

Turkish Journal of Engineering

149

Turkish Journal of Engineering (TUJE)

Vol. 3, Issue 3, pp. 149-156, July 2019

ISSN 2587-1366, Turkey

DOI: 10.31127/tuje.498878

Research Article

USER-ORIENTED FILE RESTORATION FOR OPERATING SYSTEMS

Hüseyin Pehlivan *1

1 Karadeniz Technical University, Engineering Faculty, Department of Computer Engineering, Trabzon, Turkey

ORCID ID 0000-0002-0672-9009

pehlivan@ktu.edu.tr

* Corresponding Author

Received: 18/12/2018 Accepted: 18/02/2019

ABSTRACT

Folders such as recycle bin are a crucial component of wide working environments like operating systems. In current

operating systems, such facilities are implemented either in no user-oriented fashion or very poorly. Various intrusion

detection mechanisms are developed to prevent any damage, but very few offers the repair of the user's file system as an

additional level of protection. This paper presents how to build a recycle bin mechanism for Unix operating systems

entirely at the user level. The mechanism involves the control of system resources in a more intelligent way. Programs

thus are running under greater control, monitoring and analyzing their resource requests. The idea is based on the

interception of a particular class of system calls, using tracing facilities supported by many Unix operating systems. This

provides better high level information, and presents efficient techniques to prevent foreign or untrustworthy programs

from doing any irreparable damage. A program called trash has been constructed and experimented to investigate

potential consequences of the recycle bin mechanism. The experiments highlight possible overheads imposed on the

system. The paper also performs a comparative analysis of the trash program with some related approaches and tools

Keywords: Recycle Bin, Operating Systems, System Calls, Process Tracing, Restoration

Turkish Journal of Engineering (TUJE)

Vol. 3, Issue 3, pp. 149-156, July 2019

150

1. INTRODUCTION

Recycle bin mechanisms are usually provided for

file recovery purposes and directly employed by users.

User-oriented recovery in operating systems has become

very least concern among past studies, possibly due to

reasons such as the lack of necessary system facilities.

The system-wide integrity protection is accomplished

by third party programs that, once an anomalous state

has been detected, remove the anomaly from the system,

restoring the original state. The anomaly removal and

restoration capabilities of these commercial programs

fail to completely reverse the effects of an anomalous

program (Passerini et al., 2009).

In programs such as editors, users are presented with

recovery commands (undo, redo, etc.) to meet their

preservation and restoration requirements. Given an

operating system, undo and redo commands, which are

rather useful for smaller environments, do not seem very

functional to bring back any destructed file seamlessly,

which is mainly caused by the multi-tasking nature of

operating systems and possible dependencies between

user commands. Two forthcoming studies are made on

Windows, where untrusted programs are monitored,

logging their operations, (Hsu et al., 2006; Paleari et al.,

2010). Using the logs, it can completely remove

malware programs and reliably restore the infected data.

However, it is a recovery facility that is provided for a

single user environment.

In modern operating systems, notably POSIX

compliant ones, recycle bin functionality is integrated

into a desktop environment and its file manager. Typical

examples are Microsoft Windows with Windows

Explorer and GNOME with Nautilus. In such

environments, an overwritten file does not usually go to

the recycle bin. In fact, the recoverability of files deleted

by a program depends on its level of integration with a

particular desktop environment. Low-level utilities can

bypass this layer entirely and delete files immediately.

In Windows or Unix operating systems, a file removed

through a DOS or terminal window is not placed in the

recycle bin and so is not recoverable.

The aim of the paper is to provide a user-oriented

restoring facility for Unix operating systems. Unlike the

Windows recycle bin mechanism, the restoring facility

operates in a more intelligent way, dealing with

dynamically deleted files as well. In fact, it basically

deals with only file-related damage of either commands

issued or applications managed by a user. The damage

imposed by the system itself as a result of situations

such as a crash, however, have to be handled by the

administrator.

The described mechanism, called trash (TRAcing

SHell), is implemented using C++, completely at the

user level without having to modify the existing system

internals. It consists of two separate subprograms which

monitor user activities and restore destructed files. The

monitoring program (monitor) is started as a daemon by

the administrator, and controls all users' activities. It can

handle all existing commands and programs, and any

new ones which have been installed recently. The

restoring program (restorer) runs as an ordinary

program, and can be configured for each different user,

with their own restoring requirements.

