```
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 2, Pages 1576-1585 (2019)
DOI: 10.31801/cfsuasmas.543297
ISSN 1303-5991 E-ISSN 2618-6470
http://communications.science.ankara.edu.tr/index.php?series=A1
```


SOME CHARACTERIZATIONS FOR SPACELIKE INCLINED CURVES

M. AYKUT AKGUN AND A.IHSAN SIVRIDAG

Abstract

In this paper by establishing the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ for a spacelike curve we give some characterizations for the spacelike inclined curves and B_{2}-slant helices in R_{2}^{4}.

1. Introduction

In the classical differential geometry inclined curves and slant helices are well known. A general helix or an iclined curve in E_{1}^{3} defined as a curve whose tangent lines make a constant angle with a fixed direction called the axis of the helix. A helix curve is characterized by the fact that the ratio $\frac{k_{1}}{k_{2}}$ is constant along the curve, where k_{1} and k_{2} denote the first curvature and the second curvature(torsion), respectively. Analogue to that A. Magden has given a characterization for a curve $x(s)$ to be a helix in Euclidean 4-space E^{4}. He characterizes a helix iff the function

$$
\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left\{\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right\}^{2}
$$

is constant where k_{1}, k_{2} and k_{3} are first, second and third curvatures of Euclidean curve $x(s)$, respectively and they are not zero anywhere [2]. Similar characterizations of timelike helices in Minkowski 4-space E_{1}^{4} were given by H. Kocayigit and M. Onder [6].
S. Yilmaz and M. Turgut presented necessary and sufficient conditions to be inclined for spacelike and timelike curves in terms of Frenet equations in Minkowski spacetime $E_{1}^{4}[12]$. A. T. Ali and R. Lopez studied the generalized timelike helices in Minkowski 4-space and gave some characterizations for these curves [3.
M. Onder, H. Kocayigit and M. Kazaz gave the differential equations characterizing the spacelike helices and also gave the integral characterizations for these curves in E_{1}^{4} [7].

[^0]Izumiya and Takeuchi have introduced the concept of slant helix by considering that the normal lines make a constant angle with a fixed direction. They characterized a slant helix if and only if the function

$$
\frac{\kappa^{2}}{\left(\kappa^{2}+\tau^{2}\right)^{\frac{3}{2}}}\left(\frac{\tau}{\kappa}\right)^{\prime}
$$

is constant 10.
A. T. Ali and R. Lopez gave different characterizations of slant helices in terms of their curvature functions [4]. Kula and Yayli investigated spherical images, the tangent indicatrix and the binormal indicatrix of a slant helix and they obtained that the spherical images are spherical helices [9].
M. Onder, H. Kocayigit and M. Kazaz gave the characterizations of spacelike B_{2}-slant helix by means of curvatures of the spacelike curve in Minkowski 4 -space. Moreover they gave the integral characterizations of the spacelike B_{2}-slant helix [8].

In this study we investigate the conditions for spacelike curves to be inclined or B_{2}-slant helix in R_{2}^{4} and we give some characterizations and theorems for these curves.

2. Preliminaries

The Semi-Euclidean space R_{2}^{4} is the standart vector space equipped with an indefinite flat metric \langle,$\rangle given by$

$$
\begin{equation*}
\langle,\rangle=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}-d x_{4}^{2} \tag{1}
\end{equation*}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a rectangular coordinate system of R_{2}^{4}. A vector v in R_{2}^{4} is called a spacelike, timelike or null(lightlike) if respectively hold $\langle v, v\rangle>0,\langle v, v\rangle<0$ or $\langle v, v\rangle=0$ and $v \neq 0=(0,0,0,0)$. The norm of a vector v is given by $\|v\|=$ $\sqrt{|\langle v, v\rangle|}$. Two vectors v and w are said to be orthogonal if $\langle v, w\rangle=0$.

An arbitrary curve $\alpha: I \rightarrow R_{2}^{4}$ can locally be spacelike, timelike or null if respectively all of its velocity vectors $\alpha^{\prime}(s)$ are spacelike, timelike or null.

