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THE MEAN REMAINING STRENGTH OF PARALLEL SYSTEMS
IN A STRESS-STRENGTH MODEL BASED ON EXPONENTIAL

DISTRIBUTION

FATIH KIZILASLAN

Abstract. The mean remaining strength of any coherent system is one of
the important characteristics in stress-strength reliability. It shows that the
system on the average how long can be safe under the stress. In this paper,
we consider the mean remaining strength of the parallel systems in the stress-
strength model. We assume that the strength and stress components constitute
parallel systems separately. The mean remaining strength and its estimations
are obtained when the all components follow the exponential distribution. The
likelihood ratio order between the remaining strength of the parallel systems
is presented for two-component case. The simulation study is performed to
compare the derived estimates and their results are presented.

1. Introduction

In the reliability theory, the stress-strength model describes the reliability of a
component or system in terms of random variables. The reliability is defined as
R = P (X > Y ) where Y is the random stress experienced by the system and X is
the random strength of the system available to overcome the stress. The system fails
if the stress exceeds the strength. This main idea was introduced by Birnbaum [1]
and developed by Birnbaum and McCarty [2]. The last few decades, the problem of
estimating R has been considerable investigated by many authors for the different
data types and the distributional assumptions on X and Y . Examples of such
results and references can be found in Kotz et al. [3], Kundu and Gupta [4], Basirat
et al. [5, 6], Asgharzadeh et al. [7]. However, some results in the multicomponent
stress-strength models can be found in Bhattacharyya and Johnson [8, 9], Eryilmaz
[10, 11], Pakdaman and Ahmadi [12, 13], Hassan [14], Kızılaslan [15].
Let X and Y be two independent random variables. It is assumed that X is the

strength to failure of a component subject to a random stress Y and the component
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works if its strength is greater than the applied stress, that is X > Y . Then, we
may estimate the component’s survival function under the stress Y . We may also
wish to learn for how long, on average, the component can still be safe under the
stress. The mean remaining strength (MRS) of the component can be defined as
the expected remaining strength under the stress Y, i.e. Φ = E (X − Y |X > Y ).
The MRS of the systems has been presented by Gurler [16] for the simple stress-

strength model, k-out-of-n : F system, series and parallel systems under the com-
mon stress. When the component is alive at the strength level t under the applied
stress Y, the MRS of the component was defined as Φ(t) = E (X − Y − t |X − Y > t )
for t > 0 by Bairamov et al. [17]. They obtained that the MRS of the k-out-of-n : F
system, series and parallel systems for the exchangeable strength components un-
der the common stress. The MRS of the two-component parallel and series systems
were considered by Gurler et al. [18] for the dependent strength components which
are subject to a common stress.
In this study, the parallel stress and strength systems are considered. It is

assumed that X1, ..., Xn1
and Y1, ..., Yn2

are independent and identical strength
and stress random variables follow the exponential distribution with parameters
λ1 and λ2, respectively. Stochastic comparison of the remaining strength of two-
component parallel strength and stress systems are studied. Maximum likelihood
(ML) and Bayesian estimations of the MRS of this system are obtained. Bayesian
estimates are derived by using Lindley’s approximation and Markov Chain Monte
Carlo (MCMC) method due to the lack of explicit forms. In Section 2, we intro-
duce preliminaries for our system and obtain some distributional properties and
stochastic ordering results. In Section 3, we derive ML and Bayesian estimations
of the MRS of our system. Moreover, the asymptotic confidence and the highest
probability density (HPD) credible intervals of the MRS are constructed. In Section
4, we present a simulation study to compare the proposed estimates of the MRS.

2. Model description

Let X be a random variable with exponential distribution with parameter λ and
mean 1/λ. Then, it is known that the cdf and pdf of X are given by

FX(x) = 1− e−λx, fX(x) = λe−λx, x > 0, λ > 0,

respectively and denoted by X ∼ Exp(λ).
For our case, it is assumed that X1, ..., Xn1

strength and Y1, ..., Yn2
stress vari-

ables follow the exponential distribution with parameters λ1 and λ2. It is known
that the distribution of the parallel system (or its maximum) is generalized expo-
nential (GE) or exponentiated exponential distribution when the components are
independent and identical exponential distribution. The GE distribution was in-
troduced by Gupta and Kundu [19]. This distribution has been studied extensively
in the literature since then.
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If we assume that X1:n1
≤ X2:n1

≤ ... ≤ Xn1:n1
are the ordered strength of the

components, then X1:n1 and Xn1:n1 are the weakest and strongest components. It
is clear that the strength and stress of the parallel systems are max1≤i≤n1 (Xi) =
Xn1:n1

and max1≤i≤n2
(Yi) = Yn2:n2

. The cdfs and pdfs of Xn1:n1
and Yn2:n2

are

FXn1:n1
(x) = (1− e−λ1x)n1 , fXn1:n1

(x) = n1λ1e
−λ1x(1− e−λ1x)n1−1,

and

FYn2:n2
(y) = (1− e−λ2y)n2 , fYn2:n2

(y) = n2λ2e
−λ2y(1− e−λ2y)n2−1,

that is Xn1:n1
∼ GE(n1, λ1) and Yn2:n2

∼ GE(n2, λ2) where ni and λi i = 1, 2 are
the shape and scale parameters.
In this case, the reliability for the strength and stress of the parallel systems is

given by

Rn1,n2 = P (Xn1:n1 > Yn2:n2) =

∫ ∞
0

FYn2:n2
(x)fXn1:n1

(x)dx

= n1

n1−1∑
i=0

n2∑
j=0

(
n2

j

)(
n1 − 1

i

)
(−1)i+j

λ1

λ1(i+ 1) + λ2j
. (1)

It is also obtained by Pakdaman and Ahmadi [12, 13] (see Equations 2.8 and 9,
respectively).
Our system works if the strength is greater than the applied stress, that is

Xn1:n1 > Yn2:n2 . It is important to learn this system on the average how long can
be safe under the stress. Hence, we want to estimate the mean remaining strength
(MRS) of this system when the stress Yn2:n2

is applied. The MRS of our parallel
systems are the expected remaining strength under the stress Yn2:n2

and given by

Φn1,n2
= E (Xn1:n1

− Yn2:n2
|Xn1:n1

> Yn2:n2
) . (2)

The cdf of the conditional random variable ψ ≡ (Xn1:n1
− Yn2:n2

|Xn1:n1
> Yn2:n2

)
is

Fψ(x) = P (Xn1:n1
− Yn2:n2

≤ x |Xn1:n1
> Yn2:n2

)

=
P (Xn1:n1 ≤ Yn2:n2 + x, Xn1:n1 > Yn2:n2)

P (Xn1:n1
> Yn2:n2

)

=
P (Xn1:n1

≤ Yn2:n2
+ x, Xn1:n1

> Yn2:n2
)

Rn1,n2

.

Then, conditioning on Yn2:n2
= y,

P (Xn1:n1 ≤ Yn2:n2 + x, Xn1:n1 > Yn2:n2) =

∫ ∞
0

P (y < Xn1:n1 ≤ y + x)dFYn2:n2
(y)

=

∫ ∞
0

(
FXn1:n1

(y + x)− FXn1:n1
(y)
)
dFYn2:n2

(y)
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=

∫ ∞
0

FXn1:n1
(y + x)dFYn2:n2

(y)−
∫ ∞

0

FXn1:n1
(y)dFYn2:n2

(y)

≡ I1 − I2

and

I1 =

∫ ∞
0

FXn1:n1
(y + x)dFYn2:n2

(y)

=

∫ ∞
0

(1− e−λ1(y+x))n1n2λ2e
−λ2y(1− e−λ2y)n2−1dy

= n2λ2

n1∑
i=0

n2−1∑
j=0

(
n2 − 1

j

)(
n1

i

)
(−1)i+j

e−λ1ix

λ1i+ λ2(j + 1)
,

I2 =

∫ ∞
0

FXn1:n1
(y)dFYn2:n2

(y)

=

∫ ∞
0

(1− e−λ1y)n1n2λ2e
−λ2y(1− e−λ2y)n2−1dy

= n2λ2

n1∑
i=0

n2−1∑
j=0

(
n2 − 1

j

)(
n1

i

)
(−1)i+j

1

λ1i+ λ2(j + 1)
.

