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Abstract 
XX 
The present research examines the propagation of weakly solitary waves in nanorods by 
employing nonlocal elasticity theory. Many systems in physics, engineering, and natural 
sciences are nonlinear and modeled with nonlinear equations. Wave propagation, as a 
branch of nonlinear science, is one of the most widely studied subjects in recent years. 
Nonlocal elasticity theory represents a technique with increasing popularity for the 
purpose of conducting the mechanical analysis of microelectromechanical and 
nanoelectromechanical systems. The nonlinear equation of motion of nanorods is 
derived by utilizing nonlocal elasticity theory. The reductive perturbation technique is 
employed for the purpose of examining the propagation of weakly nonlinear waves in 
the longwave approximation, and the Korteweg-de Vries equation is acquired as the 
governing equation. The steady-state solitary-wave solution is known to be admitted by 
the KdV equation. To observe the nonlocal effects on the KdV equation numerically, the 
existence of solitary wave solution has been investigated using the physical and 
geometric properties of carbon nanotubes.  
 
Keywords: Nanorod, nonlocal elasticity theory, Nonlinear waves, reductive 
perturbation technique. 
 
 

Yerel olmayan elastisite teorisi kullanılarak nano ölçekli 
çubuklarda nonlineer dalga yayılımı 

 
 

Özet 
XX 
Bu çalışmada, yerel olmayan elastisite teorisi kullanılarak nano ölçekli çıbuklarda zayıf 
nonlineer dalga yayılımı incelenmiştir. Mühendislik, fizik ve doğal bilimlerde birçok 
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sistem nonlineerdir ve nonlineer denklemlerle modellenir. Lineer olmayan bilimin bir 
dalı olan dalga yayılımı son yıllarda yaygın olarak çalışılan konulardan biridir.  Yerel 
olmayan elastisite teorisi microelektromekanik ve nanoelektromekanik gibi sistemlerin 
analizinde gelişen popüler bir tekniktir. Formülasyonlarda Eringen’in yerel olmayan 
elastisite teorisine dayanan bünye denklemleri kullanılmıştır. Hareket denklemleri 
malzeme koordinatları cinsinden yazılmış ve nano ölçekli çubuğun doğrusal olmayan 
hareket denklemleri yerel olmayan elastisite teorisine göre elde edilmiştir. İndirgeyici 
pertürbasyon metodu kullanılarak zayıf nonlineer dalgaların hareketini yöneten 
evolüsyon denklemi olarak Korteweg de Vries (KdV) denklemi elde edilmiştir.  KdV 
denkleminde yerel olmayan etkiyi nümerik olarak gözlemleyebilmek için, karbon 
nanotüplerin fiziksel ve geometrik özellikleri göz önünde bulundurulmuştur. 
XX 
Anahtar kelimeler: Nano ölçekli çubuk, Yerel olayan elastisite teorisi, nonlineer 
dalgalar, indirgeyici pertürbasyon metodu. 
 

