Constructions of Type III^+ Helicoidal Surfaces in Minkowski Space with Desity

Önder Gökmen Yıldız* and Mahmut Akyiğit

(Communicated by Levent Kula)

ABSTRACT

In this paper, we construct a helicoidal surface of type III^+ with prescribed weighted mean curvature and weighted Gaussian curvature in the Minkowski 3–space R_1^3 with a positive density function. We get a result for minimal case. Also we give examples of helicoidal surface with prescribed weighted mean curvature and Gaussian curvature.

Keywords: Minkowski space; manifold with density; weighted curvature; helicoidal.

AMS Subject Classification (2010): Primary: 53A10; Secondary: 53C50.

1. Introduction

It is well known that a helicoidal surface is a generalization of a rotation surface. There are many studies about these surfaces under some given certain conditions [1, 7, 9, 16, 19]. Recently, the popular question is whether a helicoidal surface can be constructed when its curvatures are prescribed. Several researchers worked on this problem and obtained useful results. Firstly, helicoidal surfaces with prescribed mean and Gaussian curvature in \mathbb{R}^3 have been studied by Baikoussis et. al [2]. Then, Beneki et. al [3] and Ji et. al [10] have studied the similar work in \mathbb{R}^3 . This problem is extended to manifolds with density. Dae Won Yoon et. al have studied the helicoidal surfaces with prescribed weighted mean and weighted Gaussian curvature in \mathbb{R}^3 with density [22]. Furthermore, Yıldız et. al have constructed the type I^+ helicoidal surfaces with prescribed weighted curvatures in \mathbb{R}^3 with density [20].

A manifold with a positive density function ψ used to weight the volume and the hypersurface area. In terms of the underlying Riemannian volume dV_0 and area dA_0 , the new, weighted volume and area are given by $dV = \psi dV_0$ and $dA = \psi dA_0$, respectively. One of the most important examples of manifolds with density, with applications to probability and statistics, is Gauss space with density $\psi = e^{a\left(-x^2-y^2-z^2\right)}$ for $a \in \mathbb{R}$, $(x,y,z) \in \mathbb{R}^3$ [15]. For more details on manifolds with density, see [8, 12, 13, 14, 15, 17, 18].

In the Minkowski 3-space with density e^{φ} , the weighted mean curvature is given with

$$H_{\varphi} = H - \frac{1}{2} \langle N, \nabla \varphi \rangle$$

where H is the mean curvature of the surface, N is the unit normal vector of the surface and $\nabla \varphi$ is the gradient vector of φ [17]. If $H_{\varphi}=0$ then the surface is called weighted minimal surface. The weighted Gaussian curvature with density e^{φ} is

$$G_{\varphi} = G - \triangle \varphi$$

where G is the Gaussian curvature of the surface and \triangle is the Laplacian operator [5].

In this paper, we study helicoidal surfaces in the Minkowski 3–space R_1^3 with density e^{φ} , where $\varphi = -x_2^2 - x_3^2$. Firstly, we consider helicoidal surfaces of type III^+ , defined in [3]. Then, we construct a helicoidal surface of type III^+ with prescribed weighted mean and weighted Gaussian curvature. We give the classification of weighted minimal helicoidal surfaces. Finally, we give examples to illustrate our result.

2. Preliminaries

The Minkowski 3–space \mathbb{R}^3_1 is the real vector space \mathbb{R}^3 provided with the standard flat metric given by

$$ds^2 = -dx_1^2 + dx_2^2 + dx_3^2$$

where (x_1, x_2, x_3) is a rectangular coordinate system of \mathbb{R}^3_1 .

For a given plane curve and an axis in the plane in \mathbb{R}^3_1 , a helicoidal surface can be constructed by the plane curve under helicoidal motions $g_t: \mathbb{R}^3_1 \to \mathbb{R}^3_1, t \in \mathbb{R}$ around the axis. So, a helicoidal surface is non-degenerate and invariant under $g_t, t \in \mathbb{R}$ for which one parameter subgroup of rigid motions is in \mathbb{R}^3_1 . There exist four kinds of helicoidal surfaces in \mathbb{R}^3_1 which are defined by Beneki et. al [3] and these are called type I, type II, type III, type III, type IIV. In this study, type $IIII^+$ is considered which has the timelike axis of revolution and the profile curve in x_1x_2 -plane. In addition, the helicoidal surface is called type $IIII^+$ since the discriminant of the first fundamental form $u^2(1-g'^2)-c^2$ is positive [3].