Hence,

Fψ(x) =
n2λ2

Rn1,n2

n1∑
i=1

n2−1∑
j=0

(
n2 − 1

j

)(
n1

i

)
(−1)i+j

(e−λ1ix − 1)

λ1i+ λ2(j + 1)
(3)

and

fψ(x) =
dFψ(x)

dx
=

n2λ2

Rn1,n2

n1∑
i=1

n2−1∑
j=0

(
n2 − 1

j

)(
n1

i

)
(−1)i+j+1 λ1i e

−λ1ix

λ1i+ λ2(j + 1)
. (4)

Then,

Φn1,n2
= E (Xn1:n1

− Yn2:n2
|Xn1:n1

> Yn2:n2
)

= Eψ(x) =

∫ ∞
0

xfψ(x)dx

=
n2

Rn1,n2

n1∑
i=1

n2−1∑
j=0

(
n2 − 1

j

)(
n1

i

)
(−1)i+j+1 λ2

λ1i (λ1i+ λ2(j + 1))
. (5)

It can be also rewritten as

Φn1,n2 =
R∗n1,n2

Rn1,n2

, (6)
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where

R∗n1,n2
= n2

n1∑
i=1

n2−1∑
j=0

(
n2 − 1

j

)(
n1

i

)
(−1)i+j+1 λ2

λ1i (λ1i+ λ2(j + 1))
. (7)

In Figure 1, some plots of Φn1,n2 with respect to the parameters λ1 and λ2 are
presented. It is observed that Φn1,n2 is a decreasing function of λ1 for fixed value
of λ2 and increasing function of λ2 for fixed value of λ1.

Figure 1. Plots of Φn1,n2
with respect to the parameters λ1 and λ2.

2.1. Stochastic ordering results. In this section, we present the likelihood ratio
ordering result associated with the remaining strength of parallel systems i.e. the
conditional random variable ψ ≡ Xn1:n1

− Yn2:n2
|Xn1:n1

> Yn2:n2
. This random

variable is a special case of the residual life of a random variable X at random time
Θ which is defined as XΘ = X −Θ|X > Θ (see Dewan and Khaledi [20] and Misra
and Naqvi [21, 22].
Let X and Y be two lifetime random variables with pdfs f(x) and g(x), respec-

tively. X is said to be smaller than Y in the likelihood ratio order (denoted by
X ≤lr Y ) if g(x)/f(x) is increasing in x for all x for which this ratio is well defined.
It is known that the likelihood ratio order implies other stochastic orders. Hence
the likelihood ratio order is the most interesting order in stochastic comparison.
For more details on stochastic comparisons, see Shaked and Shanthikumar [23].
The coeffi cients of the cdf and pdf of ψ ≡ Xn1:n1

− Yn2:n2
|Xn1:n1

> Yn2:n2
in

equations (3) and (4) can be negative or positive. That is why general stochastic
comparisons is not possible for ψ random variable. As a special case we consider
two-component parallel systems (i.e. n1 = n2 = 2). In this case, we have

fψ(x) =
4λ1λ

2
2

R2,2 (λ1 + λ2)

[
e−λ1x

λ1 + 2λ2
− e−2λ1x

2(2λ1 + λ2)

]
,
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where

R2,2 = 1− 5λ1

λ1 + λ2
+

2λ1

λ1 + 2λ2
+

4λ1

2λ1 + λ2
,

from equations (4) and (1).

Theorem 1. Suppose Xi, X
∗
i i = 1, 2 are the strength and Yi, Y ∗i i = 1, 2 are

the stress variables with Xi ∼ Exp(λ1), X∗i ∼ Exp(λ∗1), Yi ∼ Exp(λ2) and Y ∗i ∼
Exp(λ∗2), i = 1, 2. If λ∗1 < λ1 and λ2 < λ∗2, then we have ψ ≤lr ψ∗ where ψ =
X2:2 − Y2:2 |X2:2 > Y2:2 and ψ

∗ = X∗2:2 − Y ∗2:2 |X∗2:2 > Y ∗2:2 .

Proof. If we show that fψ∗(x)/fψ(x) is increasing function in x, it completes the
proof. Then, we have

Λ(x) =
fψ(x)

fψ∗(x)
=

λ1λ
2
2

λ∗1λ
∗2
2

R∗2,2 (λ∗1 + λ∗2) D∗1 D
∗
2

R2,2 (λ1 + λ2) D1 D2

2D1 e
−λ1x −D2 e

−2λ1x

2D∗1 e
−λ∗1x −D∗2 e−2λ∗1x

,

where D1 = 2λ1 + λ2, D∗1 = 2λ∗1 + λ∗2, D2 = λ1 + 2λ2 and D∗2 = λ∗1 + 2λ∗2. After
some computations

Λ
′
(x)

sign
= 4D1 D

∗
1 e
−λ1xe−λ

∗
1x(λ∗1 − λ1) + 2D2 D

∗
2 e
−2λ1xe−2λ∗1x(λ∗1 − λ1)

+2D1 D
∗
2 e
−λ1xe−2λ∗1x(λ1 − 2λ∗1) + 2D∗1 D2 e

−2λ1xe−λ
∗
1x(2λ1 − λ∗1)

< 2D1 [2 D∗1(λ∗1 − λ1) +D∗2 (λ1 − 2λ∗1)] + 2 D2 [D∗2(λ∗1 − λ1) +D∗1 (2λ1 − λ∗1)]

= 6λ1λ
∗
1 [(λ∗1 − λ1) + (λ2 − λ∗2)] ,

where a
sign
= b means that a and b have the same sign. The last inequality implies

that Λ(x) is a decreasing function in x for λ∗1 < λ1 and λ2 < λ∗2. Hence, it completes
the proof. �

Example 2. Theorem 1 results are observed in Figure 2. When the theorem con-
ditions are not satisfied in Figure 3 (A) and (B), the graphic of fψ∗(x)/fψ(x) can
be concave or convex. However, it is observed that all these results are also valid
for n1, n2 > 2.

3. Estimation of Φn1,n2

In this section, we consider the estimation problem of MRS. Although the es-
timation of the stress-strength reliability of different systems has been considered
extensively, the similar problem for MRS has not been studied in the literature
except for Gurler et al. [18]. In our case, ML and Bayes estimations of the MRS
are studied.
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Figure 2. Plot of fψ∗(x)/fψ(x) for (λ1, λ2) = (2, 3) and
(λ∗1, λ

∗
2) = (1.5, 3.5).

Figure 3. Plots of fψ∗(x)/fψ(x) for different parameters.

3.1. MLE case. The random strength and stress of the parallel systems are de-
noted by V = max1≤i≤n1 (Xi) and W = max1≤j≤n2 (Yj) . It is known that V ∼
GE(n1, λ1) and W ∼ GE(n2, λ2) when Xi i = 1, ..., n1 and Yj , j = 1, ..., n2 are
exponential distributions with parameters λ1 and λ2. Let V1, ..., Vn be a random
sample of size n from GE(n1, λ1) and W1, ...,Wm be a random sample of size m
from GE(n2, λ2). Then, the likelihood function based on the observed sample
{v = (v1, ..., vn), w = (w1, ..., wm)} is given by

L(λ1, λ2 |v,w ) =

n∏
i=1

m∏
j=1

fVi(vi)fWj
(wj)
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= nn1λ
n
1n

m
2 λ

m
2 exp

(
−λ1

n∑
i=1

vi + (n1 − 1)

n∑
i=1

ln(1− e−λ1vi)

)

exp

−λ2

m∑
j=1

wj + (n2 − 1)

m∑
j=1

ln(1− e−λ2wj )

 .