X 
1. Introduction 
 
The accurate characterization of the actual mechanical behavior of nanoscale devices is 
significant in the design of the devices in question, including carbon nanotubes (CNTs). 
Carbon  nanotubes  have high technological potential because of their  light weights, 
having high elasticity module, capable of showing metalic or semi conductivity features 
and possible  modifications of their electronic aspects.  However, the implementation of 
classical continuum theory is controversial while analyzing carbon nanotubes 
mechanically.  Classical continuum theory (classical elasticity theory) is length scale-
free. Hence, it cannot accurately account for very small-sized effects.  To eliminate the 
deficiencies of classical continuum theory, continuum theories of higher order, 
including micro-polar elasticity theory [1-4], nonlocal elasticity theory [5-7], couple 
stress theory [8] and the modified couple stress approach [9, 10], have received 
significant attention in the analysis of micro- and nanostructures.  Due to the high cost 
of experiments that operate on the nanoscale, it is of vital importance to introduce 
suitable physical models for nanobeams (carbon nanotubes) for the establishment of an 
appropriate theoretical and mathematical framework for nanosized structures [11-13].  
Eringen [14] and Eringen and Edelen [15] proposed nonlocal elasticity theory in the 
1970s for the purpose of overcoming the deficiencies of classical elasticity models. 
Eringen obtained equations for nonlocal elasticity theory and made very important 
contributions to science by achieving results that cannot be achieved by classical means 
in different studies on one-dimensional elastic wave propagation problems.  
Furthermore, Eringen and Edelen conducted studies on the derivation of constitutive 
equations for elastic media in two different ways, including mechanical and variational.  
Moreover, Demiray [16] obtained constitutive equations for nonlocal dielectric 
materials.  Unlike the conventional theory of elasticity, in the nonlocal theory of 
elasticity, it is assumed that the strain at a particular point in a continuous domain and 
the strain at each point in the domain determine the stress at the point in question.  
Several studies have been performed using this nonlocal model to conduct the analysis 
of the mechanical behavior of nanosized structures [17-19]. 
The investigation of vibration and wave propagation in CNTs constitutes the main 
subject of ongoing studies.  Various studies conducted previously have investigated the 
vibration of CNTs, nanobeams, and rods by employing nonlocal elasticity ([10]-[19]).  
The free axial vibration of uniform nanorods was examined in the study of Aydogdu 
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[18] by means of Eringen’s nonlocal continuum theory.  As a result of the study, it was 
demonstrated that the nonlocal rod model overestimates the natural frequencies of the 
nanorod in comparison with the classical model.  Furthermore, Narendar and 
Gopalakrishnan [21] studied the longitudinal vibration of nanorods by utilizing a 
nonlocal bar model.  According to the findings acquired, it was demonstrated that a 
particular band gap region in the longitudinal wave mode was caused by the small scale 
parameter of the nonlocal model, which allowed no wave propagation to occur.  
Moreover, Filiz and Aydogdu [22] investigated the axial vibration of heterojunction 
CNTs in the context of Eringen’s nonlocal continuum theory.  Besides, the impact of 
nonlocality and lengths of CNTs and their segments was studied in a detailed manner.  
The ultrasonic wave dispersion characteristic of nanorods was examined in the study of 
Narendar and Gopalakrishnan [23] based on nonlocal strain gradient models.   Murmu 
and Adhikari [24] studied the longitudinal vibration of double-nanorod-system (DNRS) 
based on nonlocal elasticity theory.  The results obtained from the above-mentioned 
study emphasize the significant impact of the nonlocal impact on the axial vibration of 
DNRS. 
 
Wave propagation is a very effective, nondestructive method used for the 
characterization of nanostructures.  Nanosensor transducers also work on the wave 
propagation principle.  The wave propagation issue has attracted attention around the 
world [25-31] in different domains of science and engineering because of its 
importance.  In the study carried out by Lim and Yang [25], wave propagation in CNTs 
was investigated on the basis of nonlocal elastic stress field theory and Timoshenko 
beam theory, and a novel dispersion and spectrum correlation was acquired.  Transverse 
and torsional waves in single-walled carbon nanotubes (SWCNTs) and double-walled 
carbon nanotubes (DWCNTs) were investigated on the basis of nonlocal elastic 
cylindrical shell theory in the study of Hu et al. [26].  The researchers compared the 
wave dispersion that was estimated by their model with molecular dynamics simulations 
in the terahertz area and concluded that it was possible to acquire a better prediction of 
dispersion relations by the nonlocal model.  Wu and Dzenis [32] investigated wave 
propagation in nanofibers.  The researchers studied longitudinal and flexural wave 
propagation in nanofibers by employing local theories in terms of surface impacts.  
Challamel [33] suggested a dispersive wave equation by utilizing nonlocal elasticity.  A 
mixture theory of a local and nonlocal strain was introduced.  The nonlocal scale 
impacts on the ultrasonic wave feature of nanorods were examined by Narendar and 
Gopalakrishnan [34] by employing the nonlocal Love rod theory. Narendar [35] used 
the nonlocal Love-Rayleigh rod theory for the examination of wave propagation in 
uniform nanorods.  
 