Let a and b be two spacelike vectors in R_{2}^{4}. Then there is unique real number $0<\delta<\Pi$, called angel between a and b , such that $\langle a, b\rangle=\|a\| .\|b\| . \cos \delta$.

Let $\left\{T(s), N(s), B_{1}(s), B_{2}(s)\right\}$ be the moving Frenet frame along the curve $\alpha(s)$ in R_{2}^{4}. Then T, N, B_{1}, B_{2} are the tangent, the principal normal, the first binormal and the second binormal fields respectively and let $\nabla_{T} T$ is spacelike.

Let α be a spacelike curve in R_{2}^{4}, parametrized by arclength function of s. The following cases occur for the spacelike curve α. Let the vector N is spacelike, B_{1} and B_{2} be timelike. In this case there exists only one Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ for which $\alpha(s)$ is a spacelike curve with Frenet equations

$$
\begin{align*}
\nabla_{T} T & =k_{1} N \\
\nabla_{T} N & =-k_{1} T+k_{2} B_{1} \tag{2}\\
\nabla_{T} B_{1} & =k_{2} N+k_{3} B_{2}
\end{align*}
$$

$$
\nabla_{T} B_{2}=-k_{3} B_{1}
$$

where T, N, B_{1} and B_{2} are mutually orthogonal vectors satisfying the equations

$$
\begin{equation*}
\langle N, N\rangle=\langle T, T\rangle=1, \quad\left\langle B_{1}, B_{1}\right\rangle=\left\langle B_{2}, B_{2}\right\rangle=-1 \tag{3}
\end{equation*}
$$

Recall that the functions $k_{1}=k_{1}(s), k_{2}=k_{2}(s)$ and $k_{3}=k_{3}(s)$ are called the first, the second and the third curvature of the spacelike curve $\alpha(s)$, respectively and we will assume throughout this work that all the three curvatures satisfy $k_{i}(s) \neq 0$, $1 \leq i \leq 3$.

3. Some Characterizations for Spacelike Inclined Curves and B_{2}-Slant Helices in R_{2}^{4}

Let $\alpha(s)$ be a non-geodesic spacelike curve in R_{2}^{4} and let $\left\{T, N, B_{1}, B_{2}\right\}$ denotes the Frenet frame of the curve $\alpha(s)$. A spacelike curve in R_{2}^{4} is said to be an inclined curve if its tangent vector forms a constant angle with a constant vector U. From the definition of the inclined curve we can write

$$
\begin{equation*}
T \cdot U=\cos \theta \tag{4}
\end{equation*}
$$

where U is a spacelike constant vector. Differentiating both sides of this equations we have

$$
\begin{equation*}
k_{1} N . U=0 \tag{5}
\end{equation*}
$$

Thus we arrive $N \perp U$. Considering this we can compose U as

$$
\begin{equation*}
U=u_{1} T+u_{2} B_{1}+u_{3} B_{2} \tag{6}
\end{equation*}
$$

where $u_{i}, 1 \leq i \leq 3$ are arbitrary functions. Differentiating (6) and considering Frenet equations, we have

$$
\begin{equation*}
0=u_{1}^{\prime} T+\left(u_{1} k_{1}(s)+u_{2} k_{2}(s)\right) N+\left(u_{2}^{\prime}-u_{3} k_{3}(s)\right) B_{1}+\left(u_{3}^{\prime}+u_{2} k_{3}(s)\right) B_{2} \tag{7}
\end{equation*}
$$

From (7) we find the equations

$$
\left\{\begin{array}{c}
u_{1}^{\prime}=0 \tag{8}\\
u_{1} k_{1}(s)+u_{2} k_{2}(s)=0 \\
u_{2}^{\prime}-u_{3} k_{3}(s)=0 \\
u_{3}^{\prime}+u_{2} k_{3}(s)=0
\end{array}\right.
$$

By using the equations above we have $u_{1}=c=$ cons,

$$
\begin{equation*}
u_{2}=-c \frac{k_{1}(s)}{k_{2}(s)}=-\frac{1}{k_{3}(s)} \frac{d u_{3}}{d s} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{3}=-\frac{c}{k_{3}(s)} \frac{d}{d s} \frac{k_{1}(s)}{k_{2}(s)} \tag{10}
\end{equation*}
$$

