Ct) Half-range process (Rt)
Configuration-I Ct = 0.3Ct−1 + 0.1Ct−2 + εt U(0.3, 0.5)
Configuration-II Ct = 0.4Ct−1 + 0.2Ct−2 + εt U(0.3, 0.5)
Configuration-III Ct = 0.8Ct−1 + 0.15Ct−2 + εt U(0.3, 0.5)
Configuration-IV Ct = 0.3Ct−1 + 0.1Ct−2 + εt U(0.5, 1)
Configuration-V Ct = 0.4Ct−1 + 0.2Ct−2 + εt U(0.5, 1)
Configuration-VI Ct = 0.8Ct−1 + 0.15Ct−2 + εt U(0.5, 1)

Further, the volumes of the bootstrap Bonferroni cubes (V ∗(BBC)) for Ŷ ∗T (h)

and Ẑ∗T (h) are calculated by the following equation.

V ∗,h(BBC) =
1

MC

MC∑
i=1

[(
q∗,h1i (1− γ)− q∗,h1i (γ)

)
×
(
q∗,h2i (1− γ)− q∗,h2i (γ)

)]
Figures 1-8 display the simulation results when the sample size T = 100. Since

our findings do not significantly differ with regard to the different choices of block
length parameter for ONBB method, we present only the results obtained for
` = T 1/5. The estimated coverage probabilities of Bonferroni cubes calculated
by FRP and ONBB procedures for Center-Range and Min-Max methods are pre-
sented in Figures 1-4. For the estimated coverage probabilities of Center-Range
method under first configuration, ONBB yields better results than FRP especially
for short and mid-term forecast horizons when the errors have normal and χ2(4)
distributions, whereas both procedures have similar coverage probabilities when
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Figure 1. Estimated coverage probabilities of 95% Bonfer-
roni Cubes of Center-Range method when T = 100. First
row: Configuration-I, second row: Configuration-II, third row:
Configuration-III. Error distributions: Gaussian (first column),
t(5) (second column),χ2(4) (third column). Dashed and dotted
lines represent the coverages obtained by FRP and ONBB meth-
ods when ` = T 1/5, respectively.

the innovations follow t(5) distribution. For Configuration-II, the coverage per-
formances of the both bootstrap methods are similar with the exception of right-
skewed error distribution. Furthermore, the coverage probabilities calculated by
ONBB are closer to the true coverages than that of the FRP method when the
innovations follow χ2(4) distribution (see second row of Figure 1). Figure 2 il-
lustrates the estimated coverage probabilities of the Bonferroni cubes for the first
three configurations when Min-Max approach is used. It is clear that the coverages
estimated by bootstrap methods are rather similar regardless of the error distrib-
utions as it is shown in the first row of Figure 2. However, for Configuration-II,
the coverage probabilities of FRP method under-estimates the actual coverages for
short term-forecasts, and over-estimates coverages as the forecast horizon increases.
Moreover, the results for this configuration indicate that the coverage probabilities
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Figure 2. Estimated coverage probabilities of 95% Bonfer-
roni Cubes of Min Max method when T = 100. First
row: Configuration-I, second row: Configuration-II, third row:
Configuration-III. Error distributions: Gaussian (first column),
t(5) (second column),χ2(4) (third column). Dashed and dotted
lines represent the coverages obtained by FRP and ONBB meth-
ods when ` = T 1/5, respectively.

obtained by ONBB method fluctuates around the nominal coverages under non-
normal errors. For Configuration-III (see third rows of Figures 1-2), FRP method
yields better coverage probabilities than ONBB especially for the χ2 and normally
distributed error terms.
Figures 3-4 indicate the coverage performances of FRP and ONBBmethods when

the last three configurations given in Table 1 are considered in the data generation
process. For Center-Range method, compared to FRP, ONBB has better perfor-
mances for the increasing persistence of data generation process when the errors
are Gaussian. Under persistent process of mid-points, for both interval-time series
approaches, FRP and ONBB procedures under-estimate the true coverage proba-
bilities far below the nominal level, in general. Although the coverage probabilities
produced by both methods are in the same direction, the extent of under-estimation
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Figure 3. Estimated coverage probabilities of 95% Bonfer-
roni Cubes of Center-Range method when T = 100. First
row: Configuration-IV, second row: Configuration-V, third row:
Configuration-VI. Error distributions: Gaussian (first column),
t(5) (second column),χ2(4) (third column). Dashed and dotted
lines represent the coverages obtained by FRP and ONBB meth-
ods when ` = T 1/5, respectively.

for FRP method is quite smaller than those of ONBB method for all error distri-
butions. Also, one of the remarkable results regarding the Center-Range method
is that the bootstrap procedures have the coverage performances with decreasing
trend away from the actual coverage probabilities for the persistent process and
non-Gaussian errors.
Figures 5-8 show the estimated volumes of bootstrap Bonferroni cubes. In gen-

eral, for both interval-time series approaches and all configurations considered in
the study, ONBB method outperforms FRP by producing considerably less volumes
of forecast cubes except for Center-Range method under Configuration-V and t(5)
distribution of innovations.
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Figure 4. Estimated coverage probabilities of 95% Bonfer-
roni Cubes of Min Max method when T = 100. First
row: Configuration-IV, second row: Configuration-V, third row:
Configuration-VI Error distributions: Gaussian (first column), t(5)
(second column),χ2(4) (third column). Dashed and dotted lines
represent the coverages obtained by FRP and ONBB methods
when ` = T 1/5, respectively.