Under natural conditions, the deformation of CNTs is nonlinear [36].  Nevertheless, the 
research summarized above focuses on linear deformation.   The role of nonlinear 
excitations in physics and engineering is significant, and they are present in different 
areas including water waves, plasma physics, nonlinear optics, etc.  The more precise 
quantification of the static and dynamic characteristics of CNTs is only possible if 
nonlinearities in geometry and physics are considered [37-41], which would lead to 
more extensive areas of application of CNTs.  The asymptotic behavior of weakly 
nonlinear dispersive waves was studied extensively in the past years. One-dimensional 
propagation of long nonlinear waves in various dispersive systems is defined by the 
Korteweg-de Vries equation.  Different asymptotic methods [42] were employed in the 
study of Demiray [43] to examine the motion of weakly nonlinear pressure waves in a 
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thin nonlinear elastic tube that was filled with an incompressible fluid. Furthermore, the 
researcher examined solitary waves in fluid-filled elastic tubes in a weakly dispersive 
case [44].  The researcher confirmed that the Korteweg-de Vries equation governs the 
dynamics in case of ignoring the viscosity of blood. The propagation of large amplitude 
nonlinear waves in a peridynamic solid was studied by Silling [45].  It was shown that 
peridynamic solitary waves arise from the balance between nonlinearity in the material 
model and the dispersive characteristic of the model in the natural environment because 
of nonlocality. 
 
Because of the internal structure of the theory of nonlocal elasticity, there is a 
possibility to examine dispersive wave propagation in the linear approximation.  
Different phenomena, for example, solitary waves, may emerge with the condition that 
nonlinearity is included because of the above-mentioned property of the model, in other 
words, its dispersive characteristic.  As a matter of fact, in case of the separate 
occurrence of any of the mentioned impacts, dispersion and nonlinearity, no solitary 
wave solutions present.  If there are both impacts, a travelling wave of constant profile 
and velocity is promoted by the competition between steepening as a consequence of 
nonlinearity and spreading due to dispersion. 
 
In the present work, nonlinear wave propagation in nanorods based on the nonlocal 
theory is studied by utilizing the reductive perturbation method.  Firstly, a one-
dimensional nonlinear field equation is obtained, and the propagation of weakly 
nonlinear waves in these dispersive media is examined in the long-wave limit by 
utilizing the reductive perturbation technique.  The linear dispersion relation of axial 
waves is also revealed to see the dispersive character of the environment.  It is shown 
that the Korteweg-de Vries (KdV) equation governs the nonlinear propagation of axial 
waves in nonlocal elastic media.  Moreover, the localized travelling wave solutions for 
the mentioned evolution equation are presented.  To observe the nonlocal effects on the 
KdV equation numerically, the existence of solitary wave solutions has been 
investigated using the physical and geometric properties of CNTs. 
 
The organization of the current study is presented below. Section 2 contains information 
on nonlinear local and nonlinear nonlocal elasticity theory and governing equation of 
the system. The fundamental principles of the reductive perturbation technique and 
propagation of nonlinear waves are briefly discussed in Section 3.  Section 4 contains 
the numerical and graphical presentation of the findings.  In Section 5, some discussions 
and conclusions are given. 
 
 
2. Theoretical formulations 
2.1. Nonlinear local equation of motion of nanorods 
The equations of motion of nanorods in local elastic media were derived.  It is possible 
to write the deformation gradient tensor as follows [46]:  
 � = ����U + � .                              (1) 
 
Here, U refers to the displacement component of the motion, while � is the unit matrix. 
Neglecting the body forces on the element in a medium exposed to a finite extension, in 
terms of material coordinates, the equation of motion can be written as shown below: 
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 ∇. �SF�� = ρ� �
��
��� .                          (2) 

