

Original article (Orijinal araştırma)

Success of DNA extraction and PCR amplification from dry pinned sand bees (*Andrena* spp. Fabricius, 1775) using newly-designed primers

İğnelenerek kurutulmuş kum arılarından (*Andrena* spp. Fabricius, 1775) DNA eldesi ve yeni tasarlanmış primerler kullanıldığında PCR amplifikasyonu başarısı

Canan HAZIR^{1*}

Clive H. BOCK²

Abstract

The suitability of dry pinned museum specimens for DNA extraction of sand bees (*Andrena* spp. Fabricius, 1775) (Hymenoptera: Andrenidae) and the effectiveness of existing and new primers used in DNA analysis of specimens for future studies were evaluated. A total 256 specimens were analyzed, including 222 dry pinned bee specimens representing 37 subgenera and 101 species and 34 ethanol-preserved specimens belonging to 21 species. Several different protocols were tested for DNA extraction, and DNA was extracted from almost all of the specimens. The samples preserved in ethanol had the highest quality DNA. Of 31 primer sets tested for amplification of the DNA, 14 of them were newly designed or redesigned. The amplified sequence length ranged from 130 to 1571 bp. DNA from 32 specimens belonging to 25 species was successfully amplified at three to four loci. This study demonstrates the importance of storage conditions for specimens possibly destined for later DNA extraction, and for selecting suitable primers when dealing with older bee specimens. Some primers can be diagnostically informative provided appropriate gene regions are used.

Keywords: Andrena, DNA, molecular, museum specimens, sand bees

Öz

İğnelenerek kurutulmuş kum arısı müze örneklerinin (*Andrena* spp. Fabricius, 1775) (Hymenoptera: Andrenidae) DNA ekstraksiyonu için uygunluğu incelenmiş ve gelecekteki çalışmalarda DNA analizi amacıyla yeni primerlerin etkinliği değerlendirilmiştir. Otuz yedi altcins ve 101 türü temsil eden 222 iğnelenmiş kuru arı örneği ve etanol içerisinde saklanmış 21 türe ait 34 arı örneği olmak üzere toplamda 256 örnek analiz edilmiştir. DNA ekstraksiyonu için birkaç farklı protokol denenmiş ve örneklerin tamamından DNA izole edilmiştir. En yüksek kaliteli DNA etanol içerisinde saklanan örneklerden elde edilmiştir. DNA amplifikasyonunda test edilen 31 primerden 14 tanesi ya yeni ya da yeniden tasarlanmıştır. Primerlerin sekans uzunluğu 130 ile 1571 bp arasında değişkenlik göstermiştir. Yirmi beş türe ait 32 örneğin üç-dört DNA lokusu başarılı bir şekilde çoğaltılmıştır. Bu çalışma, gelecekte DNA elde edilme ihtimali olan arı örneklerinin saklama koşullarının ve uygun primer seçiminin önemini ortaya koymuştur. Bazı primerler uygun gen bölgelerinin kullanılması şartıyla tür teşhislerini yapmaya yarayacak bilgileri sağlayabilirler.

Anahtar sözcükler: Andrena, DNA, moleküler, müze örnekleri, kum arıları

¹ Aydın Adnan Menderes University, Aydın Health Services Vocational School, Environmental Health Programme, 09100, Aydin, Turkey
² Southeastern Fruit and Tree Nut Research Laboratory, USDA-ARS, Byron, GA, 31008, USA

^{*} Corresponding author (Sorumlu yazar) e-mail: cananhazir@gmail.com

Received (Alınış): 18.09.2018 Accepted (Kabul ediliş): 27.02.2019 Published Online (Çevrimiçi Yayın Tarihi): 26.03.2019

Introduction

Bees (Apoidea: Hymenoptera) have an important role as pollinators in natural ecosystems and for many valuable crops (Klein et al., 2007). Because of their significance in agriculture and nature, many phylogenetic and evolutionary studies have been conducted with particular emphasis on wild bees (Praz et al., 2008; Rehan et al., 2010; Danforth et al., 2013; Schmidt et al., 2015). Molecular methods provide useful information regarding diagnostics for bee species, bee diversity, phylogeny, ecology, behavior, patterns of bee-host plant association and eusociality (Danforth et al., 2013; Hedtke et al., 2013; Woodard et al., 2015).

Freshly collected specimens are preferable for obtaining sufficient high-quality DNA for further scientific analysis. However, the destruction of native habitats means that museum specimens provide the only available samples for rare or otherwise difficult to acquire species (Schander & Halanychi, 2003). Also, entomological museum collections are rich repositories of insect fauna and provide historical data on the genetics, distribution and diversity of bee species (Strange et al., 2009). Unfortunately, the use of museum specimens can be challenging due to various factors including DNA degradation, contamination, and uncertainty related to specimen collection and preservation (Hernandez-Triana et al., 2014).

Dry insect specimens are usually held in museum collections, constituting over a million species. They are potentially a source of DNA. DNA sequence data from such specimens can provide useful information for both phylogenetic inference and taxonomic identification (Gilbert et al., 2007). DNA extracted from museum specimens has been helpful in the context of molecular-based identification of different bee species, as well as being a useful source of information for understanding the recent shifts in population structure, particularly regarding population declines of native pollinator species (Andersen & Mills, 2012).

The sand bee (*Andrena* spp. Fabricius, 1775) genus is presumed to be the largest genus of bees with over 1500 species described (Dubitzky et al., 2010). Information obtained from DNA of sand bees specimens held in museum collections is highly valuable because cryptic variation is common in the genus, and accurate identification using morphological methods is so challenging (Schmidt et al., 2015).

In this study, i) the effectiveness of DNA extraction protocols for dry pinned specimens of *Andrena* species compared to ethanol-preserved specimens were examined; and ii) new primer sets were designed for PCR amplification of targeted loci as a tool to obtain useful amplicons from samples with potentially fragmented DNA. Different mitochondrial and nuclear gene regions of the DNA were chosen that would be useful for analyzing the phylogeny of *Andrena* species. For this research, we used specimens of 101 bee species previously identified based on morphological methods.

Material and Methods

A total of 256 specimens were obtained for use from the Wild Bee Museum of Turkey (TUYAM) in Adnan Menderes University, Aydin, Turkey (Table 2). Of these, 222 of the specimens were dry pinned museum specimens of various *Andrena* bee species which were collected between 2004 and 2011 from different regions of Turkey. Collection and morphological identification of the bees were previously conducted by the senior author and Erwin Scheuchl. The bee specimens belong to 101 species from 37 subgenera. For purposes of comparison, a further 34 bee specimens that had been preserved in ethanol (96%) and belonging to 21 different species were included. All the ethanol-preserved specimens were collected in 2014 by the senior author from different areas in Turkey. All experiments were conducted at the Southeastern Fruit and Tree Nut Research Laboratory, USDA-ARS, Byron, Georgia, USA between 2014 and 2015.

DNA extraction

Qiagen DNeasy Blood and Tissue Kits (Quiagen, Redwood City, CA, USA) were used to extract DNA from the sand bee specimens following the manufacturer's protocol with three modifications (Nishiguchi et al., 2002; Ward, 2009; Crane, 2011). Nonetheless, due to difficulties with DNA extraction from certain specimens, a 2x cetyltrimethylammonium bromide (CTAB) DNA extraction method was implemented for

six bee species. The 2x CTAB DNA extraction method was that of Danforth (2013). This CTAB method takes 3 d to complete. Briefly, the DNA extraction procedure was as follows (with buffers AE, AL, ATL, AW1, AW2 and TE from the Qiagen kit). Individual dry pinned specimens were placed in Petri dishes and separated into three sections (head, thorax and abdomen) using a pair of fine forceps. The wings and legs were removed from the thorax. The bee samples preserved in 96% ethanol were washed with TE buffer for 10 min, dried on filter paper at room temperature for 30 min, and placed in a 2 ml microcentrifuge tube in a freezer at -20°C overnight. A single body part (head, thorax or abdomen) was used for DNA extraction and the remaining body parts were retained as a voucher and for further use if required. A bashing bead to crush the sample was placed in the 2 ml microcentrifuge tube with the bee body part and the sample homogenized using a Qiagen TissueLyser at 200 Hz for 1-2 min. In the second method tested, 20 samples were homogenized with a plastic pestle until they were finely ground. Proteinase K (20 µl) and buffer AL (200 µl) were added and mixed thoroughly by vortexing; the mixture was incubated at 54-56°C for 3-4 h or overnight in a water bath. The sample was vortexed for 15 s. A further 200 µl of buffer AL was added to the sample, and mixed thoroughly by vortexing. Ethanol (96-100%) (200 µl) was added and the mixture again vortexed thoroughly. The mixture was pipetted into the DNeasy Mini spin column placed in a 2 ml collection tube and centrifuged at 8000 rpm for 1 min. The flow-through was discarded. The DNeasy Mini spin column was placed in a new 2 ml collection tube and 500 µl buffer AW1 was added, and the tubes were centrifuged at 8000 rpm for 1 min. The flow-through was discarded. The DNeasy Mini spin column was placed in a new 2 ml collection tube, 500 µl buffer AW2 was added, and centrifuged for 3 min at 14,000 rpm. The flowthrough was discarded. The DNeasy Mini spin column was placed in a clean 1.5 ml microcentrifuge tube, and 100 µl buffer AE was pipetted directly onto the DNeasy membrane. The tubes and column were incubated at room temperature for 1 min, and subsequently centrifuged for 1 min at 8000 rpm to elute the DNA from the column. The elution was repeated once as described in previous step.