Hence, the MLEs of λ1 and λ2, say λ̂1and λ̂2, are the solution of the following
nonlinear equations:

n

λ1
−

n∑
i=1

vi
1− e−λ1vi

+ n1

n∑
i=1

vie
−λ1vi

1− e−λ1vi
= 0,

m

λ2
−

m∑
j=1

wj
1− e−λ2wj

+ n2

m∑
j=1

wje
−λ2wj

1− e−λ2wj
= 0.

λ̂1and λ̂2 can be obtained by using the fixed point method or Newton-Raphson
method or other numerical methods. Ghitany et al. [24] proved that if at least one
observation is different minimum of the all observations, then this type nonlinear
equations have unique solution. When we obtain λ̂1and λ̂2, the MLE of Φn1,n2 , say
Φ̂MLE
n1,n2

, is obtained from (5) by using the invariance property of MLEs.
Moreover, an asymptotic confidence interval of Φn1,n2

can be constructed based
on the MLEs. The Fisher information matrix of λ = (λ1, λ2) is

I(λ) = −

 E
(
∂2l
∂λ2

1

)
E
(

∂2l
∂λ1∂λ2

)
E
(

∂2l
∂λ2∂λ1

)
E
(
∂2l
∂λ2

2

)  =

(
I11 I12

I21 I22

)
.

where l = ln(L(λ1, λ2 |v,w )). The elements of the matrix are obtained as I12 =
I21 = 0,

I11 =
n

λ2
1

+
n1n

λ2
1(n1 − 2)

{
(ψ(2)− ψ(n1))

2
+ ψ

′
(2)− ψ

′
(n1)

}
and

I22 =
m

λ2
2

+
n2m

λ2
2(n2 − 2)

{
(ψ(2)− ψ(n2))

2
+ ψ

′
(2)− ψ

′
(n2)

}
,

for n1 > 2 and n2 > 2 by using the formula 4.261(17) in Gradshteyn and Ryzhik
[25] where ψ(x) = d ln Γ(x)/dx is a Psi function. Φ̂MLE

n1,n2
is asymptotically normal

with mean Φn1,n2
and asymptotic variance

σ2
Φn1,n2

=

2∑
j=1

2∑
i=1

∂Φn1,n2

∂λi

∂Φn1,n2

∂λj
I−1
ij ,

where I−1
ij is the (i, j)th element of the inverse of the I(λ); see Rao [26]. Then,

σ2
Φn1,n2

=

(
∂Φn1,n2

∂λ1

)2
1

I11
+

(
∂Φn1,n2

∂λ2

)2
1

I22
.
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The partial derivatives of Rn1,n2
and R∗n1,n2

with respect to λ1 and λ2 are given by

∂Rn1,n2

∂λ1
= n1

n1−1∑
i=0

n2∑
j=0

(
n2

j

)(
n1 − 1

i

)
(−1)i+j

λ2j

(λ1(i+ 1) + λ2j)
2 ,

∂Rn1,n2

∂λ2
= n1

n1−1∑
i=0

n2∑
j=0

(
n2

j

)(
n1 − 1

i

)
(−1)i+j+1 λ1j

(λ1(i+ 1) + λ2j)
2 ,

∂R∗n1,n2

∂λ1
= n2

n1∑
i=1

n2−1∑
j=0

(
n2 − 1

j

)(
n1

i

)
(−1)i+j

λ2(2λ1i+ λ2(j + 1))

λ2
1i (λ1i+ λ2(j + 1))

2 ,

∂R∗n1,n2

∂λ2
= n2

n1∑
i=1

n2−1∑
j=0

(
n2 − 1

j

)(
n1

i

)
(−1)i+j+1 1

(λ1i+ λ2(j + 1))
2 .

Then, ∂Φn1,n2
/∂λ1 and ∂Φn1,n2

/∂λ2 are evaluated by using these partial deriva-
tives. Therefore, an asymptotic 100(1− γ)% confidence interval of Φn1,n2

is given
by

Φn1,n2
∈
(

Φ̂MLE
n1,n2

± zγ/2σ̂Φn1,n2

)
,

where zγ/2 is the upper γ/2th quantile of the standard normal distribution and
σ̂Φn1,n2

is the value of σΦn1,n2
at the MLE of the parameters.

3.2. Bayesian case. In this section, we assume that the parameters λ1 and λ2

are random variables and have statistically independent gamma prior distributions
with parameters (ai, bi), i = 1, 2, respectively. The pdf of a gamma random variable
X with parameters (ai, bi) is

f(x) =
baii

Γ(ai)
xai−1e−xbi , x > 0, ai, bi > 0

where ai, bi > 0, i = 1, 2. Then, the joint posterior density function of λ1 and λ2 is

π(λ1, λ2 |v,w ) ∝ λn+a1−1
1 exp

(
−λ1

(
b1 +

n∑
i=1

vi

)
+ (n1 − 1)

n∑
i=1

ln(1− e−λ1vi)

)

λm+a2−1
2 exp

−λ2

b2 +

m∑
j=1

wj

+ (n2 − 1)

m∑
j=1

ln(1− e−λ2wj )

 .

(8)

The Bayes estimator of Φn1,n2 under the SE loss function is given by

Φ̂Bayesn1,n2
=

∫ ∞
0

∫ ∞
0

Φn1,n2
π(λ1, λ2 |v,w )dλ1dλ2. (9)

Since the integrals given in (9) is not computed analytically, Lindley’s approxima-
tion and MCMC methods can be applied to approximate (9).
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3.2.1. Lindley’s approximation. Lindley [27] introduced an approximate procedure
for the computation of the ratio of two integrals. This procedure, applied to the
posterior expectation of the function U(λ) for a given x, is

E(u(θ) |x ) =

∫
u(θ)eQ(θ)dθ∫
eQ(θ)dθ

,

where Q(θ) = l(θ)+ρ(θ), l(θ) is the logarithm of the likelihood function and ρ(θ) is
the logarithm of the prior density of θ. Using Lindley’s approximation, E(u(θ) |x )
is approximately estimated by

E(u(θ) |x ) =

u+
1

2

∑
i

∑
j

(uij + 2uiρj)σij +
1

2

∑
i

∑
j

∑
k

∑
l

Lijkσijσklul


λ̂

+terms of order n−2 or smaller,

where θ = (θ1, θ2, ..., θm), i, j, k, l = 1, ...,m, θ̂ is the MLE of θ, u = u(θ), ui =
∂u/∂θi, uij = ∂2u/∂θi∂θj , Lijk = ∂3l/∂θi∂θj∂θk, ρj = ∂ρ/∂θj and σij = (i, j)th
element in the inverse of the matrix {−Lij} all evaluated at the MLE of the para-
meters.
For the two parameter case λ = (λ1, λ2), Lindley’s approximation leads to

ûLin = u(λ) +
1

2
[B +Q30B12 +Q21C12 +Q12C21 +Q03B21] ,

where B =
∑2
i=1

∑2
j=1 uijτ ij , Qij = ∂Qi+j/∂iθλ1∂

jλ2 for i, j = 0, 1, 2, 3, i+j = 3,

ui = ∂u/∂λi, uij = ∂2U/∂λi∂λj for i, j = 1, 2 and Bij = (uiτ ii + ujτ ij)τ ii,
Cij = 3uiτ iiτ ij + uj(τ iiτ ij + 2τ2

ij)τ ij for i 6= j. τ ij is the (i, j)th element in the
inverse of matrix Q∗ = (−Q∗ij), i, j = 1, 2 such that Q∗ij = ∂Q2/∂λi∂λj . The

approximate Bayes estimate ûLin is evaluated at (λ̃1, λ̃2) which is the mode of the
posterior density.
In our case, u(λ) = Φn1,n2

,

Q = lnπ(λ1, λ2 |v,w ) ∝ (n+ a1 − 1) lnλ1 + (m+ a2 − 1) lnλ2 − λ1

(
b1 +

n∑
i=1

vi

)

−λ2

b2 +

m∑
j=1

wj

+ (n1 − 1)

n∑
i=1

ln(1− e−λ1vi) + (n2 − 1)

m∑
j=1

ln(1− e−λ2wj ).