4. Case Studies

In this section, we consider two financial interval-valued time series; monthly
S&P 500 index and USD/SEK (US Dollar to Swedish Krona) exchange rate data
to compare the forecasting performances of bootstrap procedures (FRP and ONBB)
and interval-valued time series methods (Center-Range and Min-Max).
The monthly S&P 500 index data, which is consisted a total of 156 observations

(intervals), was obtained from November 2005 to October 2018, and the monthly
USD/SEK exchange rate data, observed from January 2009 to November 2018,
consists of 118 intervals. The lower and upper bounds of these data-sets have been
transformed into the log-returns (which are calculated as Yt = log(Yt/Yt−1) and
Zt = log(Zt/Zt−1)) to remove the trend components. To construct out-of-sample
forecast cubes, the datasets were divided into in-sample and out-of-sample sets. For
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Figure 5. Estimated coverage probabilities of 95% Bonfer-
roni Cubes of Center-Range method when T = 100. First
row: Configuration-I, second row: Configuration-II, third row:
Configuration-III. Error distributions: Gaussian (first column),
t(5) (second column),χ2(4) (third column). Dashed and dotted
lines represent the coverages obtained by FRP and ONBB meth-
ods when ` = T 1/5, respectively.

Table 2. Sample statistics, ADF, JB and LB test results of min-
imum and maximum S&P 500 Index data, observed from Novem-
ber, 2005 to October, 2018, with p-values in brackets.

Series Mean Sd Skewness Kurtosis JB ADF Q(12)
Min. 0.01 0.05 -1.51 6.28 324.83 -4.96 28.09

(0.00) (0.01) (0.00)
Max. 0.01 0.03 -1.58 4.45 199.65 -4.79 35.44

(0.00) (0.01) (0.00)
(Min., Max.) 5.88 23.72 146.86

(0.00)

the S&P 500 index data, the observations from November 2005 to October 2017
are used to establish model for obtaining 12 steps-ahead forecasts from November
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Figure 6. Estimated coverage probabilities of 95% Bonfer-
roni Cubes of Min Max method when T = 100. First
row: Configuration-I, second row: Configuration-II, third row:
Configuration-III. Error distributions: Gaussian (first column),
t(5) (second column),χ2(4) (third column). Dashed and dotted
lines represent the coverages obtained by FRP and ONBB meth-
ods when ` = T 1/5, respectively.

Table 3. Sample statistics, ADF, JB and LB test results of min-
imum and maximum US Dollar to Swedish Krona exchange rate
data, observed from January, 2009 to November, 2018, with p-
values in brackets.

Series Mean Sd Skewness Kurtosis JB ADF Q(12)
Min. 0 0.02 -0.3 0.45 3.11 -3.72 23.51

(0.21) (0.02) (0.02)
Max. 0 0.03 -0.3 1.41 12.59 -4.19 20.78

(0.00) (0.01) (0.05)
(Min., Max.) 4.35 2.34 15.74

(0.00)
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Figure 7. Estimated coverage probabilities of 95% Bonfer-
roni Cubes of Center-Range method when T = 100. First
row: Configuration-IV, second row: Configuration-V, third row:
Configuration-VI. Error distributions: Gaussian (first column),
t(5) (second column),χ2(4) (third column). Dashed and dotted
lines represent the coverages obtained by FRP and ONBB meth-
ods when ` = T 1/5, respectively.

2017 to October 2018. For the USD/SEK exchange rate data, the model is con-
structed based on the in-sample period from January 2009 to November 2017 to
obtain monthly forecasts from December 2017 to November 2018. The descrip-
tive statistics of the transformed minimum and maximum series for two-real world
datasets are reported in Tables 2-3. As expected, the sample statistics (mean, stan-
dard deviations, skewness and kurtosis) are quite similar for the lower and upper
bounds of both interval time series. The minimum and maximum series of S&P 500
index data have left-skewed and heavy tailed distributions while the distributions
of these series are left-skewed for USD/SEK exchange rate data. Also, Jarque-Bera
(JB) normality and Augmented Dickey-Fuller (ADF) stationarity test results (with
p− values in brackets) are presented in Tables 2-3. The p− value = 0.00 of the JB
test statistics show that all the series except for the minimum series of USD/SEK
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Figure 8. Estimated coverage probabilities of 95% Bonfer-
roni Cubes of Min Max method when T = 100. First
row: Configuration-IV, second row: Configuration-V, third row:
Configuration-VI Error distributions: Gaussian (first column), t(5)
(second column),χ2(4) (third column). Dashed and dotted lines
represent the coverages obtained by FRP and ONBB methods
when ` = T 1/5, respectively.