Three steps in the protocol were changed as in previous studies. In the first variation, the samples were incubated with buffer ATL and proteinase K at 56°C overnight (Nishiguchi et al., 2002). After adding a further 200 μ l AL buffer, the samples were incubated at 65°C for 15 min. Then, 200 μ l ethanol was added and the mixture incubated at 4°C for 1 h. Buffer AE was added to tube at 70°C. The second variation to the protocol was as described by Ward (2009), who added 180 μ l buffer AL to microcentrifuge tube including the sample. The mixture was incubated 56°C for 4 h in a water bath. The tube was shaken briefly every 45-60 min. The third variations were as follows. The bee body part was placed in a 1.5 ml microcentrifuge tube and 60 μ l PBS (phosphate buffered saline), 40 μ l proteinase K and 200 μ l buffer AL were added and mixed thoroughly by vortexing, and incubated at 56°C for 4 h in a water bath (Crane, 2011). A Nanodrop spectrophotometer was used to quantify the DNA in each sample. Extracted DNA was stored at -20°C until it was used in the PCR.

PCR amplification of DNA with primers

An adequate amount of the PCR reagent mix (without adding the sample DNA) was prepared and stored in an ice bucket for each cohort of PCR reactions, with sufficient additional mix for two samples; one as a negative control and the other as spare reagent in case of pipetting errors. The reagent mix was vortexed thoroughly.

The following reagents were used in each 10 μ I PCR mix: 5 μ I PCR Master Mix (Promega PCR Master Mix, 2X), containing 50 units/ml of Taq DNA polymerase supplied in a proprietary reaction buffer (pH 8.5), 400 μ M of nucleotides (dATP, 400 μ M dGTP, 400 μ M dCTP, 400 μ M dTTP, 3mM MgCl2), 1 μ I forward primer, 1 μ I reverse primer and 2 μ I deionize water.

The reagent mix (9 μ I) was added to each PCR tube and 1 μ I of the sample was added (10 ng DNA per reaction). Dilutions of DNA samples were made based on the results from the Nanodrop measurements. The negative control contained 1 μ I of ddH₂O. The tubes were placed in the PCR machine, and the appropriate PCR program (initial denaturation for 3 min at 94°C; 36 cycles of 1 min denaturation at 94°C, 1 min annealing ranging between 40 and 60°C and 1 min elongation at 72°C, and a final extension for 5 min at 72°C) was run for the marker being amplified. The annealing temperatures for each primer set are presented in Table 1. The tubes were removed from the PCR machine and stored in a refrigerator.

Seventeen primer sets were initially screened in this study. Eleven of them amplify mitochondrial gene regions and six of them amplify nuclear gene regions. However, these primers failed to produce amplicons with many samples, particularly with dry pinned bee samples. So, new primers were designed for these sand bee samples. BLAST, Primer-BLAST and Primer3 programs were used for designing new primers (Ye et al., 2012). In addition, six primers previously described in the literature were redesigned according to sequence alignments data of *Andrena* spp. or other Andrenidae species in Genbank (NCBI-NIH, MD, USA). Subsequently, an additional 14 primer sets were tested. These were newly designed or redesigned primer sets; two amplifying mitochondrial gene regions and 12 amplifying nuclear gene regions. Thus, a total of 31 primer sets were tested in this study (Table 1), with sequence lengths ranging from 130 to 1571 bp.

	PRIMERS	DNA sequence (bp)	Annealing temperature (°C)	References	
	MITOCHONDRIAL DNA PRIMERS				
mitochondrial cytoo	chrome oxidase I (COI)				
mtD8	For 5'-CCACATTTATTTTGATTTTTTGG-3'	853	48		
mtD12	Rev 5'-TCCAATGCACTAATCTGCCATATTA-3'			Duditzky, 2005	
AP-L-2176	For 5'-GGTACAGGTTGAACTGTTTACCC-3'	521	40	Koulianos & Schmid-	
AP-H-2650	Rev 5'-TCCGACTGTAAATAAGTGATGTGCTC-3'			Hempel, 2000	
LCO1490	For 5'-GGTCAACAAATCATAAAGATATTGG-3'	710	45-50	Deemon et al. 2000	
HCO2198	Rev 5'-TAAACTTCAGGGTGACCAAAAAATCA-3'			Reemer et al., 2008	
LepFl	For 5'-ATTCAACCAATCATAAAGATAT-3'	350	45-51		
LepR2	Rev 5'-CTTATATTATTTATTCGTGGGAAAGC-3'			Hebert et al., 2004	
CO1-2166F	For 5'-GGAGGATTTGGTAATTTTTAATTCC-3'	226	45	Francoso & Arias,	
CO1-2386R	Rev 5'-GAAAAAATTGTAAAATCAAC-3'			2013	
Uni-MinibarF1	For 5'-TCCACTAATCACAARGATATTGGTAC-3'	130	46-53	Mauraian at al. 2000	
Uni-MinibarR1	Rev 5'-GAAAATCATAATGAAGGCATGAGC-3'			Meusnier et al., 2008	
AndCOI-F1	For 5'-TTGCYATATGAGCAGGCATAGTCG-3'	631	51	New	
COland-R1	Rev 5'-TTGGTATARAATDGGRTCTCCWCCT-3'			New	
AndCOI-F2	For 5'-GAGCCGGAATAATTGGTGCC-3'	615	53	AL.	
COland-R2	Rev 5'-GGATCGGATCTCCACCTCCTA-3'			New	
mitochondrial COI-	COII				
Jack	For 5'-AGATCACTTGAATGATCACAAAAT-3'	695	55		
Barb	Rev 5'-CCACAAATTTCTGAACATTGACCA-3'			Larkin et al., 2006	
mitochondrial cytoo	chrome oxidase b (Cyt b)				
cb1	For 5'-TATGTACTACCATGAGGACAAATATC-3'	429	50	Deben et al. 2010	
cb2	Rev 5'-ATTACACCTCCTAATTTATTAGGAAT-3'			Rehan et al., 2010	

Table 1. Primer sets used to amplify DNA of Andrena species

Table 1. continued

	PRIMERS	DNA sequence (bp)	Annealing temperature (C°)	References
	MITOCHONDRIAL DNA PRIMERS			
mitochondrial 12S	RNA			
12Sa	For 5' TGGGATTAGATACCCCACTAT-3'	428	50	
12SLR	Rev 5'-YYTACTATGTTACGACTTAT-3'			Cameron& Williams, 2003
mitochondrial 16S	RNA			
16S-F	For 5'-TTATTCACCTGTTTATCAAAACAT-3'	600	50	Dominan et al. 2010
16S-R	Rev 5'-TATAGATAGAAACCAATCT-3'			Ramirez et al., 2010
16SWb	For 5'-CACCTGTTTATCAAAAACAT-3'	500	48	Lines et al. 2000
874-16SIR	Rev 5'-TATAGATAGAAACCAATCTG-3'			Hines et al., 2006
	NUCLEAR DNA PRIMERS			
28S rRNA				
Bel28S	For 5'-AGAGAGAGTTCAAGAGTACGTG-3'	690	60	Depfetth et al. 2006
Mar28Srev	Rev 5'-TAGTTCACCATCTTTCGGGTCCC-3'			Danforth et al., 2006
And28S-F	For 5'-GAGATTCAKCGTCRACGAGGCT-3'	669	60	New
28Sand-R	Rev 5'-TGACCAGGCATAGTTCACCA-3'			INEW
EF-1 α F1 copy				
EF-1For2	For 5'-AAGGAGGC[C/G]CAGGAGATGGG-3'	457	52	Sebucer et al. 2004
EF-1Rev2	Rev 5'-[T/C]TC[G/C]AC[T/C]TTCCATCCGTACC-3'			Schwarz et al., 2004
EF-1 α F2 copy				
For1-deg	For 5'-GYATCGACAARCGTACSATYG-3'	1571	52	Donforth at al. 1000
F2-Rev1	Rev 5'-AATCAGCAGCACCTTTAGGTGG-3'			Damonn et al., 1999
F2-ForH	For 5'-GGRCAYAGAGATTTCATCAAGAAC-3'	720	54	Llines et al. 2006
F2-RevH2	Rev 5'- TTGCAAAGCTTCRKGATGCATTT-3'			nines et al., 2006
HaF2For1-And	For 5'-GGGYAAGGGWTCCTTCAARTACGC-3'	1080	59	redesigned (Danforth et
F2-rev1-And	Rev 5'-AATCRGCAGCACCYTTGGGTGG-3'			al., 1999)
AndEF-F1	For 5'-TTACBGGYACMTCACARGCTGACT-3'	700	60	New
EFand-R1	Rev 5'-CACGRCCGACTRGTACTGTTC-3'			INEW
AndEF-F2	For 5'-TGAGACGTGGTTACGTAGCAG-3'	538	52	Neu
EFand-R2	Rev 5'-GGGAACTCTTGGAAAGCCTCA-3'			INEW