The posterior mode of λ1 and λ2, say λ̃1 and λ̃2, are the solution of the following
nonlinear equations from Q

n+ a1 − 1

λ1
−
(
b1 +

n∑
i=1

vi

)
+ (n1 − 1)

n∑
i=1

vie
−λ1vi

1− e−λ1vi
= 0,
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m+ a2 − 1

λ2
−

b2 +

m∑
j=1

wj

+ (n2 − 1)

m∑
j=1

wje
−λ2wj

1− e−λ2wj
= 0.

Moreover, it is obtained that

τ11 =

[
n+ a1 − 1

λ2
1

+ (n1 − 1)

n∑
i=1

v2
i e
−λ1vi

(1− e−λ1vi)
2

]−1

,

τ22 =

m+ a2 − 1

λ2
2

+ (n2 − 1)

m∑
j=1

w2
j e
−λ2wj

(1− e−λ2wj )
2

−1

,

τ12 = τ21 = 0, Q12 = Q21 = 0, Q03 = 2(m + a2 − 1)/λ3
2, Q30 = 2(n + a1 − 1)/λ3

1,
B12 = u1τ

2
11, B21 = u2τ

2
22, B = u11τ11 + u22τ22,

u11 =
∂2Φn1,n2

∂λ2
1

=
1

(Rn1,n2)
2

(
Rn1,n2

∂2R∗n1,n2

∂λ2
1

−R∗n1,n2

∂2Rn1,n2

∂λ2
1

)

− 2

(Rn1,n2
)
3

∂Rn1,n2

∂λ1

(
Rn1,n2

∂R∗n1,n2

∂λ1
−R∗n1,n2

∂Rn1,n2

∂λ1

)
and

u22 =
∂2Φn1,n2

∂λ2
2

=
1

(Rn1,n2
)
2

(
Rn1,n2

∂2R∗n1,n2

∂λ2
2

−R∗n1,n2

∂2Rn1,n2

∂λ2
2

)

− 2

(Rn1,n2
)
3

∂Rn1,n2

∂λ2

(
Rn1,n2

∂R∗n1,n2

∂λ2
−R∗n1,n2

∂Rn1,n2

∂λ2

)
.

u11 and u22 are evaluated by using the second partial derivatives of Rn1,n2
and

R∗n1,n2
with respect to λ1 and λ2. Therefore, the approximate Bayes estimate of

Φn1,n2
is

Φ̂Linn1,n2
= Φn1,n2

+
1

2
[B +Q30B12 +Q03B21](λ1,λ2)=(λ̃1,λ̃2) . (10)

3.2.2. MCMC method. The joint posterior density function of λ1 and λ2 is given in
(8). The marginal posterior density functions of λ1 and λ2 are given respectively
as

π1(λ1 |λ2,v,w ) ∝ λn+a1−1
1 exp

(
−λ1

(
b1 +

n∑
i=1

vi

)
+ (n1 − 1)

n∑
i=1

ln(1− e−λ1vi)

)
,

and

π2(λ2 |λ1,v,w ) ∝ λm+a2−1
2 exp

−λ2

b2 +

m∑
j=1

wj

+ (n2 − 1)

m∑
j=1

ln(1− e−λ2wj )

 .
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Since these density functions are not well-known distribution, it is not possible to
sample directly by standard methods. If the posterior density function is unimodal
and roughly symmetric, then it is often convenient to approximate it by a normal
distribution (see Gelman et al., [28]). To see the marginal posterior densities are
unimodal and roughly symmetric, we check whether the posterior densities have the
log-concavity property. It is easily seen that the marginal posterior densities of λ1

and λ2 are log-concave. Therefore, we use the Metropolis-Hasting algorithm with
the normal proposal distribution to generate a random sample from the posterior
densities of λ1 and λ2 in our implementation. The following algorithm is used.
Step 1: Start with initial guess λ(0)

1 and λ(0)
2 .

Step 2: Set i = 1.
Step 3: Generate λ(i)

1 from π1(λ1 |λ2,v,w ) using the Metropolis-Hastings algo-
rithm with the proposal distribution q1(λ1) ≡ N(λ

(i−1)
1 , Vλ1

) as follows.
a) Let v = λ

(i−1)
1 .

b) Generate w from the proposal distribution q1.

c) Let p(v, w) = min

1,
π1(w

∣∣∣λ(i)
2 ,v,w ) q1(v)

π1(v
∣∣∣λ(i)

1 ,v,w ) q1(w)

.
d) Generate u from Uniform(0, 1). If u ≤ p(v, w), then accept the proposal

and set λ(i)
1 = w; otherwise, set λ(i)

1 = v.
Step 4: Similarly, λ(i)

2 is generated from π2(λ2 |λ1,v,w ) using the Metropolis-
Hastings algorithm with the proposal distribution q2(λ2) ≡ N(λ

(i−1)
2 , Vλ2

).
Step 5: Compute the Φ

(i)
n1,n2 at (λ

(i)
1 , λ

(i)
2 ).

Step 6: Set i = i+ 1.
Step 7: Repeat Steps 2 through -7, N times and obtain the posterior sample

Φ
(i)
n1,n2 , i = 1, ..., N .
This sample is used to compute the Bayes estimate and to construct the HPD

credible interval for Φn1,n2 . The Bayes estimate of Rs,k under a SE loss function is
given by

Φ̂MCMC
n1,n2

=
1

N −M

N−M∑
i=M+1

Φ(i)
n1,n2

, (11)

where M is the burn-in period.
The HPD 100(1 − γ)% credible interval of Rs,k is obtained by the method of

Chen and Shao [29].

4. Simulation Study

In this section, some numerical results are presented to compare the performance
of the ML and Bayes estimates of Φn1,n2

for different parameters and sample sizes.
The performances of the point estimators are compared by using mean squared
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error (MSE) and estimated risks (ERs). The performances of the asymptotic confi-
dence and credible intervals are compared by using average confidence lengths and
coverage probabilities (cps). The coverage probability of a confidence interval is
the proportion of the time that the interval contains the true value of interest. The
ER of θ, when θ is estimated by θ̂, is given by

ER(θ) =
1

N

N∑
i=1

(
θ̂i − θi

)2

,

under the SE loss function. All of the computations are performed by using MAT-
LAB. All the results are based on 2500 replications.
In Tables 1-4, strength and stress samples are generated for (n1, n2) = (5, 5),

(10, 10), (15, 10) and (λ1, λ2) = (0.5, 10), (1, 10), (1.5, 10), (2, 10) and different sam-
ple sizes n andm = 10(10)50. The hyperparameters are chosen that prior means are
exactly equal to the true values of the parameters. For this reason (a1, b1) = (5, 10),
(10, 10), (15, 10), (20, 10) and (a2, b2) = (5, 1/2) are used for (λ1, λ2) = (0.5, 10),
(1, 10), (1.5, 10), (2, 10), respectively. For these samples, estimations of Φn1,n2

are
listed based on the MLE and Bayesian estimates which are obtained by using Lind-
ley’s approximation and MCMC method. Moreover, 95% asymptotic confidence
interval and HPD credible interval of Φn1,n2 with its coverage probabilities (cps)
are presented.
In the MCMC case, we run three MCMC chains with fairly different initial values

and generate 5000 iterations for each chain. To diminish the effect of the starting
distribution, a certain number of the first 2500 draws is discarded. This is known
as the burn-in. In our case, we discard the first 2500 iterations of each sequence
and focus on the other 2500 iterations. In order to break the dependence between
draws in the Markov chain, it is suggested only to keep every dth draw of the chain.
This is known as thinning. In our case, we calculate the Bayesian MCMC estimates
by the means of every 5th sampled values after discarding the first 2500 iterations
of the chains. To monitor convergence of MCMC simulations the scale reduction
factor estimate is used. The estimate is given by

√
V ar(ψ)/W , where ψ is the

estimand of interest, V ar(ψ) = (n− 1)W/n+B/n with the iteration number n for
each chain, the between-sequence variance B and the within-sequence variance W ,
see Gelman et al. [28]. In our case, the scale factor values of the MCMC estimators
are found to be below 1.1, which is an acceptable value for their convergence.
From Tables 1-4, it is observed that the average MSEs of ML estimates and

ERs of the Bayes estimates of Φn1,n2
decrease as the sample size increases in all

cases, as expected. The Bayes estimates of Φn1,n2
have smaller errors than that

of MLEs. Moreover, the ERs of the Bayes estimates which are obtained from the
MCMC method are smaller than those obtained from Lindley’s approximation. The
average lengths of the intervals decrease as the sample size increases. The average
lengths of the Bayesian credible intervals are smaller than those of the asymptotic
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Table 1. Estimates and confidence interval of Φn1,n2 .