From the equation $u_{2}^{\prime}-u_{3} k_{3}(s)=0$ we have

$$
\begin{equation*}
\frac{d u_{2}}{d s}=k_{3}(s) u_{3} \tag{11}
\end{equation*}
$$

Differentiating u_{2} we have

$$
\begin{equation*}
\frac{d}{d s}\left(-\frac{1}{k_{3}(s)} \frac{d u_{3}}{d s}\right)=k_{3}(s) u_{3} \tag{12}
\end{equation*}
$$

By a direct computation we have the differential equation

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{1}{k_{3}(s)} \frac{d u_{3}}{d s}\right)+k_{3}(s) u_{3}=0 \tag{13}
\end{equation*}
$$

By using exchange variable $t=\int_{0}^{s} k_{3}(s) d s$ in (13) we find

$$
\begin{equation*}
\frac{d^{2} u_{3}}{d t^{2}}+u_{3}=0 \tag{14}
\end{equation*}
$$

The general solution of (14) is

$$
\begin{equation*}
u_{3}=m_{1} \cos t+m_{2} \sin t \tag{15}
\end{equation*}
$$

where $m_{1}, m_{2} \in R$. Replacing variable $t=\int_{0}^{s} k_{3}(s) d s$ in (15) we have

$$
\begin{equation*}
u_{3}=-\frac{c}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)=m_{1} \cos \left(\int_{0}^{s} k_{3}(s) d s\right)+m_{2} \sin \left(\int_{0}^{s} k_{3}(s) d s\right) \tag{16}
\end{equation*}
$$

Considering equation (16) and (9) we have

$$
\begin{equation*}
u_{2}=-c \frac{k_{1}(s)}{k_{2}(s)}=m_{1} \sin \left(\int_{0}^{s} k_{3}(s) d s\right)-m_{2} \cos \left(\int_{0}^{s} k_{3}(s) d s\right) \tag{17}
\end{equation*}
$$

From the equations above we find

$$
\begin{equation*}
m_{1}=-\frac{c}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right) \cos \left(\int_{0}^{s} k_{3}(s) d s\right)-c \frac{k_{1}(s)}{k_{2}(s)} \sin \left(\int_{0}^{s} k_{3}(s) d s\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2}=c \frac{k_{1}(s)}{k_{2}(s)} \cos \left(\int_{0}^{s} k_{3}(s) d s\right)-\frac{c}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right) \sin \left(\int_{0}^{s} k_{3}(s) d s\right) \tag{19}
\end{equation*}
$$

By taking $A_{1}=m_{1}+m_{2}$ and $A_{2}=m_{1}-m_{2}$, if we calculate $A_{1}^{2}+A_{2}^{2}$ we find

$$
\begin{equation*}
c^{2}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{c^{2}}{k_{3}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant } \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant } \tag{21}
\end{equation*}
$$

Conversely, let us consider vector given by

$$
\begin{equation*}
U=\left\{T-\frac{k_{1}(s)}{k_{2}(s)} B_{1}-\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right) B_{2}\right\} \cos \theta \tag{22}
\end{equation*}
$$

Differentiating vector U and considering differential equation of (21) we obtain

$$
\begin{equation*}
\frac{d U}{d s}=0 \tag{23}
\end{equation*}
$$

Thus U is a constant vector and so the curve $\alpha(s)$ is an inclined curve in R_{2}^{4}. Thus we have the following theorem.
Theorem 1. Let $\alpha=\alpha(s)$ be a spacelike curve in R_{2}^{4}. α is an inclined curve if and only if

$$
\begin{equation*}
\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left\{\frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right\}^{2}=\text { constant } \tag{24}
\end{equation*}
$$

Proof. It is obvious from the computations above.
Corollary 2. Let $\alpha=\alpha(s)$ be a spacelike curve in $R_{2}^{4} . \alpha$ is an inclined curve if and only if

$$
\begin{equation*}
k_{3}(s) \frac{k_{1}(s)}{k_{2}(s)}+\frac{d}{d s}\left[\frac{1}{k_{3}(s)} \frac{d}{d s}\left(\frac{k_{1}(s)}{k_{2}(s)}\right)\right]=0 \tag{25}
\end{equation*}
$$

Proof. If we differentiate the equation (24) respect to s we find the equation (25).

