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Abstract: The growth of the populations depending on interspecific interactions may exhibit drastic changes. The stability of
populations change not only interspecific interactions butalso under external effects such as immigration effect. Thus, population
models can show complex dynamics. Immigration effect oftensimplify the population dynamics; and tends to supress chaotic
behavior. This situation which can allow the local stability analysis of population is important for control of a two species interacting
system. In this paper, we investigated dynamics of a host-parasite model with the immigration parameter added to the host population
under the constant searching efficiency. We conclude that immigration parameter produces certain interesting results.
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1 Introduction

The population models consisting interspecific interactions are formed by discrete-time model and continuous-time

models. Discrete-time models are more appropriate than continuous-time models in point of rich set of patterns [2]. One

of the earliest applications of discrete-time models including host-parasite interaction was formulated by Leslie and

Gower in 1960. The classical host-parasite model is the Nicholson-Bailey model, except that the parasite does not

necesserily kill the host [1,7,8]. This model is based on the following assumptions;

f (Ht ,Pt) :fraction of hosts not parasitized,

Ht :density of host species in generationt,

Pt :density of parasitoid species in generationt,

r :number of eggs laid by a host that survive through the larvae, pupae and adult stages,

e :number of eggs laid by parasite on a single host that survivethrough larvae, pupae and adult stages.

The Nicholson-Bailey model is given as follows.

Ht+1 = rHt f (Ht ,Pt)

Pt+1 = eHt(1− f (Ht ,Pt))

where,r ande are positive parameters.

It assume in this model that searching efficiency of parasitoids are limited but eggs aren’t limited. If the searching
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efficiency of parasitoid has small values, parasitoid can vanish. The eggs of parasite which stay alive are transferred to

the next generations of parasitoids. A host is parasitized for once. Interference-free hosts increase their own progeny.

The number of encounters of the parasitoid with a host according to the law of mass action is definedcHtPt . Here, the

constantc is defined as the searching efficiency. Nicholson-Bailey model assumes that the number of encounters are

calculated according to the Poisson distribution such thatp(n) = e−σ σn /n!, wheren is the number of encounters andσ
is the avarege number of encounters per host in one generation. If there is no encounter, the fraction of hosts that are not

parasitized isp(0) = e−σ σ0 /0! = e−σ , whereσ =encounters/Ht = cPt . Then f (Ht ,Pt) = e−cPt . Accordingly, the model

is given as

Ht+1 = rHte
−cPt

Pt+1 = eHt(1− e−cPt).

If constant reproductive rate of host has small values, the host can vanish. Then, the positive equilibrium point of the

models consisting density-dependent factor instead of a constant reproductive rate of the host can be locally stable [4,9].

Even so, there are many reasons affecting the number of species such as immigration, human activities, and interaction

of among species. If the density-dependent factorg(Ht) is added instead of a constant reproductive rater of in the host

equation, the following more realistic approach is writtenas

Ht+1 = g(Ht)Hte
−cPt

Pt+1 = eHt(1− e−cPt).

The the some forms of density-dependent factor (interspecific interactions)g(Ht) has been studied in [4,6,9,12]. Misra

and Mitra (2006) examined dynamics of discrete single-species population for different values of the parameterR andb

which depend on Hassel growth function expessed withR
(1+Ht)b . The results clearly show that the population display

period-doubling phenomenon forb > 2, and bifurcation occur with increasingb. As the parameters increase, the

behavior of population changes from stability to unstable.Also, host-parasite system is given a brief analysis [6].

Ufuktepe and Kapçak (2013) improve the results in [6].

The purpose of this study is to investigate the effect of the immigration parameter [5,10,11,13,14,15] on the dynamics

of the model in [6] under the constant searching behavior as follows.

Ht+1 =
RHt

(1+Ht)b e−Pt +β ; R,b,β > 0 (1)

Pt+1 = Ht(1− e−Pt),

where,Ht is the population size at timet, R is the intrinsic growth rate,β is immigration parameter which provide

control of the population. Also, it is seen that the growth ofthe host are governed by the Hassel law [3]. ”Hassell et al.

[3] collectedR and b values for about two dozen species from field and laboratory observations and noted that the

majority of these cases were within the stable region”. Here, the reason we took the constant searching behavior is to

examine the effect of immigration on the parameter valuesR andb. Because these parameters are bifurcation parameters.

Stone and Hart (1999) investigated behaviors of some the general discrete-time single population model under

immigration effect. It is seen that the general criteria which characterise the effect on population dynamics is unknow.

