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Abstract

The present research examines the propagation aklywesolitary waves in nanorods by
employing nonlocal elasticity theory. Many syst@mshysics, engineering, and natural
sciences are nonlinear and modeled with nonlinepragions. Wave propagation, as a
branch of nonlinear science, is one of the moselyidtudied subjects in recent years.
Nonlocal elasticity theory represents a techniguthvincreasing popularity for the
purpose of conducting the mechanical analysis otraelectromechanical and
nanoelectromechanical systems. The nonlinear eguatf motion of nanorods is
derived by utilizing nonlocal elasticity theory.€elheductive perturbation technique is
employed for the purpose of examining the propagatif weakly nonlinear waves in
the longwave approximation, and the Korteweg-deed/equation is acquired as the
governing equation. The steady-state solitary-wanation is known to be admitted by
the KdV equation. To observe the nonlocal effectdhhe KdV equation numerically, the
existence of solitary wave solution has been imyatstd using the physical and
geometric properties of carbon nanotubes.

Keywords: Nanorod, nonlocal elasticity theory, Nonlinear wsayvereductive
perturbation technique.

Yerel olmayan elastisite teorisi kullanilarak naigekli
cubuklarda nonlineer dalga yayilimi

Ozet

Bu calymada, yerel olmayan elastisite teorisi kullanilarzno o6lgekli cibuklarda zayif
nonlineer dalga yayilimi incelengtir. Muhendislik, fizik ve dgal bilimlerde bircok
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sistem nonlineerdir ve nonlineer denklemlerle mietd. Lineer olmayan bilimin bir
dali olan dalga yayilimi son yillarda yaygin olareélisilan konulardan biridir. Yerel
olmayan elastisite teorisi microelektromekanik amaelektromekanik gibi sistemlerin
analizinde geken populer bir tekniktir. Formulasyonlarda Ering@mn’yerel olmayan
elastisite teorisine dayanan binye denklemleri aulmitir. Hareket denklemleri
malzeme koordinatlari cinsinden yazinve nano 6lgekli culiun dgrusal olmayan
hareket denklemleri yerel olmayan elastisite ténesgore elde edilmgiir. /ndirgeyici
pertiurbasyon metodu kullanilarak zayif nonlineerlgdéarin hareketini yoneten
evolisyon denklemi olarak Korteweg de Vries (Kdsfikiemi elde edilrgiir. KdV
denkleminde yerel olmayan etkiyi nimerik olarak lgdieyebilmek icin, karbon
nanotuplerin fiziksel ve geometrik 6zellikleri gisHinde bulundurulmur.

Anahtar kelimeler: Nano o6lcekli cubuk,Yerel olayan elastisite teorisi, nonlineer
dalgalar, indirgeyici pertirbasyon metodu

1. Introduction

The accurate characterization of the actual mechbbehavior of nanoscale devices is
significant in the design of the devices in questiacluding carbon nanotubes (CNTS).
Carbon nanotubes have high technological poteb&eause of their light weights,
having high elasticity module, capable of showingtaiic or semi conductivity features
and possible modifications of their electronicexdp. However, the implementation of
classical continuum theory is controversial whil@alggzing carbon nanotubes
mechanically. Classical continuum theory (cladséasticity theory) is length scale-
free. Hence, it cannot accurately account for \sengll-sized effects. To eliminate the
deficiencies of classical continuum theory, contimu theories of higher order,
including micro-polar elasticity theory [1-4], naadial elasticity theory [5-7], couple
stress theory [8] and the modified couple stresgrageh [9, 10], have received
significant attention in the analysis of micro- amahostructures. Due to the high cost
of experiments that operate on the nanoscale, @f igital importance to introduce
suitable physical models for nanobeams (carbontnlmre) for the establishment of an
appropriate theoretical and mathematical frameworknanosized structures [11-13].
Eringen [14] and Eringen and Edelen [15] proposedlatal elasticity theory in the
1970s for the purpose of overcoming the deficien@é classical elasticity models.
Eringen obtained equations for nonlocal elasti¢iigory and made very important
contributions to science by achieving results tfzatnot be achieved by classical means
in different studies on one-dimensional elastic e&vaypropagation problems.
Furthermore, Eringen and Edelen conducted studiethe derivation of constitutive
equations for elastic media in two different wapg)uding mechanical and variational.
Moreover, Demiray [16] obtained constitutive eqoasi for nonlocal dielectric
materials. Unlike the conventional theory of elasticity, inetmonlocal theory of
elasticity, it is assumed that the strain at aipadr point in a continuous domain and
the strain at each point in the domain determiree dtriess at the point in question.
Several studies have been performed using thisonahinodel to conduct the analysis
of the mechanical behavior of nanosized structjirésl 9].