Like all usual recovery implementations, the trash

mechanism needs to find out what changes each user

command makes to the file system. Shells in common

use never know which file operations commands pass on

to the kernel to execute, since the commands make these

requests with system calls. The trash daemon must

itself monitor file requests of commands. Fortunately,

many Unix operating systems provide standard tracing

facilities such as the /proc file system which is used by

truss-like applications and various intrusion detection

systems. With these facilities, system calls are

intercepted and then resumed after the appropriate

information is extracted.

2. RELATED WORK

Approaches of system protection can be broadly

divided into two categories; system restoration and

intrusion detection. System restoration based approaches

maintain some specific checkpoints in the system and

roll back a user-selected collection of actions.

Approaches of intrusion detection can be further divided

into anomaly detection and misuse detection. Anomaly

detection based approaches first construct a profile that

describes normal behaviours and then detect deviations

from this profile. In contrast, misuse detection based

approaches define and look for precise sequences of

events that damage the system.

System restoration is based on information stored or

gathered during normal interaction with a program.

Almost all programs are being currently equipped with

restoring facilities. In the environments controlled by

self-contained programs such as editors and painters, the

provision of recovery support is relatively easy due to

paucity and known effects of operations. Wide

environments presented by operating systems are open

to every kind of operations, and thus the effects of

system programs must be handled in a more intelligent

way. Therefore different environments involve

differentiating types of restoration, which is basically

associated with the number of users working in them.

Small environments use data chunks for restoration,

while wide ones do data files for restoration. Restoration

in small environments is inherently user-oriented and

supplied as a result of recovery commands such as undo

and redo. There are many recovery models introduced

for such environments where interactions with a single

user (Vitter, 1984; Spenke and Beilken 2003; Brown and

Patterson, 2003) or multiple users (Choudhary and

Dewan, 1992; Berlage and Genau, 1993) are supported.

Typical examples of those models are history undo

model (Stallman, 1986), selective undo model (Prakash

and Knister, 1992) and object-based undo model (Zhou

and Imamiya, 1997). Restoration in wide environments

is either system-oriented or user-oriented. As in Unix

operating systems, system-oriented restoration is carried

out via backup tapes accessible by only the system

administrator. As in Windows operating systems, user-

oriented restoration is done via a filestore maintained in

the system.

Anomaly detection techniques address the existence

of an intrusion by considering any abnormalities in user

or system behaviour as a potential attack (King and

Chen, 2003; Qiao et al., 2002; Christodorescu and Jha,

2004). In order to learn normal user or system

behaviours, most techniques analyze program

behaviours. Typical examples of analyzing program

behaviours are the N-gram and FSA-based algorithms

Turkish Journal of Engineering (TUJE)

Vol. 3, Issue 3, pp. 149-156, July 2019

151

(Sun et al., 2005; Wu et al., 2016; Yu et al., 2005),

which are usually applied to server programs. Both

algorithms characterize normal program behaviours in

terms of sequences of system calls. A sequence of

system calls that have not been observed under normal

operation of programs is treated as anomalous program

behaviour. The N-gram algorithm breaks a system call

sequence into substrings of a fixed length N, and then

stores these substrings (called N-grams) in a table. The

FSA-based algorithm maintains state-related information

(the program state in the point of each system call) as

system calls is made by a process under normal

execution, where the system calls correspond to

transitions in FSA (finite-state automata). The

performance of these algorithms for three popular

servers (FTP, HTTP, NFS) can be found in (Sekar et al.,

2001).

Misuse detection techniques model known attacks

using patterns and detect them via pattern-matching

(Abed et al., 2015; Anandapriya and Lakshmanan, 2015;

Chen et al., 2016; Creech and Hu, 2014; Jose et al.,

2018; Liu et al., 2018). These techniques rely on a wide

variety of observable data such as system-call data,

preventing intrusions from either local or remote users

as a result of evaluating the legitimacy of their activities.

Many solutions to detecting and preventing intrusions

are based on the interception of system calls. A recent

comprehensive review is conducted to assess the

advantages and drawbacks of intrusion detection

techniques proposed in the literature (Ramaki et al.,

2018).