λ1 = 0.5 a n d λ2 = 10

n1 n2 n m Φn1,n2 Φ̂MLEn1,n2
Φ̂
Lindley
n1,n2

Φ̂MCMCn1,n2
ACI o f Φn1:n2 HPDCI o f Φn1:n2

5 5 1 0 1 0 4 .3 3 8 7 4 .3 5 8 7 4 .5 3 4 4 4 .4 2 2 3 ( 2 .8 7 1 4 ,5 .8 4 6 0 ) ( 3 .0 9 6 4 ,5 .8 7 3 6 )
0 .5 9 6 9 0 .5 4 0 5 0 .4 8 4 3 2 .9 7 4 6 / 0 .9 3 3 2 2 .7 7 7 3 / 0 .9 5 2 4

2 0 2 0 4 .3 4 6 3 4 .4 4 1 1 4 .3 7 7 9 ( 3 .2 9 7 5 ,5 .3 9 5 1 ) ( 3 .4 0 7 4 ,5 .4 1 1 2 )
0 .2 8 3 8 0 .2 7 0 4 0 .2 5 4 3 2 .0 9 7 6 / 0 .9 4 2 8 2 .0 0 3 7 / 0 .9 4 9 6

3 0 3 0 4 .3 4 5 2 4 .4 1 0 0 4 .3 6 6 0 ( 3 .4 8 9 1 ,5 .2 0 1 3 ) ( 3 .5 6 3 7 ,5 .2 1 0 4 )
0 .1 9 0 8 0 .1 8 4 9 0 .1 7 7 2 1 .7 1 2 2 / 0 .9 4 8 8 1 .6 4 6 7 / 0 .9 4 8 4

4 0 4 0 4 .3 4 9 3 4 .3 9 8 4 4 .3 6 5 1 ( 3 .6 0 7 3 ,5 .0 9 1 3 ) ( 3 .6 6 5 5 ,5 .0 9 7 3 )
0 .1 4 3 4 0 .1 4 0 7 0 .1 3 6 3 1 .4 8 4 0 / 0 .9 5 6 4 1 .4 3 1 8 / 0 .9 5 0 4

5 0 5 0 4 .3 4 7 6 4 .3 8 7 1 4 .3 5 9 9 ( 3 .6 8 4 1 ,5 .0 1 1 0 ) ( 3 .7 3 2 4 ,5 .0 1 3 1 )
0 .1 1 3 8 0 .1 1 2 1 0 .1 0 9 1 1 .3 2 7 0 / 0 .9 4 6 0 1 .2 8 0 7 / 0 .9 4 8 4

1 0 1 0 1 0 1 0 5 .6 5 5 0 5 .6 2 0 4 5 .7 7 5 1 5 .6 5 5 6 ( 4 .1 0 3 3 ,7 .1 3 7 4 ) ( 4 .2 8 4 8 ,7 .1 2 2 8 )
0 .6 1 7 3 0 .5 9 7 4 0 .5 3 9 1 3 .0 3 4 1 / 0 .9 4 4 4 2 .8 3 8 0 / 0 .9 4 8 8

2 0 2 0 5 .5 8 6 1 5 .6 6 8 2 5 .6 0 3 1 ( 4 .5 1 9 9 ,6 .6 5 2 2 ) ( 4 .6 1 8 2 ,6 .6 4 0 3 )
0 .2 9 4 5 0 .2 8 9 5 0 .2 7 4 3 2 .1 3 2 3 / 0 .9 4 6 0 2 .0 2 2 1 / 0 .9 4 6 4

3 0 3 0 5 .5 8 8 7 5 .6 4 4 3 5 .5 9 9 4 ( 4 .7 1 7 8 ,6 .4 5 9 6 ) ( 4 .7 8 8 0 ,6 .4 4 3 0 )
0 .2 1 1 1 0 .2 0 9 5 0 .2 0 2 5 1 .7 4 1 8 / 0 .9 5 1 2 1 .6 5 5 0 / 0 .9 4 2 4

4 0 4 0 5 .5 7 8 8 5 .6 2 1 0 5 .5 8 6 5 ( 4 .8 2 5 8 ,6 .3 3 1 7 ) ( 4 .8 8 6 7 ,6 .3 1 4 1 )
0 .1 4 8 0 0 .1 4 7 0 0 .1 4 3 6 1 .5 0 5 9 / 0 .9 4 8 0 1 .4 2 7 4 / 0 .9 3 4 4

5 0 5 0 5 .5 6 6 7 5 .6 0 0 8 5 .5 7 3 8 ( 4 .8 9 4 7 ,6 .2 3 8 7 ) ( 4 .9 4 8 8 ,6 .2 2 0 3 )
0 .1 2 1 8 0 .1 2 0 4 0 .1 1 8 5 1 .3 4 4 0 / 0 .9 4 6 0 1 .2 7 1 5 / 0 .9 3 2 0

1 5 1 0 1 0 1 0 6 .3 4 3 6 6 .3 7 9 2 6 .5 2 1 7 6 .4 0 1 9 ( 4 .8 6 8 3 ,7 .8 9 0 1 ) ( 5 .0 2 3 3 ,7 .8 6 2 5 )
0 .5 9 1 7 0 .5 7 6 4 0 .5 2 8 4 3 .0 2 1 8 / 0 .9 4 6 4 2 .8 3 9 2 / 0 .9 4 6 8

2 0 2 0 6 .3 6 5 3 6 .4 3 9 7 6 .3 7 4 6 ( 5 .2 9 9 4 ,7 .4 3 1 3 ) ( 5 .3 8 6 4 ,7 .4 0 6 5 )
0 .2 9 7 9 0 .2 9 4 8 0 .2 8 1 8 2 .1 3 1 9 / 0 .9 5 2 8 2 .0 2 0 1 / 0 .9 4 0 8

3 0 3 0 6 .3 4 8 3 6 .3 9 8 8 6 .3 5 5 1 ( 5 .4 8 0 2 ,7 .2 1 6 5 ) ( 5 .5 4 6 5 ,7 .1 9 3 1 )
0 .1 9 1 2 0 .1 8 9 0 0 .1 8 4 5 1 .7 3 6 3 / 0 .9 5 3 6 1 .6 4 6 6 / 0 .9 4 7 2

4 0 4 0 6 .3 6 1 9 6 .3 9 9 9 6 .3 6 7 0 ( 5 .6 0 8 6 ,7 .1 1 5 3 ) ( 5 .6 6 6 0 ,7 .0 8 8 8 )
0 .1 4 6 5 0 .1 4 6 3 0 .1 4 2 9 1 .5 0 6 7 / 0 .9 5 6 8 1 .4 2 2 7 / 0 .9 3 9 2

5 0 5 0 6 .3 4 3 4 6 .3 7 4 1 6 .3 4 7 9 ( 5 .6 7 1 5 ,7 .0 1 5 4 ) ( 5 .7 2 0 4 ,6 .9 9 0 6 )
0 .1 1 8 6 0 .1 1 7 6 0 .1 1 6 0 1 .3 4 3 9 / 0 .9 4 7 2 1 .2 7 0 2 / 0 .9 3 1 2

N o t e s : 1 s t r ow r e p r e s e n t s t h e av e r a g e e s t im a t e s , 95% c o n fid e n c e in t e r va l a n d 2 n d r ow r e p r e s e n t s c o r r e s p o n d in g M SE o r
E R s , in t e r va l l e n g t h s a n d c p s fo r t h e p o in t a n d in t e r va l e s t im a t e s , r e s p e c t iv e ly.

