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ON THE PERIODICITY OF THE SOLUTION OF A RATIONAL
DIFFERENCE EQUATION

A. M. ALOTAIBI, M. S. M. NOORANI, AND M. A. EL-MONEAM

Abstract. In this paper, some cases on the periodicity of the rational differ-
ence equation

Sn+1 = Sn−p

(
aSn−q + bSn−r + cSn−s
dSn−q + eS n−r + fSn−s

)
,

are investigated, where a, b, c, d, e, f ∈ (0,∞). The initial conditions S−p,
S−p+1,...,S−q , S−q+1,...,S−r , S−r+1,...,S−s,...,S−s+1,...,S−1 and S0 are ar-
bitrary positive real numbers such that p > q > r > s ≥ 0. Some numerical
examples are provided to illustrate the theoretical discussion.

1. Introduction

Difference equations appear naturally as discrete analogues, numerical solutions
of differential and delay differential equations as they are applied in biology, ecology,
economy, physics, and so on. Although difference equations appear simpler in its
form, the behaviors of their solutions are hard to be comprehended thoroughly.
Recently, immense effort has been enacted in studying the qualitative analysis of
rational difference equations. To put as an example, refer to [1-6]. Many researchers
have investigated periodic solutions of difference equations, and they have proposed
various methods for the existence and qualitative properties of the solutions [7-10].
The main aim of this study is to exhibit some cases on the periodic character of

the positive solutions of the rational difference equation

Sn+1 = Sn−p

(
aSn−q + bSn−r + cSn−s
dSn−q + eSn−r + fSn−s

)
, (1)

where a, b, c, d, e, f ∈ (0,∞). The initial conditions S−p, S−p+1,...,S−q, S−q+1,...,S−r,
S−r+1,...,S−s,...,S−s+1,...,S−1 and S0 are arbitrary positive real numbers such that
p > q > r > s ≥ 0.
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Definition 1. (Periodicity). A sequence {yn}∞n=−s is said to be periodic with period
p if

yn+p = yn for all n ≥ −s.
Moreover, it is said to have prime period p if it is periodic with period p and p is
the smallest positive integer satisfying this condition.

2. Main Result

In this section, we are going to be presented with the study of some cases on the
periodic character of the positive solutions of Equation (1) for the first time.

Theorem 1. Equation (1) has no positive solutions of prime period two ∀ a, b, c, d, e, f
∈ (0,∞) in all the following cases:
1) The positive integers p,r,s are even and the positive integer q is odd.
2) The positive integers p,q,r and s are even.
3) The positive integer p,q,r are even and the positive integer s is odd.
4) The positive integers p,q are even and the positive integers r,s are odd.
5) The positive integers p,s are even and the positive integers q,r are odd.
6) The positive integers p is even and the positive integers q,r,s are odd.
7) The positive integer r,s are even and the positive integers p,q are odd with d 6= a.
8) The positive integers q is even and the positive integers p,r,s are odd with
(e+ f) 6= (b+ c).
9) The positive integers s is even and the positive integers p,q,r are odd with
(d+ e) 6= (a+ b).
10) The positive integers p,q,r and s are odd with (d+ e+ f) 6= (a+ b+ c).

Proof. Suppose that there is an existence of two positive distinctive solutions of
prime period which two having such ...,φ, ψ, φ, ψ,... of Equation (1). Then the
following cases are discussed;
Case 1. Suppose the positive integers p,r,s are even and the positive integer q is
odd. In this case

Sn = Sn−p = Sn−r = Sn−s and Sn+1 = Sn−q.

From Equation (1), we have

φ = ψ

(
aφ+ (b+ c)ψ

cφ+ (d+ f)ψ

)
,

ψ = φ

(
aψ + (b+ c)φ

cψ + (d+ f)φ

)
.

Thus
cφ2 + (d+ f)φψ = aφψ + (b+ c)ψ2, (2)

and
cψ2 + (d+ f)φψ = aφψ + (b+ c)φ2. (3)
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By subtracting (2) from (3), we deduce that

c(φ2 − ψ2) + (b+ c)(φ2 − ψ2) = 0.
Hence, we have

(b+ 2c)(φ2 − ψ2) = 0.
If φ 6= ψ, then

(b+ 2c) = 0.