3. CHARACTERISTICS OF RESTORATION

In this work, a conventional distinction is made

between state and file restorations. The restoration of a

state occurs as a result of undoing or redoing user

commands. The names and contents of files together

determine the system state, as well as other components

such as directories and access permissions. A change in

file names is considered to move the system into another

state. So a state recovery means that each component of

a state affected of the execution of a command is

reinstated. File restoration is usually different from state

restoration, which is associated with the contents of files

only, excluding file names or permissions.

In practice, this distinction helps provide more

useful functionalities from the perspective of a user's

requirement. The user would mainly expect a utility to

be able to bring the files with the correct contents back.

In restoration, since the contents are just important, there

is less information stored to carry out file protection and

restoration.

On the other hand, there are some difficulties with

ensuring the applicability of recovery commands to all

situations. One important difficulty is the requirement of

controlling concurrency, where programs interleave.

Indeed, even if concurrency is controlled desirably, it

may leave some programs irrecoverable, restricting the

usability of the recovery mechanism. For example,

consider the following situation which is led to by

concurrent execution of two programs, P1 and P2,

entered in separate command-lines:

10> Delete fileA 5 P1

11> Create fileA 11 P1

12> Read fileA 11 P2

13> Create fileB 13 P2

14> Read fileB 13 P1

This does not enable both programs to be undone

separately. Thus it is impossible to get back the old

version of fileA (version 5). There is no elegant way

to cope with this situation, because the user is currently

allowed to specify only one command to undo from the

history list at a time. This involves considering each

atomic file operation individually.

There is a close relationship between file protection

and safe command execution. The best way of

protecting a file system is to ensure that every system

command executes securely. Provision of secure

execution of commands seems to require restricting the

environment. There is a lot of work associated with file

protection, which have concentrated on safe command

execution, as given in Section 2. Many of previous

works provide users with restricted environments for

safe execution of programs. Any destroyed file cannot

be retrieved. However, the trash mechanism aims not to

restrict the working environment.

4. DESIGN AND IMPLEMENTATION

The trash program is designed in two components

(subprograms), namely monitor and restorer, which run

as separate processes in tracing and restoration modes

respectively. The monitor component both controls one

user's activities as a result of tracing user-serving

programs and stores information required for restoration

in a directory named trash under the user's home

directory. The kind of restoration information stored

depends entirely on intercepted system calls, whose

effects on the system may vary considerably, and so

each system call is handled individually. The restorer

component handles the restoration requirements,

bringing old versions of files back.

The owner of these components is the system

administrator, and thus users are not allowed to directly

write to the trash directory. This restriction is required to

protect restoration information against other programs

executed by users, intentionally or not. Besides, for

more efficient protection, a system group named restore

is created, which consists of the name of users to employ

the trash mechanism, and the group ownership of

restorer is changed to that. In this way restoration is

made possible only through the restorer program.

In order to control all activities of a particular user, it

is not adequate to trace only login shells for recovery

purposes. Unix operating systems provide various levels

of remote access. For each level, there are many tools

which allow users to manage their accounts remotely, as

described in Table 1.

Table 1 also gives the names of daemon processes

serving the specified tools, which are system-dependent.

For example, X servers which allow running Unix

desktop environments such as KDE and GNOME,

interact with display managers (daemons) such as kdm

and gdm, respectively. The file-related effects made

through all such tools need monitoring properly.

Turkish Journal of Engineering (TUJE)

Vol. 3, Issue 3, pp. 149-156, July 2019

152

Table 1. Unix remote access tools and daemons

Tools Instances Daemons

Telnet/SSH

client programs

AxeSSH, FiSSH,

PuTTy

telnetd,

sshd

FTP/SFTP

programs

AceFTP, SmartFTP,

WinSCP3
ftpd, sftpd

X Window

System servers

X-Win32, eXceed,

WeirdX
kdm, gdm

Web servers
Apache, Java Web

Server

httpd,

webservd

Unix environments are full of many utilities used for

text formatting and program developing purposes that

produce numerous temporary or permanent files, which

we call “generated files”. To hold these specific files,

they can use some subdirectories under the system's root

directory (e.g., /tmp and /var) or the user's home

directory (e.g., ~/.netscape and ~/.ssh). In the current

implementation, all files only in home directories are

protected by default, except some language and program

specific files with the extensions “.aux”, “.log”, and “.o”.