Let γ be a C^2 -curve on x_1x_2 -plane of type $\gamma(u)=(g(u),u,0)$ where $u\in I$ for an open interval $I\subset\mathbb{R}-\{0\}$. By using helicoidal motion on γ , we can obtain the helicoidal as

$$X(u,v) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos v & -\sin v \\ 0 & \sin v & \cos v \end{bmatrix} \begin{bmatrix} g(u) \\ u \\ 0 \end{bmatrix} + \begin{bmatrix} cv \\ 0 \\ 0 \end{bmatrix}$$
(2.1)

with x_1 –axis and a pitch $c \in \mathbb{R}$. So the parametric equation can be given in the form

$$X(u,v) = (g(u) + cv, u\cos v, u\sin v). \tag{2.2}$$

It is straightforward to see that the mean curvature H, the Gaussian curvature G and the unit normal of surface N are

$$\begin{split} H &= \frac{\left(1 - g'^2\right) u^2 g' + \left(u^2 - c^2\right) u g'' - 2 c^2 g'}{2 \left[u^2 \left(1 - g'^2\right) - c^2\right]^{3/2}}, \\ G &= \frac{u^3 g' g'' - c^2}{\left[u^2 \left(1 - g'^2\right) - c^2\right]^2}, \\ N &= \frac{1}{\sqrt{u^2 \left(1 - g'^2\right) - c^2}} \left(-u, c \sin v - u g' \cos v, -c \cos v - u g' \sin v\right), \end{split}$$

where $u^2\left(1-g'^2\right)-c^2>0$ [3]. We assume that M is the surface in \mathbb{R}^3_1 with density e^{φ} , where $\varphi=-x_2^2-x_3^2$. By considering density function, we can calculate the weighted mean curvature H_{φ} and the weighted Gaussian curvature G_{φ} as

$$H_{\varphi} = \frac{\left(u^2 - c^2\right) u g'' - \left(u^2 - 2u^4\right) g'^3 + \left(u^2 + 2c^2 - 2u^4 + 2c^2u^2\right) g'}{2\left(u^2 \left(1 - g'^2\right) - c^2\right)^{3/2}} \tag{2.3}$$

and

$$G_{\varphi} = \frac{u^3 g' g'' - c^2}{2 \left(u^2 \left(1 - g'^2\right) - c^2\right)^2} + 4. \tag{2.4}$$

3. Helicoidal surfaces with prescribed mean or Gaussian curvature

Theorem 3.1. Let $\gamma(u)$ be a profile curve of the helicoidal surface given with $X(u,v) = (g(u) + cv, u\cos v, u\sin v)$ in \mathbb{R}^3_1 with density $e^{-x_2^2 - x_3^2}$ and $H_{\varphi}(u)$ be the weighted mean curvature. Then, there exists a two-parameter family of helicoidal surface given by the curves

$$\gamma\left(u, H_{\varphi}(u), c, c_{1}, c_{2}\right) = \left(\mp \int \frac{e^{u^{2}}\sqrt{u^{2} - c^{2}}\left(2\int ue^{-u^{2}}H_{\varphi}du + c_{1}\right)}{u\sqrt{u^{2} + e^{2u^{2}}\left(2\int ue^{-u^{2}}H_{\varphi}du + c_{1}\right)^{2}}}du + c_{2}, u, 0\right).$$

Conversely, for a given smooth function $H_{\varphi}(u)$, one can obtain the two-parameter family of curves $\gamma\left(u,H_{\varphi}(u),c,c_{1},c_{2}\right)$ being the two-parameter family of helicoidal surfaces, accepting $H_{\varphi}(u)$ as the weighted mean curvature c as a pitch.