Since b and c are nonzero positive real numbers, thus (b + 2c) 6= 0. This implies
φ = ψ. This contradicts the hypothesis φ 6= ψ.
Case 2. Suppose the positive integers p,q,r and s are even. In this case

Sn = Sn−p = Sn−q = Sn−r = Sn−s.

From Equation (1), we have

φ = ψ

(
(a+ b+ c)ψ

(d+ e+ f)ψ

)
,

ψ = φ

(
(a+ b+ c)φ

(d+ e+ f)φ

)
.

Thus,
(d+ e+ f)φψ = (a+ b+ c)ψ2, (4)

and
(d+ e+ f)φψ = (a+ b+ c)φ2. (5)

By subtracting (4) from (5), we deduce that

(a+ b+ c)(φ2 − ψ2) = 0.
Hence, we have

(a+ b+ c)(φ2 − ψ2) = 0.
If φ 6= ψ, then

(a+ b+ c) = 0.

Since a, b and c are nonzero positive real numbers, thus (a+b+c) 6= 0. This implies
φ = ψ. This contradicts the hypothesis φ 6= ψ.
Case 3. Suppose the positive integer p,q,r are even and the positive integer s is
odd. In this case

Sn = Sn−p = Sn−q = Sn−r and Sn+1 = Sn−s.

From Equation (1), we have

φ = ψ

(
(a+ b)ψ + cφ

(d+ e)ψ + fφ

)
,

ψ = φ

(
(a+ b)φ+ cψ

(d+ e)φ+ fψ

)
.

Thus,
(d+ e)φψ + fφ2 = (a+ b)ψ2 + cφψ, (6)
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and
(d+ e)φψ + fψ2 = (a+ b)φ2 + cφψ. (7)

By subtracting (6) from (7), we deduce that

f(φ2 − ψ2) + (a+ b)(φ2 − ψ2) = 0.
Hence, we have

(a+ b+ f)(φ2 − ψ2) = 0.
If φ 6= ψ, then

(a+ b+ f) = 0.

Since a, b,and f are nonzero positive real numbers, thus (a + b + f) 6= 0. This
implies φ = ψ. This contradicts the hypothesis φ 6= ψ.
Equivalently, we ratiocinate that there is no positive solution of prime period

two derived from cases 4, 5 and 6.
Case 7. Suppose the positive integers r, s are even and the positive integers p, q are
odd. In this case

Sn = Sn−r = Sn−s and Sn+1 = Sn−p = Sn−q.

From Equation (1), we have

φ = φ

(
aφ+ (b+ c)ψ

dφ+ (e+ f)ψ

)
,

ψ = ψ

(
aψ + (b+ c)φ

dψ + (e+ f)φ

)
.

Thus,
dφ2 + (e+ f)φψ = aφ2 + (b+ c)φψ, (8)

and
dψ2 + (e+ f)φψ = aψ2 + (b+ c)φψ. (9)

By subtracting (8) from (9), we deduce that

d(φ2 − ψ2)− a(φ2 − ψ2) = 0.
Hence, we have

[d− a](φ2 − ψ2) = 0.
Since a and d are nonzero positive real numbers, and φ 6= ψ.
This implies [d = a], This contradicts the condition [d 6= a].
Case 8. Suppose the positive integers q is even and the positive integers p, r, s are
odd. In this case

Sn = Sn−q and Sn+1 = Sn−p = Sn−r = Sn−s.

From Equation (1), we have

φ = φ

(
aψ + (b+ c)φ

dψ + (e+ f)φ

)
,
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ψ = ψ

(
aφ+ (b+ c)ψ

dφ+ (e+ f)ψ

)
.