The investigation of vibration and wave propagationCNTs constitutes the main
subject of ongoing studies. Various studies cotetlipreviously have investigated the
vibration of CNTs, nanobeams, and rods by employioglocal elasticity ([10]-[19]).
The free axial vibration of uniform nanorods wasmined in the study of Aydogdu
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[18] by means of Eringen’s nonlocal continuum tlyeoAs a result of the study, it was
demonstrated that the nonlocal rod model overestisntne natural frequencies of the
nanorod in comparison with the classical model. rtHtarmore, Narendar and
Gopalakrishnan [21] studied the longitudinal vibpat of nanorods by utilizing a
nonlocal bar model. According to the findings doeg, it was demonstrated that a
particular band gap region in the longitudinal wavede was caused by the small scale
parameter of the nonlocal model, which allowed navev propagation to occur.
Moreover, Filiz and Aydogdu [22] investigated theah vibration of heterojunction
CNTs in the context of Eringen’s nonlocal continutimeory. Besides, the impact of
nonlocality and lengths of CNTs and their segmevds studied in a detailed manner.
The ultrasonic wave dispersion characteristic afonads was examined in the study of
Narendar and Gopalakrishnan [23] based on nonkicaih gradient models. Murmu
and Adhikari [24] studied the longitudinal vibratiof double-nanorod-system (DNRS)
based on nonlocal elasticity theory. The resulitaioed from the above-mentioned
study emphasize the significant impact of the ncallampact on the axial vibration of
DNRS.

Wave propagation is a very effective, nondestractimethod used for the
characterization of nanostructures. Nanosensoisdigcers also work on the wave
propagation principle. The wave propagation issag attracted attention around the
world [25-31] in different domains of science andgmeering because of its
importance. In the study carried out by Lim anchy$25], wave propagation in CNTs
was investigated on the basis of nonlocal eladtiess field theory and Timoshenko
beam theory, and a novel dispersion and spectrurelabon was acquired. Transverse
and torsional waves in single-walled carbon nanesu8WCNTSs) and double-walled
carbon nanotubes (DWCNTSs) were investigated on lhsis of nonlocal elastic
cylindrical shell theory in the study of Hu et §6]. The researchers compared the
wave dispersion that was estimated by their modhl mvolecular dynamics simulations
in the terahertz area and concluded that it wasiplesto acquire a better prediction of
dispersion relations by the nonlocal modalVu and Dzenis [32] investigated wave
propagation in nanofibers. The researchers stultinditudinal and flexural wave
propagation in nanofibers by employing local thesrin terms of surface impacts.
Challamel [33] suggested a dispersive wave equdnyoutilizing nonlocal elasticity. A
mixture theory of a local and nonlocal strain wagaduced. The nonlocal scale
impacts on the ultrasonic wave feature of nanowdee examined by Narendar and
Gopalakrishnan [34] by employing the nonlocal Lowe theory. Narendar [35] used
the nonlocal Love-Rayleigh rod theory for the exaamtion of wave propagation in
uniform nanorods.

Under natural conditions, the deformation of CNIsionlinear [36]. Nevertheless, the
research summarized above focuses on linear defiooma The role of nonlinear
excitations in physics and engineering is significaand they are present in different
areas including water waves, plasma physics, neatioptics, etc. The more precise
quantification of the static and dynamic charasters of CNTs is only possible if
nonlinearities in geometry and physics are conswldB7-41], which would lead to
more extensive areas of application of CNTs. Thgmgototic behavior of weakly
nonlinear dispersive waves was studied extensivetiie past years. One-dimensional
propagation of long nonlinear waves in various €ispve systems is defined by the
Korteweg-de Vries equationDifferent asymptotic methods [42] were employedha
study of Demiray [43] to examine the motion of wigakonlinear pressure waves in a
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thin nonlinear elastic tube that was filled withianompressible fluid. Furthermore, the
researcher examined solitary waves in fluid-fillddstic tubes in a weakly dispersive
case [44]. The researcher confirmed that the Katede Vries equation governs the
dynamics in case of ignoring the viscosity of blodte propagation of large amplitude
nonlinear waves in a peridynamic solid was studigdilling [45]. It was shown that
peridynamic solitary waves arise from the balanegvben nonlinearity in the material
model and the dispersive characteristic of the riodine natural environment because
of nonlocality.