However, each user can individually change the default

configuration via the menu provided by restorer

program.

The trash program stores restoration information in

two files named .trash and .conf under ~/.trash. The first

keeps the record of file deletions, while the latter

contains the names of files and directories that are not to

be protected by trash. File names can be specified

explicitly or using some extensions. Other entries in

~/.trash are copies of files stored as a whole with a

number extension at the end which is incremented

sequentially.

Typical scenario of storing information might be as

follows. Whenever trash intercepts the open system call,

it checks the first argument to see whether it points to a

pathname under the user's home directory. If the file is

owned by other users or belongs to a standard shared

library, for example, the open is allowed to go ahead, in

which case nothing is stored. Otherwise, the second

argument is checked to see which operation open is to

perform on the file. In the case of a deletion operation,

for example, a complete copy of the file is taken. (For

open, a deletion means modification of the file as a

result of flags such as O_WRONLY, O_RDWR and

O_TRUNC.) Then the system call is released to resume

as normal. The other system calls, such as creat, rename,

unlink, symlink and link, can also perform deletion

operations.

The text-based versions of the monitor and restorer

programs are currently implemented. During tracing,

monitor uses each user's own configuration to gather and

store information. There is no graceful way to

individually monitor user tasks via separate processes

due to the fact that a single process can serve more than

one user. Therefore, only one instance of it is running in

the system, without spawning one monitoring child

process for each user. On the other hand, each user

executes her/his own instance of the restorer program

from the command line which accesses the .trash

directory to obtain restoring information.

All these preparations make the restoration of files

quite simple. The effect of the restorer program consists

only of the movement or exchange of file versions

between the current state and the .trash directory of

previous versions. For the restoration of a particular file

that has been previously deleted by a user task, the

restorer program firstly checks to see if an overwrite

occurs. If there is no overwrite operation, it brings the

deleted file back to the current state and removes the

related line of the .trash file. Otherwise it warns the user.

5. CONCURRENCY CONTROL

An important issue to handle file restoration is

concurrency. Subject to their use of system calls,

processes execute independently of each other and share

system resources arbitrarily, which can cause non-

determinism. In order to reduce the usual non-

determinism problems caused by uncontrolled sharing of

resources to a minimum, trash has to handle

concurrency in a more sophisticated way than the

operating system or ordinary shells. Fortunately, the

/proc interface provides a means of monitoring all user

processes and their descendants via only one tracing

process. The monitor program behaves like a tracing

process, using the poll call to listen to process events. To

efficiently monitor running processes, a process table

named procT is defined by the following C++

structure:

int nprocs;

int current_time;

struct pollfd Pollfds[MAXPROCS];

struct processTable {

int time;

pid_t pid;

int procfd;

prstatus_t *pstatus;

} procT[MAXPROCS];

where the structure Pollfds are used by poll to perform

efficient control of process events concurrently. Each

new process, which is represented by pid, is inserted into

the table with a unique time entry, using the value

current_time. Note that parent-child relations do not

require maintenance in the table. All processes are

supposed to be at the same level. To detect and record

their concurrent file accesses, a second table fileT) is

maintained as follows:

static int nfiles;

struct fileTable {

int nprocfds;

int procfd[MAXPROCS];

char *path;

} fileT[MAXFILES];

where the attempt of opening a file adds a new entry to

the table. All processes that hold a single file open are

kept together within the same entry.

The time during which a file remains open is usually

determined by open-like calls and close. However, on

seeing a close call, We cannot simply assume that the

process is finished with the related file. One reason is

the duplications of file descriptors. In this way, a process

can have some files open even after close, as a result of

performing system calls such as dup and fcntl.

The monitoring of system calls that copy existing

Turkish Journal of Engineering (TUJE)

Vol. 3, Issue 3, pp. 149-156, July 2019

153

descriptors is not enough to detect all files a process

holds open. There is another situation where files might

remain open. It is associated with inheritance structures

of processes. When the FD_CLOEXEC flag of a file

descriptor created by a parent process is clear, the file

remains open across fork and exec calls, which means

that its child processes can inherit those file descriptors.