Success of DNA extraction and PCR amplification from dry pinned sand bees (Andrena spp. Fabricius, 1775) using newly-designed primers

Table 1. continued

	PRIMERS	DNA sequence (bp)	Annealing temperature (°C)	References
	NUCLEAR DNA PRIMERS			
Opsin				
Opsin For3 (mod)	For 5'-TTCGAYAGATACAACGTRATCGTNAARGG-3'	639	56	
Opsin Rev (mod)	Rev 5'-ATANGGNGTCCANGCCATGAACCA-3'			Michez et al., 2009
Opsin For3 (mod)-And	For 5'-TTCGACAGATACAACGTRATYGTMAARGG-3'	610	58	redesigned (Michez et al., 2009)
OPSand-R1	Rev 5'-TCGAATATGCCCGACGTGTT-3'			New
AndOPS-F2	For 5'-TTCTCTCTGGGCTGGACAAT-3'	708	51	NI
OPSand-R2	Rev 5'-AACAGYGCAGCTCGATACTT-3'			inew
ArgK				
F	For 5'-GTTGACCAAGCYGTYTTGGA-3'	860	48	
R	Rev 5'-CATGGAAATAATACGRAGRTG-3'			Hines et al., 2006
Wingless				
wgColletFor-And	For 5'-CACGTGTCBTCGGRAATGAGRCAGGA-3'	670	59	redesigned (Almeida & Danforth, 2009)
Lep wg2a-Rev	Rev 5'-ACTICGCARCACCARTGGAATGTRCA-3'			Almeida & Danforth, 2009
AndWNG-F	For 5'-ATCGGGTACGGGTTCAAGTT-3'	653	59	N
WNGand-R	Rev 5'-GTCACCTCCTGCGTCYTGTA-3'			New
CAD				
ApCADfor4-And	For 5'-TGGAARGARGTBGAATTCGAAGTGAACGC-3'	684	51	redesigned (Danforth et al., 2006)
CADand-R	Rev 5'-TTCACTACCGCAGCAATCTG-3'			New
AndCAD-F	For 5'-GCTATCCSCTGGCWTACGTAGCT-3'	720	60	New
ApCADrev4a-And	Rev 5'-GGCCAYTCCGCAGCCACHGTGTCTATYTG YTTCACC-3'			redesigned (Danforth et al., 2006)
RNA polymerase II	(Pol II)			
polfor2a-And	For 5'-GGAGAACTKGTGATGGGTATACTTTG-3'	587	59	redesigned (Danforth et al
polrev2a-And	Rev 5'-AGGTACGARTTYTCAACGAATCCTCT-3'			2006)
AndPOL-F	For 5'-AAATGACGAAGAGGGACGTG-3'	723	50	New
POLand-R	Rev 5'-CGCAAGCGATAACCTGAGAG-3'			

Agarose gel electrophoresis

After the PCR reaction was compete, 5 µl from each sample was run on a 1.5% agarose minigel against a standard size marker (Bionexus Hi-Lo™ DNA marker, Oakland, CA, USA). The sizes of the

amplicons were compared against the molecular weight marker to confirm whether the PCR reaction had amplified the target region. PCR products were purified using the QIAquick Purification Kit (Qiagen).

Results and Discussion

Several different protocols including the Qiagen DNeasy Blood and Tissue Kit, and three modifications of its protocol (Nishiguchi et al., 2002; Ward, 2009; Crane, 2011), and 2x CTAB DNA (Danforth, 2013) were compared for extraction of DNA from sand bees. The Qiagen kit was the most effective method especially for the dry pinned specimens. DNA was extracted from almost all tested specimens. However, the fresher, more recently collected ethanol-preserved samples clearly had better quality DNA compared with the dry pinned specimens. DNA was obtained from both sexes. There was no significant difference in the quantity and quality of DNA extracted from female and male bees (Tables 2 and 3).

Nanodrop Water DNA extraction bath Code Sex Subgenus Species Material DNA method incubation 260/280 260/230 (ng/µl) period (h) 1.75 1001A F 3 45.4 all body 1.93 Qiagen Andrena aciculata Aciandrena Morawitz, 1886 1001B М all body Qiagen 3 17.0 1.60 1.22 Andrena lamiana 1002A Aciandrena Head, Thx Qiagen 3 3.8 2.26 1.19 Μ Warncke, 1965 1101A F 4 Legs Qiagen 4 1.5 2.25 0.55 Andrena aeneiventris F 1101B 3 57.1 Aenandrena all body Qiagen 1 90 1 67 Morawitz, 1872 1101C F all body Qiagen 3 35.3 1 84 1 74 F 4 1102A 4 Legs Qiagen 11.2 1.41 0.88 Nishiguchi et al., 2002 3639.5 Thorax over night 1.43 0.60 Andrena bisulcata Aenandrena Morawitz, 1877 1102B F all body Qiagen 3 128.4 1.95 1.87 F 3 1102C Qiagen 108.1 1.97 1.70 all body F 4 1103A 6.6 0.61 4 Legs Qiagen 1.42 Head Nishiguchi et al., 2002 over night 2.2 1.68 1.49 Andrena hystrix Aenandrena Schmiedeknecht, 1883 1103B F all body Qiagen 3 42 8 1 57 0.78 1103C F all body Qiagen 3 47.3 1.66 1.09 F 4 1201A 8.7 3 Legs Qiagen 1.42 0.79 Andrena colletiformis 1201B F 3 10.7 Brachyandrena all body Qiagen 1.83 1.07 Morawitz, 1874 1201C 3 М all body Qiagen 11.3 1 98 1.35 Andrena lateralis Campylogaster F 1301A Thx, abd Qiagen 3 18 8 1 56 0.63 Morawitz, 1876 1401A F 3 86.7 1.89 1.72 all body Qiagen Andrena falcinella Carandrena Warncke, 1969 1401B F all body Qiagen 3 42 6 1 91 2 00 1402A F all body Qiagen 3 17.7 1.63 1.15 Andrena purpureomicans 1402B Qiagen 3 16.0 1.28 Μ Carandrena all body 1.74 Alfken, 1935 1402C Μ Head, Thx Qiagen 3 11.0 1.97 0.96 1501A F 3 151.3 1.89 1.73 Thx, abd Qiagen Andrena hattorfiana Charitandrena (Fabricius, 1775) F 3 1501B 16.3 1 69 Thx. abd Qiagen 0.99 1601A F all body Qiagen 3 48.9 1.80 0.91 Andrena cinerea Brulle, Chlorandrena 1601B F 1832 all body Qiagen 3 73.7 1.88 1.63 1602A F 3 15.9 1.73 0.62 all body Qiagen 1602B F 2XCTAB 2 473.9 all body 1.37 0.91 Andrena cinereophila Chlorandrena Warncke, 1965 F 3 0.99 1602C 42.7 Thx, abd Qiagen 1.78 1602D F all body Qiagen 3 60.9 1.91 2 11

Table 2. Quantification and quality of DNA of Andrena species obtained from dry pinned specimens