 
Here, ρ� is the non-deformed density of the medium, whereas S is the second Piola-
Kirchoff stress tensor. It is possible to write Hooke’s law as presented below: 
 
S = cE.                                                                                        (3) 
 
Here, c refers to the fourth-order tensor that represents the elastic behavior of the 
material, while E refers to the Green strain tensor written in the following form: 
 

E = �
� �F�F − 1�.                           (4) 

 
By limiting the boundary conditions of the rod and assuming that only axial 
deformation U(x,t) takes place in the medium, the gradient deformation tensor in the 
Cartesian coordinates truns into a diagonal matrix:      
    
 

F�� = 1 + �	
�� ,                           (5) 

F

 = 1,                                      (6) 
F�� = 1.                          (7) 
 
Referring only to the non-zero element in the Green strain tensor, the following 
equation can be obtained:  
 

E�� = �1 + �
�
�	
��	 �	��.                (8) 

 
The stress-strain relationships of isotropic materials with the Poisson’s ratio ν and 
modulus of elasticity EE are then as follows: 
 

S�
 = ��
(���) 
E�
 + �

����E��δ�
�.                           (9) 

 
δij denotes the Kronecker delta. If we insert Eq. (8) into Eq. (9), it is obtained that shear 
stresses are eliminated, and normal stress elements are shown as below: 
 

 S�� = ��	(���)
(���)(����) �1 + �

�
�	
��	 �	�� ,                                 (10) 

  

 S�� = S

 = ��	�
(���)(����) �1 + �

�
�	
��	 �	�� .           (11) 

   
By rearranging Eqs. (10) and (11) using Eqs. (5), (6), and (7), Eq. (12) can be acquired 
as below: 
 

 ���	��	� + 2 �	
�� +

�
�
 ��	��� =

���(���)(����)
�	��	(���)

��	
���  .                      (12) 

   
For the infinite deformation of the environment, the nonlinear terms in Eq. (12) become 
not important, and it is reduced to the following equation: 
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��	
��� =

��(���)(����)
	��	(���)

��	
��� .                         (13) 

 
To make the equation non-dimensional, the non-dimensional variables presented below 
should be introduced:  
 

Ψ = 	
��,                                   (14)      

ζ = �
�� .                          (15) 

 
Here, �� defines the radius of the nano rod. If Eqs. (12) and (13) are reorganized by 
utilizing Eqs. (14) and (15), it is possible to derive the non-dimensional equation below, 
as has been obtained by Mousavi and Fariborz [47]: 

 ������	� + 2 �����	+ �
�
 ������ = �

�� ���
���                                 (16) 

 
and linear equation of motion is 
 
���
��� = δ ���

��� ,                                  (17) 

 
where the coefficient � is     
 � = ��	���(���)(����)

	��	(���) .                             (18) 

 
2.2. Nonlinear nonlocal equation of motion of nanorods 
It is possible to write the constitutive equation for a nanorod as shown below by 
utilizing nonlocal elasticity ([14], [17]): 
 
 �1 − (e��)�	∇���SF�� = 	 ��	E��δ�� + 2	��	E�� ,          (19) 
 
Where	SF� refers to the nonlocal stress tensor,	E�� refers to the strain tensor, ��	and  �� 
refer to Lamé constants, � refers to the internal characteristic length, and e� represents a 
constant.  For the nonlocal parameter, (e��)�, to select the e�  parameter is very 
important to ensure the accuracy of nonlocal models.   Eringen [14] suggested e�= 0.39 
by matching lattice dynamic longitudinal wave frequency results at the end of the first 
Broullin zone (� = �/�), where � denotes the wave length and the parameter � is 
chosen as a typical characteristic length extending over the full range of micro-, meso-, 
and macroscales. For Rayleigh surface waves, e�= 0.31 has ben proposed by Eringen 
[7].  Aydogdu [30] obtained that the nonlocal parameter e� depends on the material and 
geometrical properties of CNTs.  
Solving Eq. (19) for 	SF� and writing the gradient of both sides, the following equation 
can be obtained: 
 