Table 2. Estimates and confidence interval of Φn1,n2
.

λ1 = 1 a n d λ2 = 10

n1 n2 n m Φn1,n2
Φ̂MLEn1,n2

Φ̂
Lindley
n1,n2

Φ̂MCMCn1,n2
ACI o f Φn1,n2

HPDCI o f Φn1:n2
5 5 1 0 1 0 2 .0 5 8 3 2 .0 6 1 2 2 .1 3 1 1 2 .0 9 1 9 ( 1 .3 2 0 7 ,2 .8 0 1 8 ) ( 1 .4 5 5 3 ,2 .7 8 4 1 )

0 .1 4 6 6 0 .1 0 2 7 0 .0 9 3 8 1 .4 8 1 1 / 0 .9 3 9 2 1 .3 2 8 8 / 0 .9 6 7 6
2 0 2 0 2 .0 7 2 3 2 .1 1 2 0 2 .0 8 5 8 ( 1 .5 4 5 9 ,2 .5 9 8 6 ) ( 1 .6 0 7 5 ,2 .5 9 3 6 )

0 .0 7 1 5 0 .0 6 0 4 0 .0 5 6 6 1 .0 5 2 7 / 0 .9 4 9 2 0 .9 8 6 2 / 0 .9 6 3 2
3 0 3 0 2 .0 6 3 8 2 .0 9 2 4 2 .0 7 3 1 ( 1 .6 3 5 7 ,2 .4 9 1 9 ) ( 1 .6 7 5 4 ,2 .4 9 0 9 )

0 .0 4 8 1 0 .0 4 2 8 0 .0 4 0 9 0 .8 5 6 1 / 0 .9 4 6 0 0 .8 1 5 6 / 0 .9 5 6 4
4 0 4 0 2 .0 6 2 8 2 .0 8 5 0 2 .0 6 9 7 ( 1 .6 9 2 2 ,2 .4 3 3 4 ) ( 1 .7 2 1 5 ,2 .4 3 3 2 )

0 .0 3 5 9 0 .0 3 2 9 0 .0 3 1 8 0 .7 4 1 2 / 0 .9 4 9 2 0 .7 1 1 7 / 0 .9 5 4 8
5 0 5 0 2 .0 6 0 7 2 .0 7 8 8 2 .0 6 6 4 ( 1 .7 2 9 5 ,2 .3 9 1 9 ) ( 1 .7 5 3 3 ,2 .3 9 1 9 )

0 .0 2 7 0 0 .0 2 5 2 0 .0 2 4 5 0 .6 6 2 4 / 0 .9 5 5 2 0 .6 3 8 5 / 0 .9 5 9 6
1 0 1 0 1 0 1 0 2 .6 3 6 2 2 .6 4 8 4 2 .7 1 2 8 2 .2 6 6 0 ( 1 .8 9 1 4 ,3 .4 0 5 5 ) ( 1 .9 9 2 2 ,3 .3 8 2 8 )

0 .1 5 3 2 0 .1 2 3 8 0 .1 1 3 1 1 .5 1 4 0 / 0 .9 4 2 8 1 .3 9 0 6 / 0 .9 5 9 6
2 0 2 0 2 .6 5 0 3 2 .6 8 6 0 2 .6 5 7 5 ( 2 .1 1 4 5 ,3 .1 8 6 0 ) ( 2 .1 6 2 4 ,3 .1 7 5 5 )

0 .0 7 4 9 0 .0 6 7 8 0 .0 6 4 1 1 .0 7 1 5 / 0 .9 5 0 4 1 .0 1 3 1 / 0 .9 5 8 4
3 0 3 0 2 .6 4 3 3 2 .6 6 8 3 2 .6 4 8 1 ( 2 .2 0 6 9 ,3 .0 7 9 6 ) ( 2 .2 3 9 7 ,3 .0 7 2 4 )

0 .0 5 2 0 0 .0 4 8 5 0 .0 4 6 8 0 .8 7 2 8 / 0 .9 4 1 2 0 .8 3 2 6 / 0 .9 4 6 8
4 0 4 0 2 .6 3 9 5 2 .6 5 8 8 2 .6 4 2 9 ( 2 .2 6 2 2 ,3 .0 1 6 8 ) ( 2 .2 8 8 0 ,3 .0 0 9 5 )

0 .0 3 8 1 0 .0 3 6 1 0 .0 3 5 1 0 .7 5 4 6 / 0 .9 5 0 4 0 .7 2 1 5 / 0 .9 4 7 6
5 0 5 0 2 .6 3 9 2 2 .6 5 4 8 2 .6 4 2 0 ( 2 .3 0 1 7 ,2 .9 7 6 6 ) ( 2 .3 2 3 1 ,2 .9 7 0 0 )

0 .0 2 9 2 0 .0 2 8 0 0 .0 2 7 4 0 .6 7 4 9 / 0 .9 4 4 0 0 .6 4 6 8 / 0 .9 4 3 2
1 5 1 0 1 0 1 0 3 .0 2 5 3 3 .0 2 3 7 3 .0 8 4 9 3 .0 3 7 7 ( 2 .2 6 9 0 ,3 .7 7 8 3 ) ( 2 .3 5 4 6 ,3 .7 5 6 1 )

0 .1 3 9 6 0 .1 1 7 5 0 .1 0 9 5 1 .5 0 9 3 / 0 .9 5 6 8 1 .4 0 1 5 / 0 .9 6 8 8
2 0 2 0 3 .0 3 6 7 3 .0 6 9 5 3 .0 4 1 2 ( 2 .5 0 1 5 ,3 .5 7 1 8 ) ( 2 .5 4 3 1 ,3 .5 5 9 1 )

0 .0 7 6 6 0 .0 7 0 9 0 .0 6 7 8 1 .0 7 0 4 / 0 .9 4 5 6 1 .0 1 6 0 / 0 .9 4 6 4
3 0 3 0 3 .0 3 3 1 3 .0 5 5 8 3 .0 3 5 8 ( 2 .5 9 6 6 ,3 .4 6 9 6 ) ( 2 .6 2 4 9 ,3 .4 5 9 7 )

0 .0 5 0 9 0 .0 4 8 3 0 .0 4 6 9 0 .8 7 2 9 / 0 .9 4 8 8 0 .8 3 4 8 / 0 .9 4 9 6
4 0 4 0 3 .0 2 8 3 3 .0 4 5 7 3 .0 3 0 5 ( 2 .6 5 0 9 ,3 .4 0 5 7 ) ( 2 .6 7 3 4 ,3 .3 9 6 8 )

0 .0 3 6 6 0 .0 3 5 1 0 .0 3 4 5 0 .7 5 4 8 / 0 .9 5 2 4 0 .7 2 3 5 / 0 .9 5 2 0
5 0 5 0 3 .0 2 8 0 3 .0 4 2 1 3 .0 2 9 5 ( 2 .6 9 0 5 ,3 .3 6 5 5 ) ( 2 .7 0 9 7 ,3 .3 5 6 5 )

0 .0 2 9 3 0 .0 2 8 4 0 .0 2 8 0 0 .6 7 4 9 / 0 .9 5 8 4 0 .6 4 6 8 / 0 .9 5 2 0
N o t e s : 1 s t r ow r e p r e s e n t s t h e av e r a g e e s t im a t e s , 95% c o n fid e n c e in t e r va l a n d 2 n d r ow r e p r e s e n t s c o r r e s p o n d in g M SE o r

E R s , in t e r va l l e n g t h s a n d c p s fo r t h e p o in t a n d in t e r va l e s t im a t e s , r e s p e c t iv e ly.
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Table 3. Estimates and confidence interval of Φn1,n2 .