				DNA systemation W	water bath	Nanodrop			
Code	Sex	Subgenus	Species	Material	DNA extraction method	incubation period (h)	DNA (ng/µl)	260/280	260/230
1603A	F		Andrena clvpella Strand.	all body	Qiagen	3	126.2	1.90	1.82
1603B	F	Chlorandrena	1921	all body	2XCTAB	2	934.7	1.40	0.62
1604A	F			all body	Qiagen	3	66.1	1.85	1.41
1604B	F		Andrena exquisita	all body	2XCTAB	2	756.5	1.40	0.56
1604C	F	Chlorandrena	Warncke, 1975	all body	Qiagen	3	34.9	1.63	1.04
1604D	F			all body	Qiagen	3	181.3	1.94	1.74
1605A	F		Andrena humahilis	Thx, abd	Qiagen	3	27.9	1.74	1.01
1605B	F	Chlorandrena	Warncke, 1965	all body	Qiagen	3	38.4	1.77	1.17
1606A	F			all body	Qiagen	3	74.2	1.87	1.51
1606B	F	Chlorandrena	Andrena humilis Imhoff,	all body	2XCTAB	2	419.8	1.06	0.93
1606D	M		1832	Head. Thx	Qiagen	3	44.5	1.87	1.13
1607A	F		Androno orientano	all body	Qiagen	3	234.9	1.97	2.06
1607B	F	Chlorandrena	Warncke, 1965	all body	2XCTAB	2	1086 7	1.07	0.77
16084	F			all body	Oiagen-insects	- 15	61.1	1 77	1 48
1608B	F			all body		2	1332.1	1.77	0.64
16080	F	Chlorandrena	andrena Andrena panurgimorpha Mavromoustakis. 1957	all body	Oiagen	2	111 1	1.00	0.04 2 10
16080	M			Hood Thy	Qiagen	3	30.3	1.50	1 37
17010					Qiagen	3	225.0	1.70	1.07
1701A	F F	Chrysandrena	Andrena hesperia Smith, 1853	all body	Qiagen	3	225.9	1.90	1.82
1701B	F		1000	all body	Qiagen	3	347.2	2.01	2.23
1702A	F	<i></i>	<i>Andrena merula</i> Warncke, 1969	all body	Qiagen	3	20.0	1.67	0.78
1702B	-	Chrysandrena		all body	Qiagen	3	69.5	1.95	1.69
1702C	F			all body	Qiagen	3	41.8	1.84	1.08
1801A	F		Andrena cordialis	all body	Qiagen	3	51.4	1.67	0.90
1801B	F	Cordandrena	Morawitz, 1877	all body	Qiagen	3	40.0	1.49	0.83
1801C	F			all body	Qiagen	3	151.5	1.89	1.93
1802A	F	Cordandrena	Andrena cypria Pittioni,	all body	Qiagen	3	164.7	1.91	1.67
1802B	F	Cordanarona	1950	all body	Qiagen	3	117.9	1.95	2.11
1901A	F	Didonia	<i>Andrena nasuta</i> Giraud, 1863	Thx, legs	Qiagen	3	59.8	1.81	1.14
2001A	F	Euondrono	Andrena bicolor	all body	Qiagen	3	14.6	1.55	0.75
2001B	F	Euanurena	Fabricius, 1775	Thx, abd	Qiagen	3	253.5	1.79	1.83
2002A	F	E wandrana	Andrena glabriventris	all body	Qiagen	3	148.1	1.93	1.54
2002B	F	Euanorena	Alfken, 1935	Thx, abd	Qiagen	3	116.6	1.95	1.93
2101A	F			all body	Qiagen	3	150.1	1.73	1.14
2101B	F		Andrena labialis (Kirbv.	Thx, abd	Qiagen	3	84.8	1.81	1.48
2101C	F	Holandrena	1802)	Abdomen	Qiagen	3	17.5	1.55	0.65
2101D	М			Head, Thx	Qiagen	3	36.4	1.77	0.90
2102B	F		Andrena variabilis Smith	all body	Qiagen	3	15.4	1.51	0.60
2102C	М	Holandrena	1853	Thx, abd	Qiagen	3	132.1	1.93	1.83
2103A	F			all body	Qiagen	3	27.3	1.37	0.53
2103B	F	Holandrena	Andrena wilhelmi	Thx, abd	Qiagen	3	116.5	1.91	1.62
2103C	F		Schuberth, 1995	all body	Qiagen	3	35.8	1.64	0.55
2201A	F		Andrena hicolorata	all body	Qiagen	3	133.2	1.76	1.20
2201B	F	Hyperandrena	(Rossi, 1790)	Thx, legs	Qiagen	3	83.1	1.90	1.92

					DNA	Motor both	Nanodrop			
Code	Sex	Subgenus	Species	Material	extraction method	incubation period (h)	DNA (ng/µl)	260/280	260/230	
2301A	F	Larandrena	<i>Andrena medioxima</i> Warncke, 1975	Thx, abd	Qiagen	3	69.9	1.95	1.73	
2302A	F			all body	Qiagen	3	26.0	1.63	0.77	
2302B	F	Larandrena	Andrena sericata Imhoff, 1866	all body	Qiagen	3	204.1	1.97	2.05	
2302C	М		1000	all body	Qiagen	3	23.2	1.81	1.37	
2401A	F	Lepidandrena	Andrena gamskrucki	all body	Qiagen	3	193.4	2.00	1.92	
2401C	М	-	ebumea wantcke, 1975	Head, Thx	Qiagen	3	47.9	1.91	1.55	
2402A	F	Lepidandrena	Andrena gamskrucki impasta Warncke, 1975	Thx, abd	Qiagen	3	541.4	2.07	2.14	
2501A	F	Leucandrena	<i>Andrena mistrensis</i> Grünwaldt, 2005	all body	Qiagen	3	123.9	1.76	1.38	
2502A	F	Leucandrena	<i>Andrena parviceps</i> Kriechbaumer, 1873	Thx, abd	Qiagen	3	187.3	1.81	1.89	
2601A	F	Melanapis	<i>Andrena fuscosa</i> Erichson, 1835	Thx, legs	Qiagen	3	331.9	2.01	1.87	
2701A	F	Molandrona	Andrena albopunctata	Thx, legs	Qiagen	3	139.7	1.9	2.02	
2701B	F	Welanurena	(Rossi, 1792)	all body	Qiagen	3	290.3	1.92	1.87	
2702A	F	Melandrena	<i>Andrena atrotegularis</i> Hedicke, 1923	Thx, legs	Qiagen	3	17.2	1.83	0.63	
2703A	F	Malawal	Andrena danuvia	Thx, legs	Qiagen	3	61.3	1.81	1.43	
2703B	F	Melandrena	Stöckhert, 1950	Thx, abd	Qiagen	3	135.4	1.85	1.43	
2704A	М	Melandrena	<i>Andrena fuscocalcarata</i> Morawitz, 1877	Head, Thx	Qiagen	3	209.5	1.98	2.01	
2705A	F			all body	Qiagen	3	125.9	0.44	0.37	
2705B	F		Andrena limata Smith,	all body	Qiagen	3	70.4	1.73	1.12	
2705C	F	Melandrena	1853	Thx, abd	Qiagen	3	79.4	1.76	1.40	
2705D	F			Thx, abd	Qiagen	3	158.6	1.80	1.17	
2706A	F			Thx, legs	Qiagen	3	204.7	1.85	1.41	
2706B	F		Andrena morio Brullè,	Thx, abd	Qiagen	3	76.5	1.68	0.94	
2706C	F	Melandrena	1832	Thx, abd	Qiagen	3	79.8	1.43	0.59	
2706D	F			Thx, abd	Qiagen	3	47.1	1.39	0.72	
2707A	F			Thx, abd	Qiagen	3	29.1	1.42	0.55	
2707B	F		Andrena nigroaenea	Thx, abd	Qiagen	3	30.7	1.29	0.59	
2707C	F	Melandrena	candiae Strand, 1915	Thx, abd	Qiagen	3	32.1	1.47	0.62	
2707D	М			Head, Thx	Qiagen	3	51.7	1.57	0.79	
2708A	F	Melandrena	Andrena nitidemula Scheuchl & Hazir, 2012	Thx, legs	Qiagen	3	63.7	1.92	1.44	
2709A	F	Melandrena	<i>Andrena pyropygia</i> Kriechbaumer, 1873	Thx, abd	Qiagen	3	29.8	1.53	0.49	
2801A	F	Melittoides	Andrena curiosa (Morawitz, 1877)	Thx, legs	Qiagen	3	43.2	1.53	0.54	
2901A	F	Micrandrena	<i>Andrena virgata</i> Warncke, 1975	all body	Qiagen	3	71.9	1.91	1.63	
3001A	F	Nobondrong	Andrena anatolica	all body	Qiagen	3	218.5	1.97	1.86	
3001C	F	nopanurena	Alfken, 1935	all body	Qiagen	3	122.2	1.91	1.65	