 ∇. �SF�� = (e��)�	∇�∇�SF�� 	+ ∇(��	ε��δ�� + 2	��	ε��).                              (20) 
 
By writing the gradient of Eq.(2) and multiplying by the nonlocal parameter, the 
equation presented below is acquired:  
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 (e��)�∇��SF�� = (e��)�∇ρ� ������  .                       (21) 

 
Inserting Eq.(21) into Eq.(20), Eq. (20) becomes as follows: 
 

∇. �SF�� = (e��)�∇�ρ� ������ + ∇(��	ε��δ�� + 2	��	ε��).                    (22) 

 
By using Eq.(2) and Eq.(22) together, the following differential equation is obtained: 
 

 ρ� �
��
��� = (e��)�∇�ρ� ������ + ∇(��	ε��δ�� + 2	��	ε��) .         (23) 

 
For a one-dimensional case, using nonzero displacement u gives the following nonlinear 
non-dimensional equation of motion in the framework of nonlocal elasticity: 

 ������	� + 2 �����	+ �
�
 ������ = �

� δ
���
��� −

�
� δ	μ	 ���

��� ��� ,                              (24) 

 
where μ =�e�� ��⁄ ��	and is called the dimensionless nonlocal parameter. Setting	μ = 0 
causes the nonlinear equation of motion for the classical elasticity theory. 
 
 
3. Long-wave approximation in nanorods 
 
Finding exact solutions for nonlinear problems is usually hard.  Nonetheless, handling 
nonlinear problems in case of sufficiently weak nonlinearity is relatively 
straightforward. In this case, evolution equations originating from the equilibrium 
between dispersion and nonlinearity can be obtained using the dispersive nature of the 
medium. The propagation of small-but-finite amplitude waves in nanorods of which 
dimensionless governing equation is given by Eq. (24) will be investigated in this part.  
Therefore, the long-wave approximation will be adopted, and the reductive perturbation 
technique proposed by Jeffrey and Kawahara [42] will be used.  To that end, the 
dispersive characteristic of our model equation is desired to be observed.  The 
dispersion relation presented below is acquired as a result of linearizing the field Eq. 
(24) and looking for a harmonic wave type of solution to this equation: 
 
δω��1 + μ	���− �� = 0	,             (25) 
 
where ω refers to the angular frequency and k refers to the wave number.  Under the 
assumption that the wavelength is big in comparison with the radius of the rod, the 
dispersion relation, ω(k), can be expanded into a power series of k around k = 0 and the 
following is acquired:  
 

ω��� = �
√ �1 − μ	�� + 9��	�! −⋯ �.                      (26) 

 
The introduction of the coordinate stretching below is suggested by the dispersion 
relation’s form (25): 
 
 � = ԑ�� − �	��				, � = 	ԑ�� ,                    (27) 
 



GAYGUSUZOĞLU G. 

197 

where ԑ refers to a small parameter that measures the weakness of dispersion and/or 
nonlinearity, while  � refers to a constant that is demonstrated to be the phase velocity.  
By introducing the parameters a, b in Eq. (24)  
 
� 
� = a  ,  

� 
� μ = b	,                     

 
the equation presented below is obtained: 
 
�
�� ��� �����	� + �����	�
+ �

�
���
��� − a ������ + b ���

��� ��� = 0.                    (28) 

 
 In Eq. (28),  the following substitution is permissible for derivation; 
 

 
�
�� → 	ε �ε� �

�"− c �
�#			 ,  	 ��� 	→ 	ε �

�# , 
 
��
��� → ε� �ε! ��

�"� − 2ε�c ��
�"�#+ c� ��

�#�			  ,    ����� → ε� ��
�#�.            (29) 

 
By substituting the derivation expansion (29) into Eq. (28), the field equation presented 
below is obtained: 
 