This complicates the issue of keeping the track of file

descriptors for each process.

In fact it is not easy and practical to monitor

processes for file descriptors information, because it

imposes numerous dynamic checks on run-time

environments of processes. We do not deal with file

descriptors much. For simplicity, it is assumed that a

process creating or inheriting a file descriptor holds the

related file open until it terminates.

File open activities of processes provide the most

valuable information for trash. Each opening operation

does not correspond to a backup. For the first process

that opens a file for writing for the first time, the file is

copied to ~/.trash. As far as the file remains open, all

later accesses to it by different processes would have no

effect on the restoring mechanism (that is, no new copies

are made). Only after all the related processes end, a

new process that tries to open the same file for writing

would cause a backup.

6. OVERHEADS AND PERFORMANCE

In order to measure the whole overheads caused by

the trash program, the overhead is examined in terms of

runtime and space usage. Runtime overheads occur with

both system call interception and execution of

detection/storing code. Space overheads are caused by

files stored in ~/.trash.

Table 2. CPU time and disk space overheads of the

trash program

Program Not Monitored Monitored Overhead

cp 35ms 37ms 5%

latex 160ms 182ms 13%

xterm 390ms 439ms 12%

emacs 483ms 528ms 9%

mozilla 2476ms 2552ms 3%

eclipse 9342ms 9986ms 7%

smc 12350ms 13015ms 5%

With root privileges we monitor three system

daemons (e.g. sshd, sftp-server and dtlogin), actually

grandchild processes through them. The webservd

daemon could not be monitored satisfactorily, due to the

absence of the web content that interacts with the file

system intensively. Table 2 shows the results for certain

programs which operate on Sun Solaris Sparc machine

with 2 processors with 1.28GHz each, 4GB of RAM and

4 Ultra160 SCSI hard disks with 73GB each. The

machine is daily connected by about 34 users remotely

through the tools given in Table 1. To get around the

effects of network environment, the connection times are

not measured. The CPU time is only given for some

system programs. For the long-running programs given

in Table 2, the time measurement is restricted by the

point the user input is asked (smc is the Solaris

management console program).

Compared to techniques for interception of system

calls within the kernel, user-level mechanisms tend to

incur significantly higher overheads. This is unavoidable

because, for each system call, there are additional

context switches between a process that is handling a

particular user task and another process that is

intercepting its system calls. The number of context

switches depends on how many system calls of interest a

program issues. Given the file system operations, each

user program usually need to perform a small number of

system calls of interest to trash, causing a few context

switches. For instance, the Unix command “rm *”

performs one unlink call for each file in the current

directory. The fact that file system activities of most

Unix commands are very few introduces trivial

overheads in the short terms.

Furthermore, to find out the name and parameters of

a system call intercepted, the monitoring process is

required to access the monitored process memory,

incurring the overhead of system call interception. After

detecting and decoding a system call, possible storing

operations are executed, incurring the overhead of

execution of detection/storing code.

Disk space overheads are also explored on the

machine with the specifications described above, for the

period of one month. For a particular user, the size of

disk space is increased with 19% of currently occupied

one. For another user, the increase is only 12%. These

overheads are imposed by file storing operations, which

may lead to more space overheads. As a solution to

keeping space usage down, all stored files might be

compressed, but this possibly leads to an increase in

storing time, which is beyond the subject of this paper.

On the other hand, compared to traditional recovery

mechanisms, the restoration technique needs less

amount of space in the command-independent fashion.

To illustrate, consider the following situation, assuming

that fileB and fileC does not exist in the current

state:

P1: rename(fileA, fileB)

P2: rename(fileB, fileC)

where the rename calls are executed through two

separate user programs. For purposes of recovery, fileA

and fileB have to be saved so that they can be

separately reinstated later. For restoration, there is no

need to save any file, because the contents of fileA

remain unchanged, even if it is eventually renamed as

fileC.

We also explored that some programs (e.g. an editor

or painter) can overwrite a file many times during

execution. In this case, the program carries out many

deletions of possibly the same file, causing intermediate

copies of the file to be stored. Most of these deletions

have no effect on restore operations. So it is unnecessary

for trash to keep track of them all. Restoration

information needs only contain at most one copy for a

single file managed by a program, which corresponds to

the contents of the file at the time when the program is

called.