Now let us solve the equation (25) respect to $\frac{k_{1}}{k_{2}}$. If we use exchange variable $t=\int_{0}^{s} k_{3}(s) d s$ in (25) we have

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\left(\frac{k_{1}}{k_{2}}\right)+\left(\frac{k_{1}}{k_{2}}\right)=0 \tag{26}
\end{equation*}
$$

So we arrive

$$
\begin{equation*}
\frac{k_{1}}{k_{2}}=W_{1} \cos \int_{0}^{s} k_{3}(s) d s+W_{2} \sin \int_{0}^{s} k_{3}(s) d s \tag{27}
\end{equation*}
$$

where W_{1} and W_{2} are real numbers.
Now we will give a different characterization for inclined curves. Let α be an inclined curve in R_{2}^{4}. By differentiating (24) with respect to s we get

$$
\begin{equation*}
\left(\frac{k_{1}}{k_{2}}\right)\left(\frac{k_{1}}{k_{2}}\right)^{\prime}+\frac{1}{k_{3}}\left(\frac{k_{1}}{k_{2}}\right)^{\prime}\left[\left(\frac{1}{k_{3}}\right)\left(\frac{k_{1}}{k_{2}}\right)^{\prime}\right]^{\prime}=0 \tag{28}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{1}{k_{3}}\left(\frac{k_{1}}{k_{2}}\right)^{\prime}=-\frac{\left(\frac{k_{1}}{k_{2}}\right)\left(\frac{k_{1}}{k_{2}}\right)^{\prime}}{\left[\left(\frac{1}{k_{3}}\right)\left(\frac{k_{1}}{k_{2}}\right)^{\prime}\right]^{\prime}} \tag{29}
\end{equation*}
$$

If we define a function $f(s)$ as

$$
\begin{equation*}
f(s)=-\frac{\left(\frac{k_{1}}{k_{2}}\right)\left(\frac{k_{1}}{k_{2}}\right)^{\prime}}{\left[\left(\frac{1}{k_{3}}\right)\left(\frac{k_{1}}{k_{2}}\right)^{\prime}\right]^{\prime}} \tag{30}
\end{equation*}
$$

then

$$
\begin{equation*}
f(s)=-\frac{1}{k_{3}(s)}\left(\frac{k_{1}}{k_{2}}\right)^{\prime}=W_{1} \sin \int_{0}^{s} k_{3}(s) d s-W_{2} \cos \int_{0}^{s} k_{3}(s) d s \tag{31}
\end{equation*}
$$

By using (28) and (31) we have

$$
\begin{equation*}
f^{\prime}(s)=-\frac{k_{1} k_{3}}{k_{2}} \tag{32}
\end{equation*}
$$

Conversely, consider the function

$$
f(s)=-\frac{1}{k_{3}}\left(\frac{k_{1}}{k_{2}}\right)^{\prime}=W_{1} \sin \int_{0}^{s} k_{3}(s) d s-W_{2} \cos \int_{0}^{s} k_{3}(s) d s
$$

and assume that $f^{\prime}(s)=-\frac{k_{1} k_{3}}{k_{2}}$. We compute

$$
\begin{equation*}
\frac{d}{d s}\left[\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left\{\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{\prime 2}\right]=\frac{d}{d s}\left[\frac{1}{k_{3}^{2}}\left(f^{\prime 2}+f^{2}(s)\right]:=\varphi(s)\right.\right. \tag{33}
\end{equation*}
$$