ε ∂
∂ξ �ε3 �∂ψ∂ξ �� + �∂ψ∂ξ ���+ 2

3
∂�ψ
∂ξ� − a�ε� ∂�ψ∂τ� − 2ε�c ∂�ψ

∂τ∂ξ + c� ∂
�ψ
∂ξ� �+																																						 

 +bε� �ε� ���
��� ��� − 2ε�c ���

����� + c� ���
���� = 0.           (30)  

 
It is further assumed that it is possible to express the field variable as asymptotic series 
in ε as shown below: 
 
 ψ = εψ��ξ, τ�+ ε�ψ��ξ, τ�+⋯ .            (31) 
 
By introducing expression (31) into field equation (30), the differential equation below 
is obtained: 
 

ε �
�� ��� �ε ���

�� + ε� ���
�� +⋯ �� + �ε ���

�� + ε� ���
�� +⋯ ���+ �

� �ε ����
��� + ε� ����

��� +
⋯ �− a �ε� �ε ����

��� + ε� ����
��� +⋯ �− 2ε�c �ε ����

���� + ε� ����
���� +⋯ �+

c� �ε ����
��� + ε� ����

��� +⋯ ��+ bε� �ε� �ε ����
��� ��� + ε� ����

��� ��� +⋯ �−
2ε�c �ε ����

����� + ε� ����
������+ c� �ε ����

��� + ε� ����
��� +⋯ �� = 0 .        (32) 

 
The set of differential equations below is acquired as a result of setting the coefficients 
of like powers of 	ε  equal to zero; 
 
The first-order, O(�), equation: �− �

� + ac�� ����
��� = 0 ,                        (33) 
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The second-order, O(��), equation: �− �
� + ac�� ����

��� = 0 ,             (34) 

 
The third-order, O(��), equation: 
�
�� ������� ���+ ��� − ac�� ����

��� + 2ac ����
���� + bc� ����

��� = 0 .                              (35) 

 
3.1 The solution of field equations 

In order to have the non-vanishing solution for ψ� in Eq. (33), the coefficient of  
����
���   

must vanish; i.e.  − �
� + ac� = 0 or  � = � �

�a .  Here, � represents the phase velocity of 

the wave. Accordingly, the coefficients of  
����
���   and  

����
��� 		in Eqs. (34) and (35) must 

vanish. Finally, the form of Eq. (35) may be expressed as follows: 
�
�� ������� ���+ 2ac ����

���� + bc� ���
��� = 0 .                      (36) 

 

By setting 
 = ���
��  in Eq.(36), the Korteweg-de Vries (KdV) equation that is widely 

known can be obtained: 
 

�	
�� +



��
 �	

�� +

�
�� 	��	��� = 0 ,             (37) 

 

which originates from the equilibrium of non-linearity and dispersion.  A steady 
solution of the form of the KdV equation is presented below: 
 	��ξ	, τ� = 
∞ + 	 	���ℎ2
			,			! = 	 � $

%&'�	�/� 
ξ − �
(' ��) + $

�	 τ�,       (38) 

 
where �) > 0 represents the value of �	 as  ! = ±∞, whereas   represents the 
amplitude of the wave in relation to the constant solution �) at infinity. 
 
 
4. Numerical results and discussion 
 
In this research, the nonlinear wave propagation in nanorods is examined.  The 
nonlinear equation of motion of nanorods is acquired by utilizing nonlocal elasticity 
theory.  The propagation of weakly nonlinear waves in the longwave approximation is 
examined by using the reductive perturbation technique, and the Korteweg-de Vries 
equation is acquired as the governing equation.  The steady-state solitary-wave solution 
is known to be admitted by the KdV equation.   The calculation of the coefficient that 
describes the nonlinear character of the governing equation is performed for nonlocal 
parameter μ, and the results are presented in figures. 
 