Because of the internal structure of the theorynohlocal elasticity, there is a
possibility to examine dispersive wave propagationthe linear approximation.
Different phenomena, for example, solitary waveayramerge with the condition that
nonlinearity is included because of the above-noeetil property of the model, in other
words, its dispersive characteristic. As a matiérfact, in case of the separate
occurrence of any of the mentioned impacts, disperand nonlinearity, no solitary
wave solutions present. If there are both impactsavelling wave of constant profile
and velocity is promoted by the competition betwstepening as a consequence of
nonlinearity and spreading due to dispersion.

In the present work, nonlinear wave propagatiomamorods based on the nonlocal
theory is studied by utilizing the reductive pepation method. Firstly, a one-
dimensional nonlinear field equation is obtainedd a&he propagation of weakly
nonlinear waves in these dispersive media is exadnim the long-wave limit by
utilizing the reductive perturbation technique. eTlmear dispersion relation of axial
waves is also revealed to see the dispersive dearaicthe environment. It is shown
that the Korteweg-de Vries (KdV) equation goverms honlinear propagation of axial
waves in nonlocal elastic media. Moreover, thaliaed travelling wave solutions for
the mentioned evolution equation are presentedobberve the nonlocal effects on the
KdV equation numerically, the existence of solitawave solutions has been
investigated using the physical and geometric ptagseof CNTSs.

The organization of the current study is presebtddw. Section 2 contains information

on nonlinear local and nonlinear nonlocal elastititeory and governing equation of

the system. The fundamental principles of the redeperturbation technique and

propagation of nonlinear waves are briefly discdsseSection 3. Section 4 contains

the numerical and graphical presentation of theifigs. In Section 5, some discussions
and conclusions are given.

2. Theoretical formulations

2.1.Nonlinear local equation of motion of nanorods

The equations of motion of nanorods in local etastedia were derived. It is possible
to write the deformation gradient tensor as foll¢4&]:

F=VU+I. 1)

Here,U refers to the displacement component of the motidnle I is the unit matrix.
Neglecting the body forces on the element in a oradéxposed to a finite extension, in
terms of material coordinates, the equation of arotian be written as shown below:
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V.[SFT] = p, 2. )

ot2

Here, p, is the non-deformed density of the medium, whei®as the second Piola-
Kirchoff stress tensor. It is possible to write Hets law as presented below:

S = cE. )

Here, c refers to the fourth-order tensor that espnts the elastic behavior of the
material, while E refers to the Green strain tensaiten in the following form:

E=[FTF - 1]. (4)

By limiting the boundary conditions of the rod ardsuming that only axial
deformation U(x,t) takes place in the medium, thadgent deformation tensor in the
Cartesian coordinates truns into a diagonal matrix:

ou

FXX = 1 + 5 y (5)
Fp = 1, (6)
Fyy = 1. (7)

Referring only to the non-zero element in the Gra#rain tensor, the following
equation can be obtained:

16U)6U

EXX = (1 + E& & (8)

The stress-strain relationships of isotropic materiwith the Poisson’s ratio and
modulus of elasticity Eare then as follows:

Eg

\

djj denotes the Kronecker delta. If we insert Eq.ir{8) Eq. (9), it is obtained that shear
stresses are eliminated, and normal stress elermenshown as below:

_ Ep(1-v) (1+16_U)0U (10)

XX T (14v)(1-2v) 2 ax) ox’
-q —_ EBev 13U\ 8U
Syy = Sz = (1+v)(1-2v) (1 + 2 ax) ax’ (11)

By rearranging Eqgs. (10) and (11) using Egs. &), dnd (7), Eq. (12) can be acquired
as below:

ox ax ax? 3Eg (1-v) ot

2 2 _ 2
G o sy

For the infinite deformation of the environment thonlinear terms in Eq. (12) become
not important, and it is reduced to the followirguation:
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02U _ po(1+v)(1-2v) 92U
0x2 ~ Eg(1-v) ot2’ (13)
To make the equation non-dimensional, the non-dsioeal variables presented below
should be introduced:

p=2 (14)