Proof. Let's solve the equation (2.3) which is a second-order nonlinear ordinary differential equation. If we apply $A = \frac{g'(u)}{\sqrt{(u^2(1-g'^2)-c^2)}}$ into the equation, then we get

$$H_{\varphi} = \frac{u}{2}A' + (1 - u^2)A. \tag{3.1}$$

The equation (3.1) becomes a first-order linear ordinary differential equation with respect to A and we rewrite the equation as follows

$$A' + \left(\frac{2}{u} - 2u\right)A = \frac{2}{u}H_{\varphi}.\tag{3.2}$$

Then the general solution of (3.2) is

$$A = \frac{e^{u^2}}{u^2} \left(2 \int u e^{-u^2} H_{\varphi} du + c_1 \right)$$
 (3.3)

where $c_1 \in \mathbb{R}$. By using $A = \frac{g'(u)}{\sqrt{(u^2(1-g'^2)-c^2)}}$ and the equation (3.3), we obtain

$$\left[u^{2}+e^{2u^{2}}\left(2\int ue^{-u^{2}}H_{\varphi}du+c_{1}\right)^{2}\right]g'^{2}\left(u\right)=\frac{\left(u^{2}-c^{2}\right)}{u^{2}}\left(2\int ue^{-u^{2}}H_{\varphi}du+c_{1}\right)^{2}.\tag{3.4}$$

From the above equation, we get

$$g(u) = \mp \int \frac{e^{u^2} \sqrt{u^2 - c^2} \left(2 \int u e^{-u^2} H_{\varphi} du + c_1 \right)}{u \sqrt{u^2 + e^{2u^2} \left(2 \int u e^{-u^2} H_{\varphi} du + c_1 \right)^2}} du + c_2$$
(3.5)

where $c_2 \in \mathbb{R}$.

On the contrary, for a given smooth function $H_{\varphi}\left(u\right)$, it is clear that there exists a two-parameter family of the curves as

$$\gamma(u, H_{\varphi}(u), c, c_1, c_2) = \left(\mp \int \frac{e^{u^2} \sqrt{u^2 - c^2} \left(2 \int u e^{-u^2} H_{\varphi} du + c_1\right)}{u \sqrt{u^2 + e^{2u^2} \left(2 \int u e^{-u^2} H_{\varphi} du + c_1\right)^2}} du + c_2, u, 0\right).$$

The following corollary is an immediate consequence of the Theorem 3.1 and the definition of a minimal surfaces.

Corollary 3.1. Let M be a minimal helicoidal surface in \mathbb{R}^3_1 with density $e^{-x_2^2-x_3^2}$. Then M is an open part of either a helicoid or a surface parametrized by

$$X(u,v) = \left(\mp \int \frac{c_1 e^{u^2} \sqrt{u^2 - c^2}}{u \sqrt{u^2 + c_1^2} e^{2u^2}} du + c_2 + cv, u \cos v, u \sin v\right)$$

where $c_1, c_2 \in \mathbb{R}$.

Example 3.1. Consider a helicoidal surface with the weighted mean curvature

$$H_{\varphi}(u) = -\frac{\sqrt{3}u}{4}$$

and the pitch c=1 in \mathbb{R}^3_1 with density $e^{-x_2^2-x_3^2}$. By considering the equation (3.5), we get $\gamma\left(u\right)$. So we obtain the parametrization of the surface as follows

$$X\left(u,v\right) = \left(\frac{\sqrt{3}\left(\sqrt{-1+u^2} + \arctan\left(\frac{1}{\sqrt{-1+u^2}}\right)\right)}{2} + v, u\cos v, u\sin v\right)$$

www.iejgeo.com 22

and the figure of the domain

$$\begin{cases} 1 < u < 5 \\ -5 < v < 5 \end{cases}$$

is given in Figure 1.

Figure 1. The helicoidal surface with the weighted mean curvature.

Theorem 3.2. Let $\gamma(u)$ be a profile curve of the helicoidal surface given with $X(u,v) = (g(u) + cv, u\cos v, u\sin v)$ in \mathbb{R}^3_1 with density $e^{-x_2^2-x_3^2}$ and $G_{\varphi}(u)$ be the weighted Gaussian curvature at (g(u), u, 0). Then, there exists two-parameter family of the helicoidal surface given by the curves

$$\gamma \left(u, G_{\varphi}(u), c, c_{1}, c_{2} \right) = \left(\mp \int \frac{1}{u} \left[\frac{\left(u^{2} - c^{2} \right) \left(4u^{2} - 2 \int u G_{\varphi} du + c_{1} \right) + c^{2}}{-1 + 4u^{2} - 2 \int u G_{\varphi} du + c_{1}} \right]^{\frac{1}{2}} du + c_{2}, u, 0 \right)$$

where, c_1 and c_2 are constants. Conversely, for a given smooth function $G_{\varphi}(u)$, one can obtain the two-parameter family of curves $\gamma(u, G_{\varphi}(u), c, c_1, c_2)$ being the two-parameter family of helicoidal surfaces, accepting $G_{\varphi}(u)$ as the weighted Gaussian curvature c as a pitch.