7. COMPARATIVE ANALYSIS

Most literature studies that analyze the trace of

Turkish Journal of Engineering (TUJE)

Vol. 3, Issue 3, pp. 149-156, July 2019

154

system calls focus on intrusion detection systems.

Although system call data is an instrumental artefact of

the kernel, it can be modelled to support decision

making activities of these systems at program level.

Thus, the anomaly detectors use various modelling

techniques for assessing the behaviour of processes via

the sequence of system calls and their arguments. The

techniques are typically based on sequential features

(SF), frequency-based features (FF), argument-based

features (AF) and hidden-markov models (HM). Table 3

compares our study with some previous work in terms of

the modelling techniques and the type of intrusion

detection, which can be supervised or not.

Table 3. Comparison of system call-based modeling

techniques

Reference Detec. Tech. Supr.

Anandapriya et al., 2015 Anomaly SF Yes

Creech et al., 2014 Anomaly SF Yes

Gupta et al., 2015 Misuse SF No

Xie et al., 2014 Anomaly FF No

Haider et al., 2015 Anomaly FF No

Hoang et al., 2009 Hybrid HM Yes

Hu et al., 2009 Anomaly HM No

Sekar, 2001 Anomaly AF No

Mutz, 2006 Anomaly AF No

Our approach Hybrid AF Yes

Another comparison is conducted based on different

performance criteria such as scalability (Scal.), space

complexity (Space), time complexity (Time) and

detection robustness (Rbst.). Table 4 shows the analysis

results for various detection systems.

Table 4. Comparison of various detection systems based

on some performance criteria

Reference Scal. Space Time Rbst.

Fuse et al., 2017 Low High Low Low

Yolacan et al., 2014 High High High High

Hu et al., 2009 High Low Low Low

Zhou et al., 2008 High High High High

Zhang et al., 2006 High Low High High

Hoang et al., 2009 Low Low High High

Our approach High Low Low High

The final comparison of our approach is made with

three other restoration approaches and three commercial

malware detectors including Nod32 Anti-Virus, Panda

Anti-Virus, and Kaspersky Anti-Virus, which is

evaluated in (Passerini, 2009). The restoration

operations are performed on three system resources of

files, registry keys and/or processes. The performance of

the approaches and tools is classified as good, average

and poor categories. The results are shown in Table 5.

Table 5. Comparison of some restoration approaches and

tools

Approach/Tool OS File Reg. Proc.

Nod32 Windows Good Good Poor

Panda Windows Avg. Avg. Avg.

Kaspersky Windows Avg. Good Poor

Hsu et al., 2006 Windows Good Good NA

Paleari et al.,

2010
Windows Good Good Good

Webster et al.,

2018
Linux Good NA NA

Our approach Unix Good NA NA

8. CONCLUSION AND FUTURE WORK

We have described a recycle bin mechanism on

Unix for repairing the file system damages in a user-

oriented fashion. The mechanism deals with all

situations which threaten the integrity and security of the

file system, giving a chance the user to restore

unintentional deletions of files. It achieves these goals

by monitoring individual user activities, storing

destructed files, and using the restoration information to

eliminate their effects. We examined its overheads for

possible file-related operations of programs, concluding

that the CPU and storage overhead caused by the utility

is acceptable. This conclusion is also supported by the

results of the comparative analysis made with some

other approaches and tools.

The main subject of future work is on maintaining

the recycle bin efficiently. To achieve this goal, one

issue is to determine how long file copies are preserved

in the user's disk area. Some users can require file

preservation to be in effect during multiple login

sessions. To avoid long-term file preservations, an

optimum duration must be determined for most

utilization of the facility. This raises another issue,

which is the disk space usage of stored files. Using the

disk quota allowed for each user as an additional

parameter, we are currently working on the recycle bin

to make it occupy less disk space and to keep it covering

some particular sessions.

REFERENCES

Abed, A. S., Clancy, C. and Levy, D. S. (2015).

“Intrusion Detection System for Applications Using

Linux Containers”, International Workshop on Security

and Trust Management, pp. 123-135.