					DNA	Motor both	Nanodrop			
Code	Sex	Subgenus	Species	Material	extraction method	incubation period (h)	DNA (ng/µl)	260/280	260/230	
3002A	F		Andrena athenensis	all body	Qiagen	3	96.5	1.83	1.27	
3002B	F	Nobandrena	Warncke, 1965	Thx, abd	Qiagen	3	219.0	1.91	2.23	
3003A	F		Andrena nobilis	all body	Qiagen	3	138.9	1.78	1.37	
3003B	F	Nobandrena	Morawitz, 1874	Thx, abd,	Qiagen	3	274.5	1.95	1.96	
3004A	М	Nobandrena	<i>Andrena probata</i> Warncke, 1973	Head, Thx	Qiagen	3	106.3	1.94	1.60	
3101A	F	Notandrena	<i>Andrena langadensis</i> Warncke, 1965	Thx, abd	Qiagen	3	95.3	1.90	1.79	
3102A	М	Notandrena	<i>Andrena recurvirostra</i> Warncke, 1975	Head, Thx	Qiagen	3	19.9	1.72	0.88	
3103A	F	Notondrono	Andrena ungeri	all body	Qiagen	3	23.8	1.78	1.57	
3103B	F	Notanurena	Mavromoustakis, 1952	all body	Qiagen	3	72.9	1.83	1.34	
3201A	F			all body	Qiagen	3	52.2	1.60	0.80	
3201B	F	Opendrope	Andrena schencki	all body	Qiagen	3	61.5	1.71	1.10	
3201C	F	Opandrena	Morawitz, 1866	Thx, abd	Qiagen	3	53.8	1.69	1.07	
3201D	F			Thx, abd	Qiagen	3	111.4	1.83	1.41	
3301A	F	Orandrena	Andrena garrula	all body	Qiagen	3	54.0	1.86	1.70	
3301B	F		Warncke, 1966	all body	Qiagen	3	121.3	1.83	1.64	
3401A	F		Andrena crispa	all body	Qiagen	3	117.2	1.84	1.45	
3401B	F	Paranurenella	Warncke, 1975	all body	Qiagen	3	153.1	1.92	1.85	
3402A	F		Andrena dentiventris	all body	Qiagen	3	109.5	1.92	2.05	
3402B	F	Parandrenella	Morawitz, 1874	all body	Qiagen	3	83.8	1.99	2.00	
3403A	F		Andrena figurata	all body	Qiagen	3	60.1	1.90	1.70	
3403B	F	Parandrenella	Morawitz, 1866	all body	Qiagen	3	81.8	1.94	1.84	
3501A	F			Thx, abd	Qiagen	3	43.3	1.38	0.60	
3501B	F	Plastandrena	Andrena bimaculata	Thx, abd	Qiagen	3	26.3	1.78	1.07	
3501C	М		(Riby, 1002)	all body	Qiagen	3	23.6	1.56	0.65	
3502A	F			Thx, abd	Qiagen	3	34.3	1.53	0.72	
3502B	F		Andrena pilipes	Thx, abd	Qiagen	3	143.9	1.90	1.85	
3502C	М	Plastandrena	Fabricius, 1781	Head, Thx	Qiagen	3	69.6	1.90	1.53	
3502D	М			Head, Thx	Qiagen	3	35.9	1.92	1.32	
3601A	F	Poecilandrena	<i>Andrena crassana</i> Warncke, 1965	all body	Qiagen	3	106.0	1.94	1.70	
3602A	F	Poecilandrena	<i>Andrena efeana</i> Scheuchl & Hazir, 2012	Thx, abd	Qiagen	3	98.3	1.86	1.52	
3603A	F	Poecilandrena	<i>Andrena hybrida</i> Warncke, 1975	all body	Qiagen	3	119.3	1.95	1.89	
3604A	F	Poecilandrono	Andrena labiata	all body	Qiagen	3	45.4	1.92	1.66	
3604B	Μ		Fabricius, 1781	Head, Thx	Qiagen	3	8.7	1.42	0.67	
3605A	F			all body	Qiagen	3	108.4	1.91	1.79	
3605B	F	Poecilandrena	Andrena laticeps Morawitz, 1877	all body	Qiagen	3	53.6	1.89	1.55	
3605C	М	M		Head, Thx	Qiagen	3	28.4	1.95	1.11	
3606A	F	Populandrona	Andrena semirubra	all body	Qiagen	3	75.1	1.89	1.33	
3607A	F	Poecialiurella	Morawitz, 1876	all body	Qiagen	3	97.6	1.93	1.88	

					DNA	Matan bath	Nanodrop			
Code	Sex	Subgenus	Species	Material	extraction method	incubation period (h)	DNA (ng/µl)	260/280	260/230	
3701A	F			all body	Qiagen	3	140.1	1.93	1.86	
3701B	F	Poliandrena	Andrena kriechbaumeri Schmiedeknecht, 1883	all body	Qiagen	3	69.7	1.89	1.14	
3701C	М		Schiniedeknecht, 1005	Head, Thx	Qiagen	3	33.9	1.90	1.19	
3702A	F		Andrena limbata	all body	Qiagen	3	27.7	1.62	0.67	
3702B	F	Poliandrena	Eversmann, 1852	Thx, abd	Qiagen	3	27.5	1.37	0.51	
3703A	F	D # 1	Andrena polita Smith.	Thx, abd	Qiagen	3	160.3	1.98	2.15	
3703C	М	Poliandrena	1847	all body	Qiagen	3	35.5	1.85	1.45	
3801A	F		Andrena alutacea	all body	Qiagen	3	118.4	1.88	1.74	
3801B	F	Proxiandrena	Stoeckhert, 1942	all body	Qiagen	3	258.5	1.96	1.85	
3901A	F	Ptilandrena	<i>Andrena glidia</i> Warncke, 1965	all body	Qiagen	3	30.4	1.61	0.84	
3902A	F	Ptilandrena	<i>Andrena vetula</i> Lepeletier, 1841	all body	Qiagen	3	204.7	1.92	1.83	
4001A	F			Thx, abd	Qiagen	3	36.4	1.53	0.73	
4001B	F	Saitandrana	Andrena scita	Thx, abd	Qiagen	3	55.8	1.80	1.33	
4001C	F	Scilandrena	Eversmann, 1852	Thx, abd	Qiagen	3	32.7	1.48	0.56	
4001D	М			Head, Thx	Qiagen	3	69.3	1.83	1.45	
4101A	F	0	Andrena combinata	Thx, abd	Qiagen	3	80.9	1.66	1.04	
4101B	F	Simandrena	(Christ, 1791)	all body	Qiagen	3	22.8	1.66	1.15	
4102A	F	o: /	Andrena dorsata (Kirby,	all body	Qiagen	3	102.2	1.87	1.57	
4102D	М	Simandrena	1802)	Head, Thx	Qiagen	3	41.4	1.96	1.53	
4103A	F	0	Andrena lepida Schenck.	all body	Qiagen	3	227.9	1.90	2.06	
4103D	F	Simandrena	1861	all body	Qiagen	3	142.0	1.90	1.55	
4104A	F			Thx, abd	Qiagen	3	24.5	1.47	0.80	
4104B	F	Simandrena	Andrena transitoria	Thx, abd	Qiagen	3	105.8	1.79	1.23	
4104C	М			Head, Thx	Qiagen	3	34.9	1.87	1.86	
4201A	F	Thysandrena	Andrena ranunculorum Morawitz, 1877	Thx, abd	Qiagen	3	175.6	1.79	1.41	
4301A	F	Trachandrena	<i>Andrena haemorrhoa</i> (Fabricius, 1781)	all body	Qiagen	3	164.0	1.91	1.84	
4401A	F			all body	Qiagen	3	44.0	1.49	0.77	
4401B	F	Truncandrena	Andrena asiatica Friese, 1921	Thx, abd	Qiagen	3	30.8	1.53	0.86	
4401D	Μ			Head, Thx	Qiagen	3	173.8	2.05	2.22	
4402A	F	Truppondropo	Andrena caneae Strand,	Thx, abd	Qiagen	3	179.1	2.00	2.06	
4402B	Μ	Truncandrena	1915	Head, Thx	Qiagen	3	60.6	2.05	1.76	
4403A	F	Truppondropo	Andrena combusta	all body	Qiagen	3	33.2	1.58	0.89	
4403B	F	Truncandrena	Morawitz, 1876	Thx, abd	Qiagen	3	81.8	1.88	1.38	
4404A	F	Truppondror	Andrena medeninensis	all body	Qiagen	3	171.9	1.92	1.72	
4404B	F	Truncandrena	usura Warncke, 1967	all body	Qiagen	3	111.2	1.89	1.54	
4405A	F	Truppondror	Andrena optata Warncke,	all body	Qiagen	3	316.8	1.86	1.84	
4405D	М	runcanorena	1975	Head, Thx	Qiagen	3	34.4	1.67	0.77	
4406A	F	Truppondror	Andrena roseotincta	all body	Qiagen	3	93.7	1.83	1.20	
4406C	F	rruncarioreria	Warncke, 1975	Thx, abd	Qiagen	3	99.1	1.95	2.13	
4407A	F		Andrena schmiedeknechti	all body	Qiagen	3	147.7	1.95	1.94	
4407D	М	Truncandrena	Magretti, 1883	Head, Thx	Qiagen	3	106.1	1.91	1.47	