Proof. Let's solve the equation (2.4), which is a second-order nonlinear ordinary differential equation. If we apply

$$B = \frac{-u^2 g^2 - c^2}{(u^2 (1 - g^2) - c^2)}$$
(3.6)

into the equation (3.6), then we obtain

$$G_{\varphi} = -\frac{1}{2u}B' + 4$$

that is,

$$B' = -2uG_{\varphi} + 8u. \tag{3.7}$$

The general solution of the equation (3.7) becomes

$$B = 4u^2 - 2\int uG_{\varphi}du + c_1 \tag{3.8}$$

where $c_1 \in \mathbb{R}$. Combining the equation (3.6) and the equation (3.8), we get

$$u^{2}\left(-1+4u^{2}-2\int uG_{\varphi}du+c_{1}\right){g'}^{2}(u)=\left(u^{2}-c^{2}\right)\left(4u^{2}-2\int uG_{\varphi}du+c_{1}\right)+c^{2}.\tag{3.9}$$

It follows that

$$g(u) = \mp \int \frac{1}{u} \left[\frac{\left(u^2 - c^2\right) \left(4u^2 - 2\int uG_{\varphi}du + c_1\right) + c^2}{-1 + 4u^2 - 2\int uG_{\varphi}du + c_1} \right]^{\frac{1}{2}} du + c_2$$
(3.10)

where $c_2 \in \mathbb{R}$.

Conversely, for a given $c \in \mathbb{R}$ and a smooth function $G_{\varphi}(u)$ defined on an open interval $I \subset \mathbb{R}^+$ and an arbitrary $u_0 \in I$, there exists an open sub-interval $I' \subset I$ containing u_0 and an open interval $J \subset \mathbb{R}$ containing

$$\hat{c}_1 = \left(1 + 2 \int u G_{\varphi} du\right) (u_0)$$

such that

$$F(u, c_1) = -1 + 4u^2 - 2 \int uG_{\varphi}du > 0$$

is defined on $I' \times J$ and it is easily seen F is positive. Thus, two-parameter family of the curves can be given as

$$\gamma\left(u,G_{\varphi}(u),c,c_{1},c_{2}\right) = \left(\mp \int \frac{1}{u} \left[\frac{\left(u^{2}-c^{2}\right)\left(4u^{2}-2\int uG_{\varphi}du+c_{1}\right)+c^{2}}{-1+4u^{2}-2\int uG_{\varphi}du+c_{1}} \right]^{\frac{1}{2}} du+c_{2},u,0 \right)$$

where $(u, c_1) \in I' \times J$; $c_2 \in \mathbb{R}$, $c \in \mathbb{R}$ and G_{φ} is smooth function.

Example 3.2. Consider a helicoidal surface with the weighted Gaussian curvature

$$G_{\varphi}(u) = \frac{-3 + 2u^2}{3}$$

in R_1^3 with density $e^{-x_2^2-x_3^2}$. By using the equation (3.10), we obtain

$$g\left(u\right) = \sqrt{-1 + 2u^{2}} + \arctan\left(\frac{1}{\sqrt{-1 + 2u^{2}}}\right)$$

for $c = 1, c_1 = 0, c_2 = 0$ and the parametrization of the surface as follows

$$X(u,v) = (g(u) + v, u\cos v, u\sin v).$$

The figure of the surface of the domain

$$\left\{ \begin{array}{l} 2 < u < 5 \\ -10 < v < 10 \end{array} \right.$$

is given in Figure 3.