Anandapriya, M. and Lakshmanan, B. (2015).

“Anomaly Based Host Intrusion Detection System using

semantic based system call patterns”, Proc., 9th

International Conference on Intelligent Systems and

Control (ISCO), pp. 1-4.

Berlage, T. and Genau, A. (1993). “From undo to multi-

user applications”, Proc., Vienna Conference on

Human–Computer Interaction, Vienna, Austria, Sept 20-

22, pp. 213-224.

Brown, A. B. and Patterson, D. A. (2003). “Undo for

operators: Building an undoable e-mail store” Proc.,

2003 USENIX Annual Technical Conference, pp. 1-14.

Chen, C. M, Guan, D. J. and Huang, Y. Z and Ou, Y. H.

(2016). “Anomaly network intrusion detection using

Hidden Markov Model”, International Journal of

Innovative Computing, Information and Control, Vol. 12,

No. 2, pp. 569-580.

Turkish Journal of Engineering (TUJE)

Vol. 3, Issue 3, pp. 149-156, July 2019

155

Choudhary, R. and Dewan, P. (1992). “Multi-user

undo/redo”, Technical Report TR125P, Computer

Science Department, Purdue University.

Christodorescu, M. and Jha, S. (2004). “Testing malware

detectors”, Proc., 2004 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA),

New York, NY, USA, pp. 34-44.

Creech, G. and Hu, J. (2014). “A Semantic Approach to

Host-Based Intrusion Detection Systems Using

Contiguous and Discontiguous System Call Patterns”,

IEEE Transactions on Computers, Vol. 63, pp. 807-819.

Fuse, T. and Kamiya, K. (2017). “Statistical anomaly

detection in human dynamics monitoring using a

hierarchical dirichlet process Hidden Markov Model”,

IEEE Transactions on Intelligent Transportation

Systems, Vol. 18, No: 11, pp. 3083–3092.

Gupta, S. and Kumar. P. (2015). “An immediate system

call sequence based approach for detecting malicious

program executions in cloud environment”, Wireless

Personal Communications, Vol. 81, No. 1, pp. 405–425.

Haider, W., Hu, J. and Xie. M. (2015). “Towards

reliable data feature retrieval and decision engine in

hostbased anomaly detection systems”, IEEE 10th

Conference on Industrial Electronics and Applications

(ICIEA), Auckland, New Zealand, pp. 513–517.

Hoang, X. D., Hu, J. and Bertok. P. (2009). “A program-

based anomaly intrusion detection scheme using

multiple detection engines and fuzzy inference”, Journal

of Network and Computer Applications, Vol. 32, No. 6,

pp.1219–1228.

Hsu, F., Chen, H., Ristenpart, T., Li, J., and Su, Z.

(2006). “Back to the future: A framework for automatic

malware removal and system repair”, Proc., 22nd

Annual Computer Security Applications Conference,

ACSAC ’06, IEEE Computer Society, Washington, DC,

pp. 257–268.

Hu, J., Yu, X., Qiu, D. and Chen, H.-H. (2009). “A

simple and efficient hidden markov model scheme for

host-based anomaly intrusion detection”, IEEE network,

Vol. 23, No. 1, pp. 42–47.

Jose, S., Malathi, D. Reddy, B. Jayaseeli, D. (2018).

“Anomaly Based Host Intrusion Detection System Using

Analysis of System Calls”, International Journal of

Pure and Applied Mathematics, Vol. 118, No. 22, pp.

225-232.

King, S. and Chen, P. M. (2003). “Backtracking

intrusions”, Proc., 19th ACM Symposium on Operating

Systems Principles (SOSP), pp. 223-236.

Liu, M., Xue, Z. Xu, X., Zhong, C. and Chen. J. (2018).

“Host-Based Intrusion Detection System with System

Calls: Review and Future Trends”, ACM Computing

Surveys, Vol. 51, No. 5, pp 1-36.

Mutz, D., Valeur, F., Vigna, G. and Kruegel, C. (2006).

“Anomalous system call detection”. ACM Transactions

on Information and System Security (TISSEC), Vol. 9,

No. 1, pp. 61–93.

Paleari, R., Martignoni, L., Passerini, E., Davidson, D.,

Fredrikson, M., Giffin, J., and Jha, S. (2010).