				г	DNA extraction	Watar bath	Nanodrop		
Code	Sex	Subgenus	Species	Material	DNA extraction method	incubation period (h)	DNA (ng/µl)	260/280	260/230
4408A	F	T	Andrena seitzi Alfken,	Thx, abd	Qiagen	3	88.8	1.81	1.55
4408B	F	Iruncandrena	1935	all body	Qiagen	3	95.5	1.82	1.59
4409A	F			all body	Qiagen	3	32.0	1.40	0.69
4409B	F			all body	Qiagen-insects	15	54.4	1.64	0.99
4409C	F	Truncandrena	Andrena truncatilabris	all body	Qiagen	3	337.8	1.99	2.08
4409D	М		worawitz, 1077	Head, Thx	Qiagen	3	45.1	1.91	1.62
4409F	М			Head, Thx	Qiagen	3	15.7	1.79	0.79
4410A	F		Andrena ulula Warncke.	all body	Qiagen	3	47.9	1.70	1.02
4410B	F	Truncandrena	1969	all body	Qiagen	3	97.1	1.88	1.73
4411A	F			all body	Qiagen	3	58.5	1.73	1.08
4411B	F	Truncandrena	Andrena urfanella	all body	Qiagen	3	106.1	1.81	1.51
4411C	F		Scheuchi & Hazir, 2012	Thx, abd	Qiagen	3	96.1	1.86	1.47
4501A	F		Andrena cantiaca	all body	Qiagen	3	140.1	1.93	1.81
4501D	М	Ulandrena	Warncke, 1975	Head, Thx	Qiagen	3	51.7	1.89	1.45
4502A	F			Thx, abd	Qiagen	3	97.3	1.46	0.71
4502B	F	Ulandrena	Andrena crecca	Thx, abd	Qiagen	3	77.4	1.91	1.85
4502C	М		WATTICKE, 1900	Head, Thx	Qiagen	3	44.0	1.83	1.02
4503A	F		Andrena elegans	Thx, legs	Qiagen	3	100.6	1.85	1.74
4503C	М	Ulandrena	Giraud, 1863	Head, Thx	Qiagen	3	108.4	1.60	1.19
4504A	F			all body	Qiagen	3	120.7	1.89	1.71
4504B	F	Ulandrena	Andrena fulvitarsis	all body	Qiagen-insects	15	44.3	0.95	0.70
4504E	М		Brulle, 1832	Head, Thx	Qiagen	3	59.7	1.71	1.02
4505A	М	Ulandrena	Andrena heinrichi Grünwaldt, 2005	Head, Thx	Qiagen	3	129.8	1.89	1.41
4506A	F		Andrena neocypriaca	all body	Qiagen	3	80.4	1.90	2.07
4506B	F	Ulandrena	Mavromoustakis, 1956	all body	Qiagen	3	42.5	1.90	1.56
4507A	F			all body	Qiagen	3	71.5	1.97	1.52
4507B	М	Ulandrena	Andrena osychniukae Osytshniuk 1977	all body	Qiagen	3	71.5	1.60	1.43
4507C	М			Head, Thx	Qiagen	3	26.6	1.66	1.16
4601A	F			all body	Qiagen-insects	15	114.5	1.76	1.51
4601B	F			Thx, abd	Qiagen	3	17.4	1.25	0.58
4601E	F			all body	Qiagen	3	135.7	0.59	0.52
4601F	F			all body	Ward, 2009	3	6.5	1.79	1.11
				Head, Thx	Crane, 2011	3	28.0	1.79	1.43
		Zonadrena	<i>Andrena flavipes</i> Panzer, 1799	Abdomen	Nishiguchi et al., 2002	over night	912.8	1.42	0.61
4601G	F			Head	Qiagen	4	82.8	1.96	2.02
4601H	М			Head, Thx	Qiagen	3	27.2	1.88	0.92
4601K	М			all body	Ward, 2009	4	24.3	1.97	1.12
				Head, Thx	Crane, 2011	4	0.4	4.95	0.13
4602A	F	Zonadrona	Andrena gazelle Friese,	all body	Qiagen	3	42.4	1.74	1.19
4602B	F		1922	Thx, abd	Qiagen	3	23.1	1.44	0.60

Thx: Thorax; Abd: Abdomen

Code Se	Sav	ev Subdenus	Species	DNA W Material extraction ir	Water bath	Nanodrop			
Code	Sex	Subgenus	Species	Wateria	method	period (h)	DNA	260/280	260/230
1501X	F			Thorax	Qiagen	4	284.4	1.59	1.06
1501X	F			Abdomen	Qiagen	4	373.1	1.47	0.77
1501X	F	Charitandrena	Andrena hattorfiana (Fabricius, 1775)	Legs	Qiagen	4	17.0	1.45	0.63
1501Y	F			Thx, legs	Qiagen	3	456.1	2.16	2.25
1501Z	F			Thx, legs	Qiagen	3	392.1	2.14	2.19
1701X	F			Thx, abd	Qiagen	3	422.4	2.14	2.28
1701Y	F	Chrysandrena	<i>Andrena hesperia</i> Smith, 1853	Abdomen	Qiagen	3	216.4	2.12	2.22
1701Y	F			Thorax	Qiagen	3	111.4	2.14	2.19
1702X	F	Chrysandrena	<i>Andrena merula</i> Warncke, 1969	Thx, abd	Qiagen	3	471.7	2.14	2.13
1801X	F	Cordandrena	Andrena cordialis Morawitz, 1877	Thx, abd	Qiagen	3	307.7	2.06	1.75
1901X	F	Didonia	Andrena nasuta Giraud,	Thorax	Qiagen	3	274.4	2.16	2.25
1901Y	F		1863	Thx, legs	Qiagen	3	399.9	2.17	2.26
2403X	F	Lepidandrena	<i>Andrena curvungula</i> Thomson, 1870	Thorax	Qiagen	3	481.8	2.13	2.20
2501X	F	Leucandrena	<i>Andrena mistrensis</i> Grünwaldt, 2005	Thx, legs	Qiagen	3	281.3	2.12	2.13
2702X	F	Melandrena	<i>Andrena atrotegularis</i> Hedicke, 1923	Thorax	Qiagen	3	351.4	2.08	1.92
2703X	F			Thorax	Qiagen	3	363.5	2.09	1.59
2703Y	F	Melandrena	<i>Andrena danuvia</i> Stöckhert, 1950	Thx, legs	Qiagen	3	437.0	2.14	2.19
2703Z	F			Thx, legs	Qiagen	3	464.5	2.11	2.16
2710X	F	Melandrena	<i>Andrena thoracica</i> (Fabricius, 1775)	Thx, legs	Qiagen	3	695.1	2.12	2.26
3003X	F	Nobondropo	Andrena nobilis Morawitz,	Thorax	Qiagen	3	353.6	2.15	2.16
3003Y	F	NODANUTENA	1874	Thx, legs	Qiagen	3	512.3	2.14	2.28
3201X	F	Opandrena	<i>Andrena schencki</i> Morawitz, 1866	Thx, legs	Qiagen	3	379.9	2.07	1.91
3502X	М	Plastandrena	<i>Andrena pilipes</i> Fabricius, 1781	Thx, legs	Qiagen	3	84.8	2.03	2.09
3703X	F			Thx, abd	Qiagen	3	564.9	2.13	2.21
3703Y	F			Thx, abd	Qiagen	3	413.3	2.14	2.19
3703Z	F	Poliandrena	Andrena polita Smith, 1847	Abdomen	Qiagen	3	441.8	2.13	2.22
3703Z	F			Thorax	Qiagen	3	222.4	2.14	2.07
3703Z	F			Legs	Qiagen	3	25.0	2.20	1.36

Table 3. Quantification and quality of DNA obtained from ethanol (96%) preserved specimens of Andrena species

Codo Sov		Subgopus	Species	Matarial	DNA	Water bath	Nanodrop			
Code	Sex	Subgenus	Species	Material	method	period (h)	DNA	260/280	260/230	
4001X	F	Scitandrena	<i>Andrena scita</i> Eversmann, 1852	Thorax	Qiagen	3	398.5	2.13	2.22	
4103X	F	Simandrena	<i>Andrena lepida</i> Schenck, 1861	Thx, abd	Qiagen	3	474.4	2.15	2.24	
4401X	F			Thorax	Qiagen	3	386.5	2.13	2.25	
4401Y	01Y F	Truncandrena	<i>Andrena asiatica</i> Friese, 1921	Thx, legs	Qiagen	3	351.5	2.15	2.24	
4401Z	М			Thx, legs	Qiagen	3	133.2	2.04	1.84	
4407X	F	Truncandrena	Andrena schmiedeknechti Magretti, 1883	Thx, legs	Qiagen	3	350.3	2.16	2.26	
4502X	F		Andrena crecca Warncke	Thorax	Qiagen	3	359.3	2.16	2.27	
4502Y	F	Ulandrena	1965	Thx, legs	Qiagen	3	268.4	2.14	2.12	
4601X	F			3 Legs	Qiagen	4	10.0	1.68	0.58	
4601X	F			Thorax	Qiagen	4	250.6	1.59	0.91	
4601X	F	Zonandrena	<i>Andrena flavipes</i> Panzer, 1799	Abdomen	Qiagen	4	692.4	1.90	1.48	
4601X	F			Legs	Qiagen	4	28.0	1.44	0.67	
4601Y	F			Thx, abd	Qiagen	3	278.6	2.15	2.18	
4602X	F	Zonandrena	<i>Andrena gazella</i> Friese, 1922	Thx, legs	Qiagen	3	220.9	2.14	2.02	