Figure 2. The helicoidal surface with the weighted Gaussian curvature.

www.iejgeo.com

References

- [1] Baba-Hamed, C. and Bekkar, M., Helicoidal surfaces in the three-dimensional Lorentz-Minkowski space satisfying $\triangle^{II} r_i = \lambda_i r_i$. *J. Geom.* 100 (2011), no. 1-2, 1.
- [2] Baikoussis, C. and Koufogiorgos, T., Helicoidal surfaces with prescribed mean or Gaussian curvature. J. Geom. 63 (1998), no. 1, 25-29.
- [3] Beneki, C.C., Kaimakamis, G. and Papantoniou, B.J., Helicoidal surfaces in three-dimensional Minkowski space. *Journal of Mathematical Analysis and Applications*, 275 (2002), no. 2, 586-614.
- [4] Corro, A. V., Pina, R. and Souza, M., Surfaces of rotation with constant extrinsic curvature in a conformally flat 3-space. *Results in Mathematics*, 60 (2011), no. 1-4, 225.
- [5] Corwin, I., Hoffman, N., Hurder, S., Šešum, V. and Xu, Y., Differential geometry of manifolds with density. *Rose-Hulman Undergrad. Math. I.*, 7(2006), 1-15.
- [6] Delaunay, C. H., Sur la surface de révolution dont la courbure moyenne est constante. *Journal de mathématiques pures et appliquées* (1841), 309-314.
- [7] Do Carmo, M.P. and Dajczer, M., Helicoidal surfaces with constant mean curvature. *Tohoku Mathematical Journal*, Second Series 34 (1982), no. 3, 425-435.
- [8] Hieu, D.T. and Hoang, N.M., Ruled minimal surfaces in \mathbb{R}^3 with density e^z . Pacific Journal of Mathematics, 243 (2009), no. 2, 277-285.
- [9] Hou, Z.H. and Ji, F., Helicoidal surfaces with $H^2 = K$ in Minkowski 3-space. *Journal of mathematical analysis and applications*, 325 (2007), no. 1, 101-113.
- [10] Ji, F. and Hou, Z.H., A kind of helicoidal surfaces in 3-dimensional Minkowski space. *Journal of mathematical analysis and applications*, 304 (2005), no.2 632-643.
- [11] Ji, F. and Hou, Z.H., Helicoidal surfaces under the cubic screw motion in Minkowski 3-space. *Journal of mathematical analysis and applications*, 318 (2006), no. 2, 634-647.
- [12] Morgan, F., Geometric measure theory: a beginner's guide. Academic press, 2016.
- [13] Morgan, F., Manifolds with density. Notices of the AMS, (2005), 853-858.
- [14] Morgan, F., Myers' theorem with density. Kodai Mathematical Journal, 29 (2006), no. 3, 455-461.
- [15] Morgan, F., Manifolds with Density and Perelman's Proof of the Poincaré Conjecture. *American Mathematical Monthly*, 116 (2009), no. 2, 134-142.
- [16] Rafael, L. and Demir, E., Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature. *Open Mathematics*, 12 (2014), no: 9, 1349-1361.
- [17] Rayón, P. and Gromov, M., Isoperimetry of waists and concentration of maps. Geometric and functional analysis, 13 (2003), no. 1, 178-215.
- [18] Rosales, C., Cañete, A., Bayle, V. and Morgan, M., On the isoperimetric problem in Euclidean space with density. *Calculus of Variations and Partial Differential Equations*, 31 (2008), no. 1, 27-46.
- [19] Roussos, I.M., The helicoidal surfaces as Bonnet surfaces. Tohoku Mathematical Journal, Second Series 40 (1988), no. 3, 485-490.
- [20] Yıldız, Ö.G., Hızal, S. and Akyiğit, M., Type I⁺ Helicoidal Surfaces with Prescribed Weighted Mean or Gaussian Curvature in Minkowski Space with Density. Analele Universitatii" Ovidius" Constanta-Seria Matematica, 26 (2018), no. 3, 99-108.
- [21] Yoon, D.W., Weighted minimal translation surfaces in Minkowski 3-space with density. *International Journal of Geometric Methods in Modern Physics*, 14 (2017), no. 12, 1750178.
- [22] Yoon, D.W., Kim, D.S., Kim, Y.H. and Lee, J.W., Constructions of Helicoidal Surfaces in Euclidean Space with Density. *Symmetry* 9 (2017), no. 9, 173.

Affiliations

Önder Gökmen Yildiz

ADDRESS: Bilecik Şeyh Edebali University, Dept. of Mathematics,

11210, Bilecik-Turkey

E-MAIL: ogokmen.yildiz@bilecik.edu.tr ORCID ID: orcid.org/0000-0002-2760-1223

MAHMUT AKYIĞIT

ADDRESS: Sakarya University, Dept. of Mathematics,

54050, Sakarya-Turkey

E-MAIL: makyigit@sakarya.edu.tr

ORCID ID: orcid.org/0000-0002-8398-365X