exchange rate data are not Gaussian either individually or jointly. Also, the ADF
test results with small p− values indicate that the minimum and maximum series
defined on both datasets are stationary. Further, the Ljung-Box (LB) test statistics
of order 12 (Q(12)) to test for autocorrelations in log-return series show that all
the log-return series excluding the maximum of USD/SEK exchange rate data have
statistically significant autocorrelations. All of the exploratory analysis presented
in Tables 2-3 suggests that the VAR(p) model is a suitable choice to model the
minimum and maximum series of S&P 500 Index and USD/SEK exchange rate
data. The optimal lag lengths of the VAR processes were determined using Akaike
information criterion and the best models were chosen as VAR(6) for S&P 500 In-
dex data and VAR(2) for USD/SEK exchange rate data according to the results



BOOTSTRAP BASED MULTI-STEP AHEAD JOINT FORECAST DENSITIES 173

of AIC. Also, the dominant roots of the fitted VAR models of order 6 and 2 are
calculated as 0.851 (persistent) and 0.550 (stationary), respectively.

Figure 9. 95% Bonferroni Cubes of Min-Max method for h =
1,···, 12 steps-ahead forecasts of S&P 500 Index. Black area: FRP,
gray area: ONBB gray area: ONBB when ` = T 1/3.

The h-steps-ahead bootstrap forecast cubes, together with the true out-of-sample
values which are denoted by a dot, are constructed based on B = 2000 bootstrap
resamples for both real-world datasets. Also, the significance level is set to 0.05 to
obtain %95 Bonferroni cubes for next h = 1, 2, · · · , 12 observations. Note that the
bootstrap forecast cubes are obtained for three block lengths ` = T 1/3, T 1/4, T 1/5

as proposed by [31] when implementing ONBB method. Since the results obtained
for those block lengths are similar, therefore to save space and to make this section
more readable, we present only the results obtained for ` = T 1/3. (The results for
T 1/4 and T 1/5 can be obtained from the author upon request.) The forecast cubes
generated by FRP and ONBB methods regarding the Min-Max and Center-Range
approaches are presented in Figures 9-10 for the S&P 500 Index data and in Figures
11-12 for the USD/SEK exchange rate data. Our results showed that the forecast
regions obtained by Center-Range and Min-Max methods are similar and all the
true values are covered by both methods, in general. However, the forecast cubes
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Figure 10. 95% Bonferroni Cubes of Center-Range method for
h = 1,···, 12 steps-ahead forecasts of S&P 500 Index. Black area:
FRP, gray area: ONBB gray area: ONBB when ` = T 1/3.

calculated by both interval-time series methods and bootstrap methods failed to
include third out-of-sample point for S&P 500 Index data and fourth out-of-sample
points for USD/SEK exchange rate data. Also, the forecast region obtained by
ONBB for Min-Max method covers the second out-of-sample point of USD/SEK
exchange rate data whereas the forecast cube produced by FRP failed to cover
this true out-of-sample value for both interval-time series methods. Although FRP
and ONBB based procedures generate similar Bonferroni forecast cubes in terms
of covering the out-of-sample points, it is clear that the ONBB has less volumes of
forecast cubes compared to FRP for short and long-term forecast horizons.

5. Conclusions

In this study, we propose the two interval-valued time series approaches to obtain
joint forecast regions of financial interval-valued time series. The forecast regions
are obtained using the ONBB method of [9] and the FRP method introduced by
[28]. We examine the finite sample performances of the proposed interval-time
series approaches and bootstrap procedures by extensive Monte-Carlo simulations
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Figure 11. 95% Bonferroni Cubes of Min-Max method for h =
1,···, 12 steps-ahead forecasts of USD/SEK exchange rate. Black
area: FRP, gray area: ONBB gray area: ONBB when ` = T 1/3.

and two real-world examples. Our findings show that for the Min-Max method
and persistent processes, the forecast regions produced by FRP are slightly better
than those of obtained from the ONBB method in terms of the estimated coverage
probabilities, in general. The prominent result is that the ONBB based procedure
exhibit improved performance over the FRP method by generating less volumes of
forecast cubes for Center-Range and Min-Max methods under all error distributions
considered in the study. The similar results are also obtained for both real datasets,
and our conclusions do not vary significantly with different choices of the block
lengths considered in this study.

Declaration of Competing Interests The author declare that they have no
known competing financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.
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Figure 12. 95% Bonferroni Cubes of Center-Range method for
h = 1,···, 12 steps-ahead forecasts of USD/SEK exchange rate.
Black area: FRP, gray area: ONBB gray area: ONBB when ` =
T 1/3.
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