λ1 = 1.5 a n d λ2 = 10

n1 n2 n m Φn1,n2 Φ̂MLEn1,n2
Φ̂
Lindley
n1,n2

Φ̂MCMCn1,n2
ACI o f Φn1,n2 HPDCI o f Φn1:n2

5 5 1 0 1 0 1 .3 0 3 2 1 .3 0 8 6 1 .3 4 5 2 1 .3 3 0 6 ( 0 .8 1 8 0 ,1 .7 9 9 1 ) ( 0 .9 1 9 4 ,1 .7 7 5 1 )
0 .0 6 1 4 0 .0 3 4 8 0 .0 3 2 3 0 .9 8 1 1 / 0 .9 4 4 4 0 .8 5 5 8 / 0 .9 8 3 2

2 0 2 0 1 .3 0 6 3 1 .3 2 9 9 1 .3 1 7 5 ( 0 .9 5 9 6 ,1 .6 5 3 1 ) ( 1 .0 0 6 4 ,1 .6 4 7 7 )
0 .0 3 2 4 0 .0 2 4 0 0 .0 2 2 8 0 .6 9 3 4 / 0 .9 4 4 4 0 .6 4 1 3 / 0 .9 7 0 4

3 0 3 0 1 .3 0 5 8 1 .3 2 3 0 1 .3 1 3 1 ( 1 .0 2 2 7 ,1 .5 8 9 0 ) ( 1 .0 5 2 1 ,1 .5 8 7 3 )
0 .0 2 1 4 0 .0 1 7 4 0 .0 1 6 8 0 .5 6 6 3 / 0 .9 4 5 2 0 .5 3 5 2 / 0 .9 6 2 8

4 0 4 0 1 .3 0 5 7 1 .3 1 9 2 1 .3 1 1 2 ( 1 .0 6 0 5 ,1 .5 5 0 9 ) ( 1 .0 8 2 2 ,1 .5 5 0 3 )
0 .0 1 5 1 0 .0 1 2 9 0 .0 1 2 6 0 .4 9 0 5 / 0 .9 4 7 6 0 .4 6 8 1 / 0 .9 6 0 8

5 0 5 0 1 .3 0 2 9 1 .3 1 4 2 1 .3 0 7 3 ( 1 .0 8 3 9 ,1 .5 2 1 8 ) ( 1 .1 0 1 0 ,1 .5 2 1 4 )
0 .0 1 2 5 0 .0 1 1 0 0 .0 1 0 7 0 .4 3 7 9 / 0 .9 4 9 2 0 .4 2 0 4 / 0 .9 5 7 6

1 0 1 0 1 0 1 0 1 .6 6 0 9 1 .6 6 8 6 1 .7 0 3 7 1 .6 8 3 7 ( 1 .1 6 2 8 ,2 .1 7 4 4 ) ( 1 .2 3 9 4 ,2 .1 5 5 3 )
0 .0 6 8 0 0 .0 4 7 2 0 .0 4 4 0 1 .0 1 1 7 / 0 .9 4 5 2 0 .9 1 5 9 / 0 .9 6 7 6

2 0 2 0 1 .6 7 0 0 1 .6 9 0 8 1 .6 7 6 0 ( 1 .3 1 1 8 ,2 .0 2 8 2 ) ( 1 .3 4 6 9 ,2 .0 2 0 2 )
0 .0 3 3 6 0 .0 2 8 1 0 .0 2 6 7 0 .7 1 6 4 / 0 .9 5 1 6 0 .6 7 3 3 / 0 .9 6 4 0

3 0 3 0 1 .6 6 6 1 1 .6 8 1 1 1 .6 7 0 1 ( 1 .3 7 4 4 ,1 .9 5 7 9 ) ( 1 .3 9 7 5 ,1 .9 5 2 9 )
0 .0 2 1 8 0 .0 1 9 3 0 .0 1 8 7 0 .5 8 3 6 / 0 .9 4 9 6 0 .5 5 5 4 / 0 .9 5 2 8

4 0 4 0 1 .6 6 9 0 1 .6 8 0 5 1 .6 7 1 9 ( 1 .4 1 6 0 ,1 .9 2 2 0 ) ( 1 .4 3 3 6 ,1 .9 1 7 8 )
0 .0 1 6 3 0 .0 1 5 0 0 .0 1 4 6 0 .5 0 6 0 / 0 .9 5 4 4 0 .4 8 4 2 / 0 .9 5 3 2

5 0 5 0 1 .6 6 2 2 1 .6 7 1 9 1 .6 6 4 8 ( 1 .4 3 6 6 ,1 .8 8 7 8 ) ( 1 .4 5 0 9 ,1 .8 8 4 7 )
0 .0 1 3 1 0 .0 1 2 1 0 .0 1 1 9 0 .4 5 1 2 / 0 .9 5 1 2 0 .4 3 3 8 / 0 .9 5 2 8

1 5 1 0 1 0 1 0 1 .9 1 9 4 1 .9 2 8 9 1 .9 6 1 7 1 .9 4 0 1 ( 1 .4 2 0 9 ,2 .4 3 7 0 ) ( 1 .4 8 2 9 ,2 .4 1 9 2 )
0 .0 6 9 0 0 .0 5 2 0 0 .0 4 8 6 1 .0 1 6 1 / 0 .9 4 0 0 0 .9 3 6 3 / 0 .9 6 9 2

2 0 2 0 1 .9 2 9 0 1 .9 4 7 9 1 .9 3 3 0 ( 1 .5 6 9 8 ,2 .8 8 8 2 ) ( 1 .5 9 8 2 ,2 .2 8 0 1 )
0 .0 3 3 9 0 .0 2 9 5 0 .0 2 8 3 0 .7 1 8 4 / 0 .9 5 3 2 0 .6 8 1 9 / 0 .9 5 8 8

3 0 3 0 1 .9 2 3 4 1 .9 3 7 0 1 .9 2 6 0 ( 1 .6 3 1 0 ,2 .2 1 5 7 ) ( 1 .6 5 0 3 ,2 .2 0 9 8 )
0 .0 2 2 2 0 .0 2 0 2 0 .0 1 9 6 0 .5 8 4 7 / 0 .9 4 7 2 0 .5 5 9 5 / 0 .9 5 2 0

4 0 4 0 1 .9 1 7 8 1 .9 2 8 5 1 .9 1 9 7 ( 1 .6 6 5 2 ,2 .1 7 0 4 ) ( 1 .6 8 0 0 ,2 .1 6 5 6 )
0 .0 1 6 3 0 .0 1 5 0 0 .0 1 4 8 0 .5 0 5 2 / 0 .9 5 3 2 0 .4 8 5 6 / 0 .9 5 2 4

5 0 5 0 1 .9 2 4 2 1 .9 3 2 7 1 .9 2 5 5 ( 1 .6 9 7 7 ,2 .1 5 0 8 ) ( 1 .7 1 0 0 ,2 .1 4 6 4 )
0 .0 1 3 9 0 .0 1 3 2 0 .0 1 2 9 0 .4 5 3 1 / 0 .9 4 4 4 0 .4 3 6 4 / 0 .9 4 2 8

N o t e s : 1 s t r ow r e p r e s e n t s t h e av e r a g e e s t im a t e s , 95% c o n fid e n c e in t e r va l a n d 2 n d r ow r e p r e s e n t s c o r r e s p o n d in g M SE o r
E R s , in t e r va l l e n g t h s a n d c p s fo r t h e p o in t a n d in t e r va l e s t im a t e s , r e s p e c t iv e ly.

Table 4. Estimates and confidence interval of Φn1,n2
.