“Automatic generation of remediation procedures for

malware infections”, Proc., 19th USENIX Security

Symposium, August 11-13, Washington, DC, pp. 419-

434.

Passerini, E., Paleari, R. and Martignoni, L. (2009).

“How Good Are Malware Detectors at Remediating

Infected Systems?”, Proc., 6th International Conference

on Detection of Intrusions and Malware, and

Vulnerability Assessment, July 09-10, Como, Italy, pp.

21-37.

Prakash, A. and Knister, M. J. (1992). “A framework for

undoing actions in collaborative systems”, Technical

Report CSE-TR-125-92, Computer Science and

Engineering Division, The University of Michigan, Ann

Arbor.

Qiao, Y., Xin, X. W., Bin, Y. and Ge, S. (2002)

“Anomaly intrusion detection method based on HMM”,

Electronics Letters, Vol. 38, No. 13, 2002, pp. 663-664

Ramaki, A. A., Rasoolzadegan, A. and Jafari, A. J.

(2018) “A Systematic Review on Intrusion Detection

based on the Hidden Markov Models”, Statistical

Analysis and Data Mining, Vol. 11, No. 3, pp. 111-134

Sekar, R., Bendre, M., Dhurjati, D. And Bollineni, P.

(2001). “A Fast Automaton-Based Method for Detecting

Anomalous Program Behaviors”, Proc., IEEE

Symposium on Security and Privacy, pp. 144-155.

Spenke, M. and Beilken, C. (1991). “An overview of

GINA—the generic interactive application”, Proc., User

Interface Management and Design, D. A. Duce et al.,

Eds. Springer-Verlag, New York, NY, USA, pp. 273-

293.

Stallman, R. (1986). “GNU Emacs manual, Version 17”,

Free software foundation. Inc.

Sun, W., Liang, Z., Venkatakrishnan, V. N. and Sekar,R.

(2005). “One-way isolation: An effective approach for

realizing safe execution environments”, Proc., Network

and Distributed Systems Symposium (NDSS), pp. 265-

278.

Webster, A., Eckenrod, R. and Purtilo, J. (2018). “Fast

and Service-preserving Recovery from Malware

Infections Using CRIU”, Proc., 27th USENIX Security

Symposium, August 15-17, Baltimore, MD, USA, pp.

1199-1211.

Vitter, J. Z. (1984). “US&R: A new framework for

redoing”, IEEE Software, Vol. 1, No. 4, pp. 39-52.

Wu, F., Wu, D. and Yang, Y. (2016). “A Network

Intrusion Detection Algorithm Based on FSA Model”,

4th International Conference on Machinery, Materials

and Computing Technology, pp. 615-621.

Turkish Journal of Engineering (TUJE)

Vol. 3, Issue 3, pp. 149-156, July 2019

156

Xie, M., Hu, J., Yu, X. and Chang. E. (2014).

“Evaluating host-based anomaly detection systems:

Application of the frequency-based algorithms to adfa-

ld”, International Conference on Network and System

Security, Berlin, Heidelberg, Springer, pp. 542–549.

Yolacan, E. N., Dy, J. G. and Kaeli, D. R. (2014).

“System call anomaly detection using multi-HMMs,

Software Security and Reliability-Companion (SERE-

C)”, IEEE 8th International Conference on Software

Security and Reliability-Companion, San Francisco, CA,

pp. 25–30.

Yu, F., Xu, C., Shen, Y., An, J., and Zhang, L. (2005).

“Intrusion detection based on system call finite-state

automation machine”. IEEE International Conference

on Industrial Technology, pp. 63-68.

Zhang, J., Liu, Y. and Liu, X. (2006). “Anomalous

detection based on adaboost-HMM”, IEEE 6th World

Congress on Intelligent Control and Automation

(WCICA), pp. 4360–4363.

Zhou, C. and Imamiya, A. (1997). “Object-based

nonlinear undo model”, Proc., 21th International

Computer Software and Applications Conference,

COMPSAC, pp. 50-55.

Zhou, X., Peng, Q. K. and Wang, J. B. (2008).

“Intrusion detection method based on two-layer HMM”,

Application Research of Computers, Vol. 3, No. 1, 75.