Thx: Thorax; Abd: Abdomen

DNA of all ethanol preserved samples was amplified with most of the primers tested (with the exception of primer pairs Uni-MinibarF1/Uni-MinibarR1, 12Sa/12SLR, ArgK-F/R, AndCOI-F1/COIand-R1 and AndCOI-F2/COIand-R2). The PCR was successful for almost all ethanol samples, whereas the amplification of DNA from only a few of the dry pinned specimens was achieved. The primers were selected that worked for both ethanol preserved and dry pinned specimens. These were used for further studies. The DNA samples were amplified by five primer sets (AndWNG-F/WNGand-R, polfor2a-And/polrev2a-And, Bel28S/Mar28Srev, And28S-F/28Sand-R, AndEF-F1/EFand-R1) and for four loci (wingless wnt-1 gene, RNA polymerase II, 28S ribosomal RNA, elongation factor 1 alpha F2 copy). DNA from 32 specimens belonging to 25 species and representing three to four loci was successfully amplified. Of these, 28 were ethanol-preserved specimens. Four of them (*Andrena gamskrucki impasta* Warncke, 1975, *A. fuscosa* Erichson, 1835, *A. gamskrucki eburnea* Warncke, 1975, *A. semirubra* Morawitz, 1876) were dry pinned specimens (Figure 1).

Preservation methods can have a direct effect on the quality and quantity of the DNA extracted from insect specimens. This study demonstrates that good quality DNA can be readily extracted and amplified from samples of sand bees preserved in ethanol. However, obtaining PCR amplifiable DNA from dry pinned specimens was difficult. None of the primers tested were reliable for amplifying DNA from the dry pinned specimens. However, five primers worked for about 2% of the dry specimens and they would be potentially useful for phylogenetic analyses. There are other factors that can affect the success of DNA extraction resulting in suitable quality DNA for PCR amplification from dry pinned specimens, including bee size, time since collection, DNA degrading contaminants, kill method and marker allele size.

Figure 1. Agarose gel images showing products of PCR amplification of different primers for DNA sequence in Andrena species: a) Bel28S/Mar28Srev (~750 bp); b) And28S-F/28Sand-R (700 bp); c) AndEF-F1/EFand-R1(750 bp); d) AndWNG-F/WNGand-R (653 bp); e) polfor2a-And/polrev2a-And (587 bp) (lanes 1 to 28 contain DNA of ethanol preserved specimens; lanes 61 (2402A), 63 (2601A), 89 (2401A), 111 (3607A) contain DNA of dry pinned specimens).

Andersen & Mills (2012) reported that specimen size significantly affected the total amount of extracted DNA from a braconid parasitoid specimen. Strange et al. (2009) suggested that pinned bumble bee specimens from museum collections are suitable for population genetic studies because of their large size. In our study, the size of bee specimens ranged from small (5 mm) to medium (18 mm). The better quality DNA was obtained from larger bees, for example *A. albopunctata* (Rossi, 1792), *A. fuscosa* Erichson, 1835, *A. fuscocalcarata* Morawitz, 1877 (Table 2). The result could be associated with both the number of cells and the thickness of exoskeleton layer. The cuticle, which is an extracellular layer that covers the complete external surface of insects and acts both as a skeleton for muscle attachment and as a protective barrier. The thickness of cuticular layer varies from a few micrometers to a few millimeters, depending upon the insect species (Andersen, 2009). Strange et al. (2009) hypothesized that sclerotization of the bumble bees in museum collections helped preserve the genetic material. It is known that insect body size is strongly correlated with cuticle thickness (Peeters et al., 2017). Considering this information, it can be suggested that the bigger bees have a thicker cuticle, which protect the cells more. This hypothesis is supported by our data for sand bees.

If no preservation steps are taken, time since death has a negative effect on the likelihood of successful DNA amplification. DNA in museum specimens generally becomes degraded and the quality and quantity remaining often precludes molecular genetic studies (Gilbert et al., 2007; Zimmermann et al., 2008; Strange et al., 2009). In our study 222 dry pinned specimens of *Andrena* bees were collected between 2004-2011. DNA was extracted from almost all the dry pinned specimens that were screened. However, successful DNA amplification was possible for only four of these specimens. Notably, in our study, two of these samples, *Andrena gamskrucki impasta* (2402A) and *A. gamskrucki eburnea* (2401A), were relatively

recent collections (2011), but other specimens collected at the same time either did not contain sufficient DNA, or the DNA was not of sufficient quality. However, DNA amplification was successful with two older museum specimens, *A. fuscosa* (2601A) and *A. semirubra* (3607A), collected in 2007. Even if DNA amplification success decreases with the time since collection, at least some successful results would have been expected for specimens collected in 2008, 2009 or 2010. It is likely that the failure to amplify DNA from the oldest specimens is likely due to postmortem degradation of DNA. However, the reason why DNA was not amplified from most of the younger specimens is unknown. It is possible that the killing methods and storage conditions of these samples may have resulted in degradation of all of the DNA. Although time is important, it is likely to be only one of the factors.

Insect specimens are usually killed with ethyl acetate, ethyl alcohol, formalin or cyanide depending on the taxon, the method of collection and the choice of collector. Specimen labels usually do not include details of the killing agent used, or the length of exposure to the killing agent. Due to these factors, DNA extraction and amplification is unlikely to be successful from all dry specimens. Also, different collection and storage conditions affect the quantity and quality of DNA (Gilbert et al., 2007). In our study, all of the specimens were killed using ethyl acetate. There are few studies that have focused on the effect of the ethyl acetate on quality of DNA. Dillon et al. (1996) suggested that specimens killed in ethyl acetate vapor had fragmented DNA that gave consistently low yields when extracted and that could not be successfully amplified. Consequently, we consider that ethyl acetate is not a suitable killing reagent if the aim is to perform molecular studies on insects. Whereas, Willows-Munro & Schoeman (2015) claimed that there was no evidence that DNA degradation depended on killing method, including use of ethyl acetate. Therefore, further research is needed to clarify this issue.

Andersen & Mills (2012) suggested that short fragments of 28S and COI genes were sufficient for species identification, and for examining within species genetic diversity. They examined DNA extraction from museum specimens of parasitic Hymenoptera (Braconidae). In their study, several primer combinations of various length were tested, but these did not amplify fragments longer than 150 bp. In our study, 31 primer sets were tested. Of these, 13 amplified mitochondrial gene regions and 18 amplified nuclear gene regions. Five primers were selected that work for both ethanol preserved bee specimens and a few of the dry pinned specimens (AndWNG-F/WNGand-R, polfor2a-And/polrev2a-And, Bel28S/Mar28Srev, And28S-F/28Sand-R, AndEF-F1/EFand-R1) for four loci (wingless wnt-1 gene, RNA polymerase II, 28S ribosomal RNA, Elongation factor 1 alpha F2 copy). Sequence lengths were 653, 587, 690, 669 and 700 bp, respectively. Shorter amplicon sequence lengths were also tested (130, 226 and 350 bp) but these failed to give useful results. Accordingly, we contend that shorter sequence length is not effective in DNA amplification for dry museum specimens.

PCR can be influenced by many conditions including the template DNA preparation and reaction conditions, and primer design (Ye et al., 2012). The primer design is an important step to ensure successful PCR. In this study, 14 primer sets were newly designed or modified based on reported primer sequence in the literature. Twelve of these resulted in successful amplification of chosen nuclear gene regions. These primers are useful for entomologists intending to use bee specimens for systematic studies.

Acknowledgments

We thank the Technical and Research Council of Turkey (TUBITAK) for supporting the senior author with a 2219 fellowship program. We also thank Dr. Brendan G. Hunt, Minling Nmn Zhang, Dr. David Shapiro-Ilan, Dr. Selcuk Hazir and Erwin Scheuchl for their valuable assistance.