λ1 = 2 a n d λ2 = 10

n1 n2 n m Φn1,n2
Φ̂MLEn1,n2

Φ̂
Lindley
n1,n2

Φ̂MCMCn1,n2
ACI o f Φn1,n2

HPDCI o f Φn1:n2
5 5 1 0 1 0 0 .9 3 1 1 0 .9 3 8 2 0 .9 5 9 2 0 .9 5 5 3 ( 0 .5 7 4 8 ,1 .3 0 1 5 ) ( 0 .6 5 6 7 ,1 .2 7 8 8 )

0 .0 3 5 6 0 .0 1 6 7 0 .0 1 6 0 0 .7 2 6 7 / 0 .9 3 9 6 0 .6 2 2 1 / 0 .9 8 8 8
2 0 2 0 0 .9 3 5 7 0 .9 5 0 7 0 .9 4 4 8 ( 0 .6 7 8 9 ,1 .1 9 2 5 ) ( 0 .7 1 6 7 ,1 .1 8 7 1 )

0 .0 1 6 5 0 .0 1 1 0 0 .0 1 0 6 0 .5 1 3 6 / 0 .9 4 8 4 0 .4 7 0 4 / 0 .9 7 7 6
3 0 3 0 0 .9 3 4 5 0 .9 4 6 0 0 .9 4 0 6 ( 0 .7 2 5 0 ,1 .1 4 4 1 ) ( 0 .7 4 8 9 ,1 .1 4 2 5 )

0 .0 1 1 2 0 .0 0 8 5 0 .0 0 8 2 0 .4 1 9 1 / 0 .9 4 5 6 0 .3 9 3 6 / 0 .9 6 9 6
4 0 4 0 0 .9 3 2 5 0 .9 4 1 9 0 .9 3 7 3 ( 0 .7 5 1 3 ,1 .1 1 3 7 ) ( 0 .7 6 8 8 ,1 .1 1 3 8 )

0 .0 0 8 3 0 .0 0 6 7 0 .0 0 6 5 0 .3 6 2 5 / 0 .9 5 8 0 0 .3 4 4 9 / 0 .9 7 3 2
5 0 5 0 0 .9 3 0 3 0 .9 3 8 3 0 .9 3 4 3 ( 0 .7 6 8 6 ,1 .0 9 2 0 ) ( 0 .7 8 2 1 ,1 .0 9 2 5 )

0 .0 0 6 9 0 .0 0 5 8 0 .0 0 5 7 0 .3 2 3 4 / 0 .9 4 2 4 0 .3 1 0 3 / 0 .9 6 2 4
1 0 1 0 1 0 1 0 1 .1 7 5 6 1 .1 8 0 4 1 .2 0 2 2 1 .1 9 4 3 ( 0 .8 0 2 3 ,1 .5 5 8 5 ) ( 0 .8 6 4 3 ,1 .5 4 3 6 )

0 .0 3 7 0 0 .0 2 2 4 0 .0 2 1 2 0 .7 5 6 1 / 0 .9 4 5 2 0 .6 7 9 3 / 0 .9 8 0 0
2 0 2 0 1 .1 8 0 8 1 .1 9 4 7 1 .1 8 6 7 ( 0 .9 1 3 1 ,1 .4 4 8 4 ) ( 0 .9 4 1 3 ,1 .4 4 3 3 )

0 .0 1 8 6 0 .0 1 4 4 0 .0 1 3 8 0 .5 3 5 3 / 0 .9 4 2 8 0 .5 0 2 0 / 0 .9 6 4 4
3 0 3 0 1 .1 7 5 9 1 .1 8 6 4 1 .1 8 0 1 ( 0 .9 5 7 9 ,1 .3 9 3 8 ) ( 0 .9 7 6 0 ,1 .3 9 1 3 )

0 .0 1 2 2 0 .0 1 0 2 0 .0 0 9 9 0 .4 3 5 9 / 0 .9 5 1 6 0 .4 1 5 4 / 0 .9 6 6 0
4 0 4 0 1 .1 7 8 0 1 .1 8 6 1 1 .1 8 0 9 ( 0 .9 8 9 1 ,1 .3 6 7 0 ) ( 1 .0 0 2 7 ,1 .3 6 4 9 )

0 .0 0 9 7 0 .0 0 8 5 0 .0 0 8 3 0 .3 7 8 0 / 0 .9 4 4 0 0 .3 6 2 2 / 0 .9 5 4 4
5 0 5 0 1 .1 7 8 0 1 .1 8 4 6 1 .1 8 0 1 ( 1 .0 8 8 8 ,1 .3 4 7 1 ) ( 1 .0 1 9 6 ,1 .3 4 5 1 )

0 .0 0 7 5 0 .0 0 6 8 0 .0 0 6 6 0 .3 3 8 3 / 0 .9 4 8 0 0 .3 2 5 4 / 0 .9 5 0 8
1 5 1 0 1 0 1 0 1 .3 6 7 1 1 .3 7 2 9 1 .3 9 3 3 1 .3 8 4 0 ( 0 .9 9 0 7 ,1 .7 5 5 2 ) ( 1 .0 4 1 3 ,1 .7 4 3 1 )

0 .0 3 8 5 0 .0 2 5 8 0 .0 2 4 5 0 .7 6 4 5 / 0 .9 4 0 4 0 .7 0 1 8 / 0 .9 7 0 8
2 0 2 0 1 .3 7 1 0 1 .3 8 3 6 1 .3 7 5 5 ( 1 .1 0 0 7 ,1 .6 4 1 3 ) ( 1 .1 2 2 8 ,1 .6 3 6 6 )

0 .0 1 9 3 0 .0 1 5 7 0 .0 1 5 2 0 .5 4 0 7 / 0 .9 4 8 4 0 .5 1 3 7 / 0 .9 6 4 8
3 0 3 0 1 .3 7 4 0 1 .3 8 2 8 1 .3 7 6 2 ( 1 .1 5 3 0 ,1 .5 9 5 0 ) ( 1 .1 6 6 8 ,1 .5 9 1 4 )

0 .0 1 2 1 0 .0 1 0 6 0 .0 1 0 3 0 .4 4 2 0 / 0 .9 5 7 6 0 .4 2 4 5 / 0 .9 6 4 4
4 0 4 0 1 .3 6 6 9 1 .3 7 4 2 1 .3 6 8 9 ( 1 .1 7 6 4 ,1 .5 5 7 5 ) ( 1 .1 8 7 5 ,1 .5 5 4 9 )

0 .0 0 9 6 0 .0 0 8 6 0 .0 0 8 5 0 .3 8 1 1 / 0 .9 4 8 8 0 .3 6 7 4 / 0 .9 5 2 0
5 0 5 0 1 .3 7 0 7 1 .3 7 6 5 1 .3 7 2 1 ( 1 .1 9 9 8 ,1 .5 4 1 5 ) ( 1 .2 0 8 6 ,1 .5 3 9 0 )

0 .0 0 7 8 0 .0 0 7 2 0 .0 0 7 0 0 .3 4 1 7 / 0 .9 4 8 0 0 .3 3 0 4 / 0 .9 4 9 2
N o t e s : 1 s t r ow r e p r e s e n t s t h e av e r a g e e s t im a t e s , 95% c o n fid e n c e in t e r va l a n d 2 n d r ow r e p r e s e n t s c o r r e s p o n d in g M SE o r

E R s , in t e r va l l e n g t h s a n d c p s fo r t h e p o in t a n d in t e r va l e s t im a t e s , r e s p e c t iv e ly.
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confidence intervals. Their coverage probabilities are close to the nominal level
95%.

5. Conclusions

In this paper, we have studied the mean remaining strength of the parallel sys-
tems in the stress-strength model. We obtain the conditional random variable
for the remaining strength of the parallel system under the applied parallel stress
system. The likelihood ratio ordering between two systems is established for two-
component case. Currently, we do not prove it is true in number of components
are greater than two. The proof of this general case can be considered as a fu-
ture work. Moreover, the maximum likelihood and Bayes estimates of the mean
remaining strength of the system is derived and compared.

Acknowledgement. The author would like to thank the Editor and two anony-
mous referees for their valuable comments which led to this improved version.
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