As $f(s) f^{\prime}(s)=-\left(\frac{k_{1}}{k_{2}}\right)\left(\frac{k_{1}}{k_{2}}\right)^{\prime}$ and $f^{\prime \prime}(s)=-k_{3}^{\prime}\left(\frac{k_{1}}{k_{2}}\right)-k_{3}\left(\frac{k_{1}}{k_{2}}\right)^{\prime}$ we obtain

$$
\begin{equation*}
f^{\prime}(s) f^{\prime \prime}(s)=k_{3} k_{3}^{\prime}\left(\frac{k_{1}}{k_{2}}\right)^{2}+k_{3}^{2}\left(\frac{k_{1}}{k_{2}}\right)\left(\frac{k_{1}}{k_{2}}\right)^{\prime} \tag{34}
\end{equation*}
$$

As consequence of above computations

$$
\begin{equation*}
\varphi(s)=2\left(f f^{\prime}+\frac{f^{\prime} f^{\prime \prime}}{k_{3}^{2}}-\frac{\left(f^{\prime 2} k_{3}^{\prime}\right.}{k_{3}^{3}}\right)=0 \tag{35}
\end{equation*}
$$

that is the function $\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{3}^{2}(s)}\left\{\left(\frac{k_{1}(s)}{k_{2}(s)}\right)^{\prime 2}\right.$ is constant. Therefore we have the following theorem.

Theorem 3. Let α be a unit speed spacelike curve in R_{2}^{4}. Then α is an inclined curve if and only if the function $f(s)=-\frac{1}{k_{3}(s)}\left(\frac{k_{1}}{k_{2}}\right)^{\prime}=W_{1} \sin \int_{0}^{s} k_{3}(s) d s-$ $W_{2} \cos \int_{0}^{s} k_{3}(s) d s$ satisfies $f^{\prime}(s)=-\frac{k_{1} k_{3}}{k_{2}}$ where k_{1}, k_{2} and k_{3} are the curvatures of α.

Proof. The proof can be completed from the computations above.
Now let $\alpha(s)$ be a spacelike curve in R_{2}^{4} and let $\left\{T, N, B_{1}, B_{2}\right\}$ denotes the Frenet frame of the curve $\alpha(s)$. We call $\alpha(s)$ as spacelike B_{2}-slant helix if its second binormal vector makes a constant angle with a fixed direction in a vector U. From the definition of the B_{2}-slant helix we can write

$$
\begin{equation*}
B_{2} \cdot U=\cos \vartheta \tag{36}
\end{equation*}
$$

where U is a spacelike constant vector. Differentiating both sides of this equations we have

$$
\begin{equation*}
-k_{3} B_{1} \cdot U=0 \tag{37}
\end{equation*}
$$

Since $k_{3} \neq 0$ we arrive $B_{1} \perp U$. Considering this we can compose U as

$$
\begin{equation*}
U=u_{1} T+u_{2} N+u_{3} B_{2} \tag{38}
\end{equation*}
$$

where $u_{i}, 1 \leq i \leq 3$ are arbitrary functions. Differentiating (38) and considering Frenet equations, we have

$$
\begin{equation*}
0=\left(u_{1}^{\prime}-u_{2} k_{1}\right) T+\left(u_{1} k_{1}(s)+u_{2}^{\prime}\right) N+\left(u_{2} k_{2}(s)-u_{3} k_{3}(s)\right) B_{1}+u_{3}^{\prime} B_{2} \tag{39}
\end{equation*}
$$

From (39) we find the equations

$$
\left\{\begin{array}{c}
u_{1}^{\prime}-u_{2} k_{1}=0 \tag{40}\\
u_{1} k_{1}(s)+u_{2}^{\prime}=0 \\
u_{2} k_{2}(s)-u_{3} k_{3}(s)=0 \\
u_{3}^{\prime}=0
\end{array}\right.
$$

By using the equations above we have $u_{3}=c=$ cons,

$$
\begin{equation*}
u_{2}=c \frac{k_{3}(s)}{k_{2}(s)}=\frac{1}{k_{1}(s)} \frac{d u_{1}}{d s} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{1}=-\frac{c}{k_{1}(s)} \frac{d}{d s} \frac{k_{3}(s)}{k_{2}(s)} \tag{42}
\end{equation*}
$$