Herer, defines the radius of the nano rod. If Egs. (12) &) are reorganized by
utilizing Eqgs. (14) and (15), it is possible to ierthe non-dimensional equation below,
as has been obtained by Mousavi and Fariborz [47]:

[ERSC RS &

and linear equation of motion is

a2y a2y
= 9% (17)

where the coefficient is

_ poTol(1+v)(1-2v)
B Eg (1-V)

é

(18)

2.2. Nonlinear nonlocal equation of motion of nanods
It is possible to write the constitutive equaticor 2 nanorod as shown below by
utilizing nonlocal elasticity ([14], [17]):

[1— (eoa)? V2][SFT] = A, E( 8y + 2 py, Epy (19)

WhereSFT refers to the nonlocal stress tendiy, refers to the strain tensay;, and
refer to Lamé constants,refers to the internal characteristic length, epdepresents a
constant. For the nonlocal parametés,a)?, to select thee, parameter is very
important to ensure the accuracy of nonlocal moddétsingen [14] suggesteg= 0.39
by matching lattice dynamic longitudinal wave frequy results at the end of the first
Broullin zone k = m/a), wherek denotes the wave length and the parametés
chosen as a typical characteristic length extendireg the full range of micro-, meso-,
and macroscales. For Rayleigh surface wawgs,0.31 has ben proposed by Eringen
[7]. Aydogdu [30] obtained that the nonlocal paetene, depends on the material and
geometrical properties of CNTSs.

Solving Eq. (19) forSFT and writing the gradient of both sides, the follogvequation
can be obtained:

V.[SFT] = (ega)? V2V[SFT] + V(A €81 + 2 1y €1)- (20)

By writing the gradient of Eq.(2) and multiplyingy the nonlocal parameter, the
equation presented below is acquired:
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(o®)?V2[SFT] = (eoa)?Vpy 2 (21)
Inserting Eq.(21) into Eq.(20), Eq. (20) becomefodews:

V. [SF™] = (0)?V2po 2 + V(Ay £ + 2y, £10). (22)
By using Eq.(2) and Eq.(22) together, the followdifferential equation is obtained:
Po% = (eoa)zvzpo?:T;l + V(AL &S + 2 1y €51) - (23)

For a one-dimensional case, using nonzero displasanyives the following nonlinear
non-dimensional equation of motion in the framewafrkionlocal elasticity:

W\ Lo (W) 12| P 250 zg 0%
[(az) * 2(0<) * 3] FICH 3(S ot2 3(S H 5z ae (24)

whereu =(eqa/r,)? and is called the dimensionless nonlocal param&ttingu = 0
causes the nonlinear equation of motion for thesital elasticity theory.

3. Long-wave approximation in nanorods

Finding exact solutions for nonlinear problems ssially hard. Nonetheless, handling
nonlinear problems in case of sufficiently weak Iearity is relatively
straightforward. In this case, evolution equatimrgginating from the equilibrium
between dispersion and nonlinearity can be obtairs# the dispersive nature of the
medium. The propagation of small-but-finite amplitude wavesnanorods of which
dimensionless governing equation is given by E4) (&ll be investigated in this part.
Therefore, the long-wave approximation will be a@olp and the reductive perturbation
technique proposed by Jeffrey and Kawahi@2| will be used. To that end, the
dispersive characteristic of our model equationdéesired to be observed. The
dispersion relation presented below is acquired assult of linearizing the field Eq.
(24) and looking for a harmonic wave type of santio this equation:

Sw?(1+puk?)—k*=0, (25)
whereo refers to the angular frequency akdefers to the wave number. Under the
assumption that the wavelength is big in compariaath the radius of the rod, the

dispersion relationp(k), can be expanded into a power seriek afoundk = 0 and the
following is acquired:

w@)=%mfwm2+mﬂw—~q. (26)

The introduction of the coordinate stretching bel®wvsuggested by the dispersion
relation’s form (25):

§=e((—ct) , = ¢, (27)
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wheree refers to a small parameter that measures thengsakof dispersion and/or
nonlinearity, while c refers to a constant that is demonstrated to déelase velocity.
By introducing the parametessb in Eq. (24)

28 28
?za ,?uzb,

the equation presented below is obtained:

(aw) +(a_¢)2 X i SN U (28)
az ag ag 3 072 ot a2 ot2 '
In EqQ. (28), the following substitution is persilde for derivation;

a_)s(sza Ca) 2, .2

at ot ot) ot a8’

92 2( 92 9? 2 az) 9 5 02

— - —_—— — — > gt —.

