
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 12 NO. 1 PAGE 26–31 (2019)

Estimates of B.-Y. Chen’s δ̂-Invariant in Terms
of Casorati Curvature and Mean Curvature

for Strictly Convex Euclidean Hypersurfaces
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ABSTRACT

B.-Y. Chen’s δ̂-invariants can be estimated in function of other curvature terms through an algebraic
process using the AM-GM and AM-QM inequalities. This procedure works on strictly convex
smooth hypersurfaces lying in an Euclidean ambient space, and the estimates relate some δ̂-
invariants to Germain’s mean curvature and Casorati curvature. As a consequence, we obtain a
new string of inequalities in the geometry of strictly convex smooth hypersurfaces.
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1. Introduction

Felice Casorati introduced in 1890 what is today called the Casorati curvature [3], an invariant that, in L.
Verstraelen’s words [30], "in best accordance with our visual intuition and common sense, relates to the form
proper of surfaces". The study of Casorati’s curvature inspired recent new works, e.g. [1, 13, 14, 29], and
invite further comparison with the classical curvature invariants corresponding to Gaussian curvature [17]
and Sophie Germain’s mean curvature [18], which were studied in the classical literature [4, 5, 16].

The Casorati curvature of a submanifold Mn of a Riemannian manifold M̃n+m usually denoted by C, is an
extrinsic invariant defined in some references (e.g. [19, 21]) as the normalized square of the length of the second
fundamental form of the submanifold. We prefer to work instead with the square of the length of the second
fundamental form of the submanifold [1], as we will see below, thinking of a better compatibility with the
Hilbert-Schmidt norm, while still preserving all the geometric information encoded in the square of the length
of the second fundamental form of the submanifold as a curvature invariant. The Casorati curvature, which
is of interest in computer vision [20], was preferred by Casorati over the traditional curvature because, as he
wrote, it corresponds better with the common intuition of curvature.

By the other hand, B.-Y. Chen introduced in the early 1990s a class of fundamental curvature invariants
[6, 7, 10] that have been extended and investigated, among other contexts, to the Kählerian context [9, 10, 15].
These inspiring works have motivated and inspired several other constructions e.g., among many other papers,
important works as [12] or [22] as well as many other investigations e.g. [2, 11, 23, 24, 25, 26, 27, 28, 31], etc. For
a complete overview of the developments, the best reference is [10].

1.1. Notations in the Geometry of Smooth Hypersurfaces

To recall a few concepts in the differential geometry of smooth hypersurfaces, we start by considering σ : U ⊂
Rn → Rn+1, a smooth hypersurface given by the smooth map σ. Let p be a point on the hypersurface. Denote
σk(p) =

∂σ
∂xk

, for all k from 1 to n. Consider {σ1(p), σ2(p), ..., σn(p), N(p)}, the Gauss frame of the hypersurface,
where N denotes the normal vector field. We denote by gij(p) the coefficients of the first fundamental form and
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by hij(p) the coefficients of the second fundamental form. Then

gij(p) = 〈σi(p), σj(p)〉, hij(p) = 〈N(p), σij(p)〉.

The Weingarten map Lp = −dNp ◦ dσ−1
p : Tσ(p)σ → Tσ(p)σ is linear. Denote by (hij(p))1≤i,j≤n the matrix

associated to Weingarten’s map, that is:

Lp(σi(p) = hki (p)σk(p),

where the repeated index and upper script above indicates Einstein’s summation convention. Weingerten’s
operator is self-adjoint, which implies that the roots of the algebraic equation

det(hij(p)− λ(p)δij) = 0

are real. The eigenvalues of Weingarten’s linear map are called principal curvatures of the hypersurface. They
are the roots k1(p), k2(p), ..., kn(p) of this algebraic equation. The mean curvature at the point p is

H(p) =
1

n
[k1(p) + ...+ kn(p)],

and the Gauss-Kronecker curvature is

K(p) = k1(p)k2(p)...kn(p).