From the equation $u_{1}^{\prime}-u_{2} k_{1}(s)=0$ we have

$$
\begin{equation*}
\frac{d u_{1}}{d s}=k_{1}(s) u_{2} \tag{43}
\end{equation*}
$$

Differentiating u_{1} we have

$$
\begin{equation*}
\frac{d}{d s}\left(-\frac{1}{k_{1}(s)} \frac{d u_{2}}{d s}\right)=k_{1}(s) u_{2} \tag{44}
\end{equation*}
$$

By a direct computation we have the differential equation

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{1}{k_{1}(s)} \frac{d u_{2}}{d s}\right)+k_{1}(s) u_{2}=0 \tag{45}
\end{equation*}
$$

By using exchange variable $t=\int_{0}^{s} k_{1}(s) d s$ in (45) we find

$$
\begin{equation*}
\frac{d^{2} u_{2}}{d t^{2}}+u_{2}=0 \tag{46}
\end{equation*}
$$

The general solution of (46) is

$$
\begin{equation*}
u_{2}=m_{1} \cos t+m_{2} \sin t \tag{47}
\end{equation*}
$$

where $m_{1}, m_{2} \in R$. Replacing variable $t=\int_{0}^{s} k_{1}(s) d s$ in (47) we have

$$
\begin{equation*}
u_{2}=c \frac{k_{3}(s)}{k_{2}(s)}=m_{1} \cos \left(\int_{0}^{s} k_{1}(s) d s\right)+m_{2} \sin \left(\int_{0}^{s} k_{1}(s) d s\right) \tag{48}
\end{equation*}
$$

Considering equation (48) we have

$$
\begin{equation*}
u_{1}=-\frac{c}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)=-m_{1} \sin \left(\int_{0}^{s} k_{1}(s) d s\right)+m_{2} \cos \left(\int_{0}^{s} k_{1}(s) d s\right) \tag{49}
\end{equation*}
$$

From the equations above we find

$$
\begin{equation*}
m_{1}=-\frac{c}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \cos \left(\int_{0}^{s} k_{1}(s) d s\right)+c \frac{k_{3}(s)}{k_{2}(s)} \sin \left(\int_{0}^{s} k_{1}(s) d s\right) \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2}=c \frac{k_{3}(s)}{k_{2}(s)} \cos \left(\int_{0}^{s} k_{1}(s) d s\right)-\frac{c}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) \sin \left(\int_{0}^{s} k_{1}(s) d s\right) \tag{51}
\end{equation*}
$$

By taking $B_{1}=m_{1}+m_{2}$ and $B_{2}=m_{1}-m_{2}$, if we calculate $B_{1}^{2}+B_{2}^{2}$ we find

$$
\begin{equation*}
c^{2}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{c^{2}}{k_{1}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant } \tag{52}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left[\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]^{2}=\text { constant } . \tag{53}
\end{equation*}
$$

Conversely, let us consider vector given by

$$
\begin{equation*}
U=\left\{-\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right) T+\frac{k_{3}(s)}{k_{2}(s)} N+B_{2}\right\} \cos \vartheta \tag{54}
\end{equation*}
$$

Differentiating vector U and considering differential equation of (53) we obtain

$$
\begin{equation*}
\frac{d U}{d s}=0 \tag{55}
\end{equation*}
$$

Thus U is a constant vector and so the curve $\alpha(s)$ is a spacelike B_{2} slant helix in R_{2}^{4}. As a result we can give the following theorem.

Theorem 4. Let $\alpha=\alpha(s)$ be a spacelike curve in R_{2}^{4}. α is a spacelike B_{2} slant helix if and only if

$$
\begin{equation*}
\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left\{\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right\}^{2}=\text { constant } \tag{56}
\end{equation*}
$$

Proof. The proof can easily seen from the computations above.
Corollary 5. Let $\alpha=\alpha(s)$ be a spacelike curve in R_{2}^{4}. α is a B_{2}-slant helix if and only if

$$
\begin{equation*}
k_{1}(s) \frac{k_{3}(s)}{k_{2}(s)}-\frac{d}{d s}\left[\frac{1}{k_{1}(s)} \frac{d}{d s}\left(\frac{k_{3}(s)}{k_{2}(s)}\right)\right]=0 . \tag{57}
\end{equation*}
$$

Proof. If we differentiate the equation (56) respect to s we have the equation (57).