Thus,
dφψ + (e+ f)φ2 = aφψ + (b+ c)φ2, (10)

and
dφψ + (e+ f)ψ2 = aφψ + (b+ c)ψ2. (11)

By subtracting (10) from (11), we deduce that

(e+ f)(φ2 − ψ2)− (b+ c)(φ2 − ψ2) = 0.
Hence, we have

[(e+ f)− (b+ c)](φ2 − ψ2) = 0.
Since b, c, e and f are nonzero positive real numbers, and φ 6= ψ. This implies
[(e+ f) = (b+ c)], This contradicts the condition [(e+ f) 6= (b+ c)].
Equivalently, we ratiocinate that there is no positive solution of prime period two
derived from cases 9 and 10. Therefore, the proof of the theorem is now complete.

�

3. Numerical Examples

In this section, the previous results are illustrated through some numerical ex-
amples.

Example 1. Figure 1, points out that the solution of Equation (1) holds no positive
prime period two solutions on the assumption that the positive integers p,r and s
are even and the positive integer q is odd. Select
p = 6, q = 5, r = 4, s = 2, S−6 = 1, S−5 = 2, S−4 = 3, S−3 = 4, S−2 = 5,
S−1 = 6, S0 = 7, a = 10, b = 20, c = 15, d = 25, e = 30, f = 35.

Figure 1.
(
Sn+1 = Sn−6

(
10Sn−5+20Sn−4+15Sn−2
25Sn−5+30Sn−4+35Sn−2

))
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Example 2. Figure 2, points out that the solution of Equation (1) holds no positive
prime period two solutions on the assumption that the positive integers p,q,r and s
are even. Select
p = 8, q = 6, r = 4, s = 2, S−8 = 1, S−7 = 2, S−6 = 3, S−5 = 4, S−4 = 5, S−3 =
6, S−2 = 7, S−1 = 8, S0 = 9 a = 10, b = 20, c = 15, d = 25, e = 30, f = 35.

Figure 2.
(
Sn+1 = Sn−8

(
10Sn−6+20Sn−4+15Sn−2
25Sn−6+30Sn−4+35Sn−2

))
Example 3. Figure 3, points out that the solution of Equation (1) holds no positive
prime period two solutions on the assumption that the positive integers p,q and r
are even and the positive integer s is odd. Select
p = 6, q = 4, r = 2, s = 1, S−6 = 1, S−5 = 2, S−4 = 3, S−3 = 4, S−2 = 5,
S−1 = 6, S0 = 7, a = 10, b = 20, c = 15, d = 25, e = 30, f = 35.

Figure 3.
(
Sn+1 = Sn−6

(
10Sn−4+20Sn−2+15Sn−1
25Sn−4+30Sn−2+35Sn−1

))
Example 4. Figure 4, points out that the solution of Equation (1) holds no positive
prime period two solutions on the assumption that the positive integers r,s are even
and the positive integer p,q are odd. Select
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p = 7, q = 5, r = 4, s = 2, S−7 = 1, S−6 = 2, S−5 = 3, S−4 = 4, S−3 = 5, S−2 =
6, S−1 = 7, S0 = 8, a = 3, b = 4, c = 15, d = 2, e = 3, f = 5.

Figure 4.
(
Sn+1 = Sn−7

(
3Sn−5+4Sn−4+15Sn−2
2Sn−5+3Sn−4+5Sn−2

))
Example 5. Figure 5, points out that the solution of Equation (1) holds no positive
prime period two solutions on the assumption that the positive integers q is even
and the positive integer p,r,s are odd. Select
p = 5, q = 4, r = 3, s = 1, S−5 = 1, S−4 = 2, S−3 = 3, S−2 = 4, S−1 = 5, S0 = 6,
a = 3, b = 4, c = 5, d = 25, e = 30, f = 35.

Figure 5.
(
Sn+1 = Sn−5

(
3Sn−4+4Sn−3+5Sn−1

25Sn−4+30Sn−3+35Sn−1

))

4. Conclusion

In this paper, the periodicity of some cases of the positive solutions of the rational
difference Equation (1) is introduced and proved. It was evidently apparent that
Equation (1) has no positive solutions of prime period two in the discussed cases.
Therefore, in order to illustrate the results, some numerical examples were given.
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