FEid ol 2¢? ot wTEw (29)

By substituting the derivation expansion (29) i& (28), the field equation presented
below is obtained:

2 207y L R o R L)
%[ ]*5&?‘a<55§"*kcaaﬁ+05?>+
oy, o o'y 25 LA
+he? (e -T2 — 2e2c L+ ¢ 652) 0. (30)

It is further assumed that it is possible to expitbe field variable as asymptotic series
in € as shown below:

Lp = 5411(5: T) + 821]:’2(%1 T) + e (31)

By introducing expression (31) into field equati@®), the differential equation below
IS obtained:

6¢1 (22 ”.)3 ( MW 20 ”.)2 z( 1 | 2 0%,
az[ + + (€ + € + +-|€ + € +

3 0% 0% 3\ 982 %2
sl e ) (g2 )
c2 ( 0;1121 + g2 aa;tz + )} + be2 {84 (E a‘z‘g;z + g2 a‘:‘l{;; + ) _
282C(E 51:3213 + g2 ::31223) + 2 (8 6;;{1}1 4 g2 6;;112 n )} 0. (32)

The set of differential equations below is acquiasda result of setting the coefficients
of like powers ofe equal to zero;

The first-order, Of), equation:

(- +aC)%§1=0' (33)
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The second-order, @), equation:

2 02
(-3 +a) 5 =0, e

The third- order 0(3), equation'

61111 0y, 261111_
az[ ] —ac?)Zl o+ 2acT 4 b T = 0. (35)

3.1 The solution of field equations
2
In order to have the non-vanishing solution dgrin Eq. (33), the coefficient O%

. . 2 2 .
must vanish; e~z +ac?2=0o0r c= /3— . Here,c represents the phase veloaify
a

aag? in Egs. (34) and35) must

vanish. Finally, the form of Eq. (35) may be expabas follows:

61111 264¢_
ai[ ]+Zaca a§+b a§4_0' (36)

the wave. Accordingly, the coefficients ef— and

q; in Eq.(36), the Korteweg-de Vries (KdV) equatiomitis widely

known can be obtained:

By settingU =

ouU 1 ..0U bc 93U
E+;Ua_§+56_§3_0' (37)

which originates from the equilibrium of non-linggrand dispersion. A steady
solution of the form of the KdV equation is presshbelow:

_ 2 [ a \V? 1 d
U&,t1)=U,+ dsech'n , n= (Gbcz) [E—;(Uoo+§)r], (38)
where U, > 0 represents the value df as n = to, whereasd represents the
amplitude of the wave in relatido the constant solutioli,, at infinity.

4. Numerical results and discussion

In this research, the nonlinear wave propagatiomamorods is examined. The
nonlinear equation of motion of nanorods is acqliog utilizing nonlocal elasticity
theory. The propagation of weakly nonlinear wawvethe longwave approximation is
examined by using the reductive perturbation tepimmi and the Korteweg-de Vries
equation is acquired as the governing equatibime steady-state solitary-wave solution
is known to be admitted by the KdV equation. Thé&ulation of the coefficient that
describes the nonlinear character of the goveremupation is performed for nonlocal
parameteq, and the results are presented in figures.

The alteration of the solitary wave profile of tkdV equationat some different values

of u at a spatial time is presented in Fig.1. As insm the figure in question, the
profile of solitary wave becomes steepened with tleereasing values of. In
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accordance with the open literature, Poisson’® rafinanotubes is not agreed upon.
The suggested values range in a wide ban®.1t9 ~0.34 [48]. Therefore, in the
present study, v is chosen as 0.3, and nonlocal parameterp is
takenas 0 ~ 4x10~18nm?. Some material features are selectedy,as 2300 kg/m3 ,

70 = 107°m ,E = 1 TPa.

p=4x10"°
pu=2x10"°
pu=1x10"*

1.0+

0.81

0.6+

04r

0.2 |

—4XlO6 —2)(106 1’] 2x106 4x106
Fig.1. The variation of solitary wave profile fod¥ equation some different values of
L.

The alteration of wave frequency with wave numltzeshown in Fig.2 for different
values ofu. As is clearly seen, the profile is decreasinghwite increasing nonlocal
parameter. Whem=0, the curve is increasing linearly.