The Casorati curvature is
C(p) = k21(p) + ...+ k2n(p).

If all the principal curvature of a smooth regular hypersurface are ≥ 0, then the hypersurface is convex. If all
the principal curvature of a smooth regular hypersurface are > 0, then the hypersurface is strictly convex.

1.2. Notations in the Geometry of Smooth Submanifolds

LetMn be a Riemannian n-manifold. For any orthonormal basis e1, ..., en of the tangent space TpM, the scalar
curvature is defined to be scal(p) =

∑
i<j sec(ei ∧ ej). For any r-dimensional subspace of TpM denoted L with

orthonormal basis e1, ..., er one may define

scal(L) =
∑

1≤i<j≤r

sec(ei ∧ ej). (1.1)

In [8], Chen considered the finite set S(n) of k-tuples (n1, ..., nk) with k ≥ 0 which satisfy the conditions:
n1 < n, ni ≥ 2, and n1 + ...+ nk ≤ n. For each (n1, ..., nk) ∈ S(n) he introduced the following Riemannian
invariants:

δ(n1, ..., nk)(p) = scal(p)− inf
{
scal(L1) + ...+ scal(Lk)

}
(p), (1.2)

where the infimum is taken for all possible choices of orthogonal subspaces L1, ..., Lk, satisfying nj =dim Lj ,
(j = 1, ..., k).Note that the Chen invariants with k = 0 is nothing but the scalar curvature. Similarly, B.-Y.Chen’s
δ̂- invariants can be defined as (see equation (13.2) in [10]).

δ̂(n1, ..., nk)(p) = scal(p)− sup
{
scal(L1) + ...+ scal(Lk)

}
(p). (1.3)

As in [8], one may denote put

c(n1, ..., nk) =
n2(n+ k − 1−

∑k
j=1 nj)

2(n+ k −
∑k

j=1 nj)
,

b(n1, ..., nk) =
1

2

{
(n(n− 1)−

k∑
j=1

nj(nj − 1)
}
.

The original Chen’s fundamental inequalities obtained in [8] were stated as follows:
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Theorem 1.1. For any n-dimensional submanifold M of a Riemannian space form Rn+m(ε) of constant sectional
curvature ε and for any k-tuple (n1, ..., nk) ∈ S(n), we have

δ(n1, ..., nk) ≤ c(n1, ..., nk)|H|2 + b(n1, ..., nk)ε. (1.4)

The equality case of the inequality above holds at a point p ∈M if and only if there exists an orthonormal basis e1, ..., en+m
at p such that the shape operators of M in Rn+m(ε) at p take the following forms: Sr = diag (Ar1, ..., A

r
k, µr, ..., µr) for

r = n+ 1, ...,m, where each Arj is a symmetric nj × nj submatrix such that

trace(Ar1) = ... = trace(Ark) = µr.

Based on this fundamental theorem, in the present work we investigate the following.

Question. Are there any geometric contexts in which there exist any relations between mean curvature and B.-Y.
Chen’s δ̂-invariants?

Note that the most general form of Chen’s fundamental inequalities is Theorem 13.3 in [10]. The form stated
above as Theorem 1.1 allows us to see the case when the submanifold M is isometrically immersed into an
Euclidean space, i.e ε = 0. In that case, δ(n1, ..., nk) ≤ c(n1, ..., nk)|H|2. We compare this inequality with the
relations (3.1) and (3.7) we prove in the present work.

2. The Case of a Four-Dimensional Strictly Convex Smooth Hypersurface

Theorem 2.1. Let σ : U ⊂ R4 → R5 be a strictly convex smooth hypersurface in the Euclidean ambient space. Let p be
a point on the hypersurface. Denote by a, b, c, d > 0 the principal curvatures at p, and by C(p) = a2 + b2 + c2 + d2 the
Casorati curvature at p. Then

H ≥ 1

2
√
C
δ̂(2, 2). (2.1)

Equality holds if and only if p is an umbilical point.