The alteration of the solitary wave profile of the KdV equation at some different values 
of µ at a spatial time is presented in Fig.1.  As is seen in the figure in question, the 
profile of solitary wave becomes steepened with the decreasing values of µ. In 
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accordance with the open literature, Poisson’s ratio of nanotubes is not agreed upon.  
The suggested values range in a wide band of 0.19	~0.34 [48].  Therefore, in the 
present study, ν	 is chosen as 0.3, and nonlocal parameter μ is 
taken	as	0	~	4x10��*"#�. Some material features are selected as ρ� = 2300	 �$ #�⁄ 	 ,�� = 10�+#	, E = 1	%&�.  
 

 
Fig.1. The variation of solitary wave profile for KdV equation some different values of 
µ. 
 
The alteration of wave frequency with wave number is shown in Fig.2 for different 
values of µ. As is clearly seen, the profile is decreasing with the increasing nonlocal 
parameter. When  µ=0, the curve is increasing linearly. 
 
The alteration of wave frequency with the nonlocal parameter µ for some different 
values of wavenumber is given in Fig. 3.  As seen in the figure in question, a decrease in 
frequencies occurs with the increasing nonlocal parameter.  The frequency curves 
become close to each other with the increasing nonlocal parameter. 
 
Fig.4 shows the longitudinal wave dispersion relation for the nanorods of radii of 
100, 200, 250	"#.  It can be found that phase velocity decreases with increasing radius 
values and wave numbers.  At µ=0 (local case), the phase velocity remains constant. 
The nonlocal phase velocities are lower in comparison with the local case.  The reason 
for this is the scale impact of nanorods [49].  The phase velocity curves are approaching 
each other, especially when higher wave numbers are considered.  As the nanorod 
radius grows, the phase velocity decreases with the nanorod radius. This result is 
compatible with [22].    
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Fig.2. The variation of wave frequency with wave number some different values of µ. 
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Fig.3. The variation of wave frequency with nonlocal parameter µ for some diferrent 

values of wave number k. 
 

 
Fig.4. The variation of phase velocity with wave number some different values of µ and 

radius r0. 
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The variation of phase velocity with radius for some different values of wave number is 
illustrated in Fig.5.  As is also observed from the figure in question, with the increasing 
radius values, the phase velocities decrease rapidly for different wave numbers.  
 

 
Fig.5. The variation of phase velocity with radius r0 for some diferrent values of wave 

number k. 
 
 
5. Conclusions 
 
A solitary wave represents a wave travelling as a single pulse without dispersion or 
alteration of shape in time.  Differently from a shock that represents another type of 
wave pulse, a solitary wave leaves the medium through which it passes without 
alterations.  Shock waves are not possible in the absence of dissipative terms in the 
material model or artificial viscosity.  There are significant applications of solitary 
waves in different fields of science, such as plasma physics, water waves, and solid state 
physics.  
   
In the present research, due to nonlocality, the elastic medium has a dispersive 
character.  The nonlocal parameter μ demonstrates the dispersive character of the 
medium. If μ = 0, this leads to the nonlinear motion of classical elasticity.  In our wave 
propagation analysis, both linear local situation and nonlinear local situation represent 
non-dispersion, while linear nonlocal situation represents dispersion.  However, for the 
nonlinear nonlocal situation, nonlinearity and dispersion balance each other and a 
solitary wave profile arises.  There is no solitary wave for the local nonlinear case.  
 
Wave frequency curves and phase velocity curves are plotted with the wave number and 
shown that nonlocal frequency and phase velocity curves are lower than local ones in 
accordance with the literature.  To observe the scale effect of nanorods, the variation of 
wave frequencies was examined, and it was determined that phase velocities changed 
with the radius of nanorods. Frequencies and phase velocities are shown to decrease 
with the increasing nanorod radius.  The results of various recent experiments have 
shown that the size effect is important in mechanical properties when the size of the 
model or the volume of the material investigated is reduced.   Classical continuity 
theories are thought to be unsuccessful when the size of the model is comparable to the 
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internal length dimension of the material.  With this study, it was understood that 
nonlocal effects were much stronger than classical elasticity in understanding the 
mechanical behaviors of nanostructures. The nonlinear propagation demonstrated here 
is expected to be beneficial for future studies on nanostructure. 
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