Now let us solve the equation (57) respect to $\frac{k_{3}}{k_{2}}$. If we use exchange variable $t=\int_{0}^{s} k_{1}(s) d s$ in (57) we have

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\left(\frac{k_{3}}{k_{2}}\right)+\left(\frac{k_{3}}{k_{2}}\right)=0 \tag{58}
\end{equation*}
$$

So we arrive

$$
\begin{equation*}
\frac{k_{3}}{k_{2}}=L_{1} \cos \int_{0}^{s} k_{1}(s) d s+L_{2} \sin \int_{0}^{s} k_{1}(s) d s \tag{59}
\end{equation*}
$$

where L_{1} and L_{2} are real numbers.
Now we will give a different characterization for B_{2}-slant helices. Let α be a spacelike B_{2}-slant helix in R_{2}^{4}. By differentiaing (56) with respect to s we get

$$
\begin{equation*}
\left(\frac{k_{3}}{k_{2}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}+\frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\left[\left(\frac{1}{k_{1}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right]^{\prime}=0 \tag{60}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}=-\frac{\left(\frac{k_{3}}{k_{2}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}}{\left[\left(\frac{1}{k_{1}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right]^{\prime}} \tag{61}
\end{equation*}
$$

If we define a function $f(s)$ as

$$
\begin{equation*}
f(s)=-\frac{\left(\frac{k_{3}}{k_{2}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}}{\left[\left(\frac{1}{k_{1}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}\right]^{\prime}} \tag{62}
\end{equation*}
$$

then

$$
\begin{equation*}
f(s)=-\frac{1}{k_{1}(s)}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}=L_{1} \sin \int_{0}^{s} k_{1}(s) d s-L_{2} \cos \int_{0}^{s} k_{1}(s) d s \tag{63}
\end{equation*}
$$

By using (60) and (63) we have

$$
\begin{equation*}
f^{\prime}(s)=-\frac{k_{1} k_{3}}{k_{2}} \tag{64}
\end{equation*}
$$

Conversely, consider the function

$$
\begin{equation*}
f(s)=-\frac{1}{k_{1}}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}=L_{1} \sin \int_{0}^{s} k_{1}(s) d s-L_{2} \cos \int_{0}^{s} k_{1}(s) d s \tag{65}
\end{equation*}
$$

and assume that $f^{\prime}(s)=-\frac{k_{1} k_{3}}{k_{2}}$. We compute

$$
\begin{equation*}
\frac{d}{d s}\left[\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left\{\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{\prime 2}\right]=\frac{d}{d s}\left[\frac{1}{k_{1}^{2}}\left(f^{\prime 2}+f^{2}(s)\right]:=\varphi(s)\right.\right. \tag{66}
\end{equation*}
$$

From $f(s) f^{\prime}(s)=-\left(\frac{k_{3}}{k_{2}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime}$ and $f^{\prime \prime}(s)=-k_{1}^{\prime}\left(\frac{k_{3}}{k_{2}}\right)-k_{1}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}$ we obtain

$$
\begin{equation*}
f^{\prime}(s) f^{\prime \prime}(s)=k_{1} k_{1}^{\prime}\left(\frac{k_{3}}{k_{2}}\right)^{2}+k_{1}^{2}\left(\frac{k_{3}}{k_{2}}\right)\left(\frac{k_{3}}{k_{2}}\right)^{\prime} \tag{67}
\end{equation*}
$$

As a consequence of above computations

$$
\begin{equation*}
\varphi(s)=2\left(f f^{\prime}+\frac{f^{\prime} f^{\prime \prime}}{k_{1}^{2}}-\frac{\left(f^{\prime 2} k_{1}^{\prime}\right.}{k_{1}^{3}}\right)=0 \tag{68}
\end{equation*}
$$

that is the function $\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{2}+\frac{1}{k_{1}^{2}(s)}\left\{\left(\frac{k_{3}(s)}{k_{2}(s)}\right)^{\prime 2}\right.$ is constant. Therefore we have the following theorem.