References

- Almeida, E. A. B & B. N. Danforth, 2009. Phylogeny of colletid bees (Hymenoptera: Colletidae) inferred from four nuclear genes. Molecular Phylogenetics and Evolution, 50: 290-309.
- Andersen, J. C & N. Mills, 2012. DNA extraction from museum specimens of parasitic Hymenoptera. PLoS ONE, 7 (10): e45549.
- Andersen, S. O., 2009. "Cuticle, 245-246". In: Encyclopedia of Insects (Second Edition) (Eds. V. H. Resh & R. T. Cardé). Academic Press, United States, 1168 pp.
- Cameron, S. A & P. H. Williams, 2003. Phylogeny of bumble bees in the new world subgenus *Fervidobombus* (Hymenoptera: Apidae): congruence of molecular and morphological data. Molecular Phylogenetics and Evolution, 28: 552-563.
- Crane, S., 2011. DNA extraction from archival museum insect specimens modified from Qiagen® DNeasy Blood & Tissue Kit. (Web page: CC-BY http://dx.doi.org/10.6084/m9.figshare.741214) (Date accessed: December 2018).
- Danforth, B. N., H. Sauquet & L. Packer, 1999. Phylogeny of the bee genus *Halictus* (Hymenoptera: Halictidae) based on parsimony and likelihood analyses of nuclear EF-1'alpha' sequence data. Molecular Phylogenetics and Evolution, 13: 605-618.
- Danforth, B. N., 2013. Protocol for DNA extraction from small Hymenoptera. (Web page: http://www.danforthlab.entomology.cornell.edu/wp-content/uploads/dna_sequencing_protocols_v6.pdf) (Date accessed: December 2018).
- Danforth, B. N., J. Fang & S. Sipes, 2006. Analysis of family-level relationships in bees (Hymenoptera: Apiformes) using 28S and two previously unexplored nuclear genes: CAD and RNA polymerase II. Molecular Phylogenetics and Evolution, 39: 358-343.
- Danforth, B. N., S. Cardinal, C. Praz, E. A. B. Almeida & D. Michez, 2013. The impact of molecular data on our understanding of bee phylogeny and evolution. Annual Review of Entomology, 58: 57-78.
- Dillon, N., A. D. Austin & E. Bartowsky, 1996. Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect Molecular Biology, 1: 21-24.
- Dubitzky, A., 2005. Studies in Phylogeny and Biosystematics of Bees: The Bee Genus Andrena (Andrenidae) and the Tribe Anthophorini (Apidae) (Insecta: Hymenoptera: Apoidea). Fakultät für Biologie der Ludwig-Maximilians-Universität, (Published) PhD Thesis, München, Germany, 244 pp.
- Dubitzky, A., J. Plant & K. Schönitzer, 2010. Phylogeny of the bee genus *Andrena* Fabricius based on morphology (Hymenoptera: Andrenidae). Mitteilungen der Münchner Entomologischen Gesellschaft, 100: 137-202.
- Francoso, E. & M. C. Arias, 2013. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode. Molecular Ecology Resources, 13: 844-850.
- Gilbert, M. T. P., W. Moore, L. Melchior & M. Worobey, 2007. DNA extraction from dry museum beetles without conferring external morphological damage. PLoS ONE, 2 (3): e272.
- Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen & W. Hallwachs, 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator*. Proceedings of the National Academy of Sciences of the United States of America, 101: 14812-14817.
- Hedtke, S. M., S. Patiny & B. N. Danforth, 2013. The bee tree of life: a supermatrix approach to apoid phylogeny and biogeography. BMC Evolutionary Biology, 13: 138.
- Hernandez-Triana, L. M., S. W. Prosser, M. A. Rodriguez-Perez, L. G. Chaverri, P. D. N. Hebert & T. R. Gregory, 2014. Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence length. Molecular Ecology Resources, 14: 508-518.
- Hines, H. M., S. A. Cameron & P. H. Williams, 2006. Molecular phylogeny of the bumble bee subgenus *Pyrobombus* (Hymenoptera: Apidae: *Bombus*) with insights into gene utility for lower-level analysis. Invertebrate Systematics, 20: 289-303.
- Klein, A-M., B. E. Vaissiere, J. H. Cane, I. Steffan-Dewenter, S. A. Cunningham, C. Kremen & T. Tscharntke, 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London (B), 274: 303-313.

- Koulianos, S. & P. Schmid-Hempel, 2000. Phylogenetic relationships among bumble bees (*Bombus* Latreille) inferred from mitochondrial cytochrome b and cytochrome oxidase I sequences. Molecular Phylogenetics and Evolution, 14 (3): 335-341.
- Larkin, L. L., J. L. Neff & B. B. Simpson, 2006. Phylogeny of the *Callandrena* subgenus of *Andrena* (Hymenoptera: Andrenidae) based on mitochondrial and nuclear DNA data: polyphyly and convergent evolution. Molecular Phylogenetics and Evolution, 38 (2): 330-343.
- Meusnier, I., G. A. C. Singer, J. F. Landry, D. A. Hickey, P. D. N. Hebert & M. Hajibabaei, 2008. A universal DNA minibarcode for biodiversity analysis. BMC Genomics, 9: 214.
- Michez, D., S. Patiny & B. N. Danforth, 2009. Phylogeny of the bee family Melittidae (Hymenoptera: Anthophila) based on combined molecular and morphological data. Systematic Entomology, 34: 574-597.
- Nishiguchi, M. K., P. Doukakis, M. Egan, D. Kizirian, A. Phillips, L. Prendini, H. C. Rosenbaum, E. Torres, Y. Wyner, R. DeSalle & G. Giribet, 2002. "Methods and Tools in Biosciences and Medicine Techniques, 249-287". In: Molecular Systematics and Evolution (Eds: R. Desalle, G. Giribet & W. Wheeler). Birkhäuser Verlag Basel, Switzerland, 309 pp.
- Peeters, C., M. Molet, C. C. Lin & J. Billen, 2017. Evolution of cheaper workers in ants: comparative study of exoskeleton thickness. Biological Journal of the Linnean Society, XX: 1-8.
- Praz, C. J., A. Müller, B. N. Danforth, T. L. Griswold, A. Widmer & S. Dorn, 2008. Phylogeny and biogeography of bees of the tribe Osmiini (Hymenoptera: Megachilidae). Molecular Phylogenetics and Evolution, 49: 185-197.
- Ramirez, S. R., J. C. Nieh, T. B. Quental, D. W. Roubik, V. L. Imperatriz-Fonseca & N. E. Pierce, 2010. A molecular phylogeny of the stingless bee genus *Melipona* (Hymenoptera: Apidae). Molecular Phylogenetics and Evolution, 56: 519-525.
- Reemer, M., D. S. J. Groenenberg, C. Van Achterberg & T. M. J. Peeters, 2008. Taxonomie assessment of Andrena rosae and A stragulata by DNA-sequencing (Hymenoptera: Apoidea: Andrenidae). Entomologia Generalis, 31 (1): 21-32.
- Rehan, S. M., T. W. Chapman, A. I. Craigie, M. H. Richards, S. J. B. Cooper & M. P. Schwarz, 2010. Molecular phylogeny of the small carpenter bees (Hymenoptera: Apidae: Ceratinini) indicates early and rapid global dispersal. Molecular Phylogenetics and Evolution, 55: 1042-1054.
- Schander, C. & K. M. Halanychi, 2003. DNA, PCR and formalinized animal tissue a short review and protocols. Organisms Diversity and Evolution, 3: 195-205.
- Schmidt, S., C. Schmid-Egger, J. Moriniere, G. Haszprunar & P. D. N. Hebert, 2015. DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoidea *partim*). Molecular Ecology Resources, 15: 985-1000.
- Schwarz, M. P., S. M. Tierney, S. J. B. Cooper & N. J. Bull, 2004. Molecular phylogenetics of the Allodapine bee genus Braunsapis: A-T bias and heterogeneous substitution parameters. Molecular Phylogenetics and Evolution, 32: 110-122.
- Strange, J. P., J. Knoblett & T. Griswold, 2009. DNA amplification from pin-mounted bumble bees (*Bombus*) in a museum collection: effects of fragment size and specimen age on successful PCR. Apidologie, 40: 134-139.
- Ward, P. S., 2009. DNA extraction of dried (point-mounted) ant specimens modified v2.0. (personal communication).
- Willows-Munro, S. & M. C. Schoeman, 2015. Influence of killing method on Lepidoptera DNA barcode recovery. Molecular Ecology Resources, 15: 613-618.
- Woodard, S. H., J. D. Lozier, D. Goulson, P. H. Williams, J. P. Strange & S. Jha, 2015. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system. Molecular Ecology, 24: 2916-2936.
- Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen & T. L. Madden, 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13: 134.
- Zimmermann, J., M. Hajibabaei M, D. C. Blackburn, J. Hanken, E. Cantin, J. Posfai & T. C. Evans Jr, 2008. DNA damage in preserved specimens and tissue samples: a molecular assessment. Frontiers in Zoology, 5:18.