Proof: Denote by e1, e2, e3, e4 the principal vectors at p, corresponding to principal curvatures a, b, c, d,
respectively. The plane spanned by {e1, e3} is L1 and lies perpendicularly to the plane spanned by {e2, e4},
which is denoted L2. We need this fundamental fact in order to estimate below δ̂(2, 2). By AM-HM inequality,
we have

1

a+ c
+

1

b+ d
≥ 4

a+ b+ c+ d
. (2.2)

By AM-QM inequality we have

4

a+ b+ c+ d
≥
√

4

a2 + b2 + c2 + d2
=

2√
C
. (2.3)

The left hand side in (2.2) has as denominator the product (a+ c)(b+ d). The geometric interpretation of this
product is given by the following estimate:

ab+ ad+ bc+ cd = ab+ ad+ bc+ cd+ ac+ bd− ac− bd = scal(p)− ac− bd.

On the other hand, the product ac represents the sectional curvature in the direction of a 2-planar section
L1, and bd is the sectional curvature in the direction of a 2-planar section L2, and since a, b, c, d are principal
curvatures of a smooth hypersurface, L1⊥L2. Furthermore, ac+ bd ≤ sup{sec(L1) + sec(L2)}, hence

scal(p)− ac− bd ≥ δ̂(2, 2)(p). (2.4)

By combining (2.2), (2.3), (2.4) we obtain the claimed inequality.
In the step where we used AM-QM, the equality holds iff a = b = c = d, which means the point p is

umbilical.
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Note that one may write the above inequality in the spirit of the original’s Chen’s fundamental inequality
[7, 8] as a relationship between extrinsic and intrinsic quantities as

2H
√
C ≥ δ̂(2, 2).

A natural quest is to see whether the procedure employed in the above proof can be further extended for more
general cases. If such, the section hereby concluded serves mainly for expository reasons.

3. The Case of a Generic Strictly Convex Smooth Hypersurface

Theorem 3.1. Let σ : U ⊂ R2n → R2n+1 be a strictly convex smooth hypersurface in the Euclidean ambient space. Let p
be a point on the hypersurface. Then the mean curvature H , the Casorati curvature C and Chen’s δ̂(n, n)-invariant satisfy
the inequality

H ≥
√
2

n
√
n
· 1√
C
· δ̂(n, n). (3.1)

The equality holds if and only if the point p is an umbilical point.

Proof: Consider two mutually orthogonal spaces L1 and L2 such that dimL1 = dimL2 = n, L1⊥L2, and
L1

⊕
L2 = Tpσ. Denote the principal curvatures at p by a1, a2, ..., an, b1, b2, ..., bn > 0. By applying the AM-HM

inequality, we have

1
a1+a2+...+an

+ 1
b1+b2+...+bn

2
≥ 2

a1 + a2 + ...+ an + b1 + b2 + ...+ bn
, (3.2)

which turns into
a1 + a2 + ...+ an + b1 + b2 + ...+ bn
(a1 + a2 + ...+ an)(b1 + b2 + ...+ bn)

≥ 4

2nH
. (3.3)

This last relation yields

nH2 ≥ (a1 + a2 + ...+ an)(b1 + b2 + ...+ bn)

n
. (3.4)

Now we apply the AM-QM inequality to the positive numbers a1, a2, ..., an, b1, b2, ..., bn > 0. We obtain

a1 + a2 + ...+ an + b1 + b2 + ...+ bn
2n

≤
√
a21 + a22 + ...+ a2n + b21 + b22 + ...+ b2n

2n
,

which is equivalent to
1

H
≥
√

2n

C
. (3.5)

By combining (3.4) with (3.5) we obtain

H ≥
√
2

n
√
n
· 1√
C
· (a1 + a2 + ...+ an)(b1 + b2 + ...+ bn) ≥

√
2

n
√
n
· 1√
C
· δ̂(n, n), (3.6)

where we have used the fact that

(a1 + a2 + ...+ an)(b1 + b2 + ...+ bn) ≥ δ̂(n, n),

through an argument similar to the one described in (2.4).
The equality case is determined by the AM-QM inequality, which will insure the umbilicity of point p.