Theorem 6. Let α be a unit speed spacelike curve in R_{2}^{4}. Then α is a B_{2}-slant helix if and only if the function $f(s)=-\frac{1}{k_{1}(s)}\left(\frac{k_{3}}{k_{2}}\right)^{\prime}=L_{1} \sin \int_{0}^{s} k_{1}(s) d s-L_{2} \cos \int_{0}^{s} k_{1}(s) d s$ satisfies $f^{\prime}(s)=-\frac{k_{1} k_{3}}{k_{2}}$, where k_{1}, k_{2} and k_{3} are the curvatures of α.
Proof. It is obvious from the above computations.

References

[1] Fernandez, A., Gimenez, A. and Lucas, P., Null helices in Lorentzian space forms, Int. J. Mod. Phys. A. 16 (2001), 4845-4863.
[2] Magden, A., On the Curves of Constant Slope, YTU Fen Bilimleri Dergisi, 4,(1993), 103-109.
[3] Ali, A. T. and Lopez, R., Timelike B_{2}-slant Helices in Minkowski space E_{1}^{4}, arXiv, 0810, 1460v1[math.DG], 8 Oct 2008.
[4] Ali, A. T. and Lopez, R., Slant Helices in Euclidean 4-space E ${ }^{4}$, arXiv, 0901, 3324v1[math. DG], 21 Jan 2009.
[5] Camci, C., Ilarslan, K., Kula, L. and Hacisalihoğlu, H.H., Harmonic Curvatures and Generalized Helices in E^{n}, Chaos, Solitions and Fractals, 40 (2009), 2590-2596.
[6] Kocayigit, H. andOnder, M., Timelike Curves of Constant Slope in Minkowski Space E_{1}^{4}, $B U / J S T, 1,(2007), 311-318$.
[7] Kocayigit, H., Onder, M. and Kazaz, M., Spacelike Helices in Minkowski 4-Space E ${ }_{1}^{4}$, Anna Del Universita Di Ferrera, (2010), Vol.56, IS 2, pp 335-343.
[8] Kocayigit, H., Onder, M. and Kazaz, M., Spacelike B_{2}-slant Helices in Minkowski 4-Space E_{1}^{4}, Int. Journal of Physical Sciences, 5(5)(2010), 470-475.
[9] Kula, L. and Yayli, Y., On Slant Helix and its Spherical Indicatrix, Appl. Math. Comp., 169, (2005), 600-607.
[10] Izumiya, S. and Takeuchi, N., New Special Curves and Developable Surfaces, Turk. J. Math., 28(2004), 531-537.
[11] Keles, S., Perktas S. Y. and Kilic, E., Biharmonic Curves in LP-Sasakian Manifolds, Bulletin of the Malasyian Mathematical Society, (2) 33(2), 2010, 325-344
[12] Yilmaz, S. and Turgut, M., On the Characterizations of Inclined Curves in Minkowski Spacetime E_{1}^{4}, Int. Math. Forum, 3, (2008), no.16, 783-792.

Current address: M. Aykut AKGUN: Adiyaman University, Technical Sciences Vocational School, Adiyaman, Turkey .

E-mail address: muslumakgun@adiyaman.edu.tr
ORCID Address: https://orcid.org/0000-0002-8414-5228
Current address: A.Ihsan SIVRIDAG: Inonu University,Department of Mathematics, Faculty of Science and Art,Malatya, Turkey.

E-mail address: ali.sivridag@inonu.edu.tr
ORCID Address: https://orcid.org/0000-0002-5596-9893

[^0]: Received by the editors: April 18, 2018; Accepted: October 08, 2018.
 2010 Mathematics Subject Classification. Primary 53C99, Secondary 53A35.
 Key words and phrases. B_{2}-slant helix, inclined curve, spacelike curve.