The alteration of wave frequency with the nonloparametern for some different
values of wavenumber is given in Fig. 3. As seethe figure in question, a decrease in
frequencies occurs with the increasing nonlocalpater. The frequency curves
become close to each other with the increasingatahparameter.

Fig.4 shows the longitudinal wave dispersion relatfor the nanorods of radii of
100,200,250 nm. It can be found that phase velocity decreas#s iwtcreasing radius
values and wave numbers. A0 (local case), the phase velocity remains cohstan
The nonlocal phase velocities are lower in compariwith the local case. The reason
for this is the scale impact of nanorods [49]. Phase velocity curves are approaching
each other, especially when higher wave numberscansidered. As the nanorod
radius grows, the phase velocity decreases withntmgorod radius. This result is
compatible with [22].
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13 =
4x10 w=0
pn=1x10
n=4x10"*
13 L
3x10
o (k)
13
2x10
13
1x10
8 9 9
5.0x10 k 1.0x10 1.5x10

Fig.2. The variation of wave frequency with wavenier some different values pf

23 [
25410
23
2.0x10
23
1.5x10
o (k)
231
1.0x10 :
k=10
22 — — - k=8x10°
5.0x10
------ k=6x10"
1 1 1 1
-19 - - -
0 5.x10 15108 1.5x10™° 210"

1l

Fig.3. The variation of wave frequency with nonlogarameteyp for some diferrent
values of wave number k.

2.5x10™
= ::Loonm
~ - - . ro H-ZO
2.0x10%F . — - —p=10"
T~ — -p=10""
ro—loOnm\~\ -—— - - H'_1018
11 fe -~
c(k) 1.5x10 ~.
\ -~
\ _~ - P
1 OXlO:L’L - — r0:200nm -~ -
OO — ——— N .
- _
______ -
5 oxlolo ™= r0—250nm ————————
5.0x10° 1.0x10° 1.5x10° 2.0x10°
k

Fig.4. The variation of phase velocity with wavarher some different values pfand
radius .
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The variation of phase velocity with radius for sodifferent values of wave number is
illustrated in Fig.5. As is also observed from figeire in question, with the increasing
radius values, the phase velocities decrease ydpidtifferent wave numbers.

\
.\
v\
1.5x10 “‘ \ =10°
\\ — — - k=6x10°
R ---- k=10°
1-())(1 10|
c(k)
5.0x10°
2.x10° 4.x10° 6.x10° 8.x10°
rO
Fig.5. The variation of phase velocity with radig$or some diferrent values of wave
number k.

5. Conclusions

A solitary wave represents a wave travelling asngls pulse without dispersion or
alteration of shape in time. Differently from aoshk that represents another type of
wave pulse, a solitary wave leaves the medium tirowhich it passes without
alterations. Shock waves are not possible in theerce of dissipative terms in the
material model or artificial viscosity. There asgynificant applications of solitary
waves in different fields of science, such as pgtmysics, water waves, and solid state
physics.

In the present research, due to nonlocality, thestiel medium has a dispersive
character. The nonlocal parameierdemonstrates the dispersive character of the
medium. Ifp = 0, this leads to the nonlinear motion of classicabkgtity. In our wave
propagation analysis, both linear local situationl aonlinear local situation represent
non-dispersion, while linear nonlocal situationresgents dispersion. However, for the
nonlinear nonlocal situation, nonlinearity and @igion balance each other and a
solitary wave profile arises. There is no solitasgve for the local nonlinear case.

Wave frequency curves and phase velocity curveplatied with the wave number and
shown that nonlocal frequency and phase velocityesuare lower than local ones
accordance with the literature. To observe théeseffect of nanorods, the variation of
wave frequencies was examined, and it was detedrtim# phase velocities changed
with the radius of nanorods. Frequencies and phkiakeities are shown to decrease
with the increasing nanorod radiusthe results of various recent experiments have
shown that the size effect is important in mechanproperties when the size of the
model or the volume of the material investigateddduced. Classical continuity
theories are thought to be unsuccessful when #eeddithe model is comparable to the
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internal length dimension of the material. Withstlstudy, it was understood that
nonlocal effects were much stronger than classatasticity in understanding the
mechanical behaviors of nanostructurése nonlinear propagation demonstrated here
is expected to be beneficial for future studiesianostructure.
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