Theorem 3.2. Let σ : U ⊂ Rn → Rn+1 be a convex smooth hypersurface in the Euclidean ambient space. Let p be a point
on the hypersurface. Then for any couple of natural numbers n1, n2 such that n1 + n2 = n, the mean curvature H , the
Casorati curvature C and Chen’s δ̂(n1, n2)-invariant satisfy the inequality

H ≥ 4

n
√
n
· 1√
C
· δ̂(n1, n2). (3.7)

The equality holds if and only if the point p is an umbilical point.
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Proof: Consider two mutually orthogonal spaces L1 and L2 such that dimL1 = n1, dimL2 = n2, L1⊥L2,
and L1

⊕
L2 = Tpσ. Denote the principal curvatures at p by a1, a2, ..., an1 , b1, b2, ..., bn2 > 0. As in the previous

argument when we obtained (3.5), we derive
1

H
≥
√
n

C
. (3.8)

By applying the AM-HM inequality we get

(a1 + a2 + ...+ an1
) + (b1 + b2 + ...+ bn2

)

2
≥ 2

1
a1+a2+...+an1

+ 1
b1+b2+...+bn2

.

By interpreting this inequality we derive immediately

nH

2
≥ 2(a1 + a2 + ...+ an1

) · (b1 + b2 + ...+ bn2
)

nH
. (3.9)

By combining (3.8) with (3.9) we have

H ≥ 4

n
√
n
· 1√
C
· (a1 + a2 + ...+ an1) · (b1 + b2 + ...+ bn2) ≥

4

n
√
n
· 1√
C
· δ̂(n1, n2).

The AM-HM inequality fully controls the equality case as stated.

4. A Global Consequence

An important theorem in the geometry of submanifolds of finite type (see [10], p.173) states the following.

Theorem 4.1. Let σ : N → Rm be an isometric immersion of a compact Riemannian n−manifold into the Euclidean
space of dimension m. Then ∫

N

||H||k dV ≤
(
λq
n

)k/2
· vol(N), (4.1)

for k = 1, 2, 3, 4, where q is the upper order of the submanifold with finite type N. The equality sign in (4.1) holds for
some k if and only if N is of 1-type.

By combining Theorem 3.2 with Theorem 4.1 we obtain the following.

Theorem 4.2. Let σ : U ⊂ Rn → Rn+1 be an isometric immersion of a convex compact Riemannian n−manifold into
the Euclidean space of dimension m. Denote by N the image of σ. Consider any couple of natural numbers n1, n2 such
that n1 + n2 = n. Denote the mean curvature by H , the Casorati curvature by C. Then the Chen’s δ̂(n1, n2)-invariant
provides the following lower bound inequality for the volume of N :

4k

n3k/2
·
∫
N

1

(C)k/2
· [δ̂(n1, n2)]k dV ≤

(
λq
n

)k/2
· vol(N), (4.2)

for k = 1, 2, 3, 4, where q is the upper order of the submanifold with finite type N. The equality sign in (4.1) holds for
some k if and only if N is of 1-type and if the hypersurface is totally umbilical.

The authors express their gratitude to the referees and the editor for their substantive comments that
improved this paper both as content and as presentation.
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[2] Brzycki, B.; Giesler, M.D.; Gomez, K.; Odom L.H.; and Suceavă, B.D., A ladder of curvatures for hypersurfaces in the Euclidean ambient
space. Houston Journal of Mathematics, 40(2014). pp. 1347-1356.

www.iejgeo.com 30

http://www.iej.geo.com
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