However, some observation can be made on a single-humped nonnegative function. There are the assumption that the

populations which is subject to sufficiently large effect ofimmigration will always simplify. In most model classes, the

increase in some parameter values without immigration expose period-doubling biforcation leading to chaos. In such

models, even a small migration effect can often adverse thisbehavior at last.
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Our study is about the immigration parameter on a two-species interacting system including the behavior of the host

species exhibiting bifurcation with increasing parametervalues. Altough the increase of the immigration effect leadto

the disappearance of the population for some large parameter values, it has an impact on simplifying the system

behavior. In addition to, this effect can save the population from extinction. As the immigration parameter passes the

“one”, a steady transition has been observed from one equilibrium point to another equilibrium point.

2 Main result

In this section, we investigate positive equilibrium points of the system (1); and analyze the stability of the system (1).

2.1 Equilibrium point (H∗,0) of the system (1)

Theorem 1. The system (1) has a unique positive equilibrium point (H∗,0) in case of

−(β − bβ −2)+
√

β 2(1− b)2+4(1+β )
2(b−2)

< H∗, b > 2.

Proof. We can obtain the equilibrium point of system (1) from equilibrium point definition as follows:

H∗ =
RH∗

(1+H∗)b e−P∗
+β (2)

P∗ = H∗(1− e−P∗
).

Sinceβ > 0, H∗ isn’t equal to zero. ForH∗ 6= 0 andP∗ = 0, we finde−P∗
= 1. If the equilibrium point of system (1)

exist, then it must be provided as follows:

R =
(1+H∗)b(H∗−β )

H∗ (3)

such thatH∗ > β . If we takeH∗ = x in Eq.(3), then we can write the right side of Eq.(3) as the following the function

F(x) =
(1+ x)b(x−β )

x
. (4)

We must show thatF is monotone. If the derivation of the functionF(x) is calculated, then we have

F ′(x) =
(1+ x)b−1

x2 [(b−2)x2+(β − bβ −2)x+β ].

From there, the function ofF ′ has roots

x1 =
−(β − bβ −2)−

√

β 2(1− b)2+4(1+β )
2(b−2)

, x2 =
−(β − bβ −2)+

√

β 2(1− b)2+4(1+β )
2(b−2)

.

Here,β − bβ −2< 0 confirms forb > 2. It is easily seen thatx1 < 0 andx2 > 0. Now, if the necessary examinations are

made, then we get the desired result.

Remark. The following statements are true forF(x).

(i) If b > 2, thenF(x)→ ∞ asx → ∞.
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(ii) If b > 2, thenF(x)→−∞ asx → 0+.

(iii) If 0 < b < 2, thenF(x)→ 0 asx → ∞. There exist one critical pointx1 which is local maximum of functionF(x).

(iv) Let’s define the following form

f =
RH∗

H∗−β
andg = (1+H∗)b.

from Eq.(3). f is decreasing inH∗ whenH∗ > β andlimH∗→β+g = ∞. g is increasing inH∗ with g(β ) = (1+β )b.

2.2 Equilibrium point (H∗
1 ,P

∗
1 ) of the system (1)

Theorem 2. In case of

0<
(1+H∗

1)
b(H∗

1 −β )
RH∗

1
< 1

the system (1) has positive equilibrium point (H∗
1 ,P

∗
1 ) different from the positive equilibrium point (H∗,0).

Proof. If system (1) is taken into account forH∗
1 6= 0 andP∗

1 6= 0, by using equilibrium point definition, we obtain as

follows.

H∗
1(1+H∗

1)
b = RH∗

1e−P∗
1 +β (1+H∗

1)
b ⇒ RH∗

1e−P∗
1 = H∗

1(1+H∗
1)

b −β (1+H∗
1)

b

⇒ e−P∗
1 =

H∗
1(1+H∗

1)
b −β (1+H∗

1)
b

RH∗
1

. (5)

⇒ P∗
1 =− ln

(1+H∗
1)

b(H∗
1 −β )

RH∗
1

. (6)

such thatH∗
1 > β . If

0<
(1+H∗

1)
b(H∗

1 −β )
RH∗

1
< 1, (7)

thenP∗
1 > 0. If we combine Eq. (5) and the second equation of system (1), then we get

P∗
1 = H∗

1(1−
(1+H∗

1)
b(H∗

1 −β )
RH∗

1
). (8)

If P∗
1 is written in the first equation in system (1), we get

H∗
1 =

RH∗
1

(1+H∗
1)

b
e
−H∗

1 (1−
(1+H∗

1)
b(H∗

1−β)
RH∗

1
)
+β

⇒ (1+H∗
1)

b(H∗
1 −β ) = RH∗

1e
−H∗

1 (1−
(1+H∗

1)
b(H∗

1−β)
RH∗

1
)

(9)

⇒ R = (1+H∗
1)

b(1− β
H∗

1
)e

H∗
1 (1−

(1+H∗
1)

b(H∗
1−β)

RH∗
1

)
.

Now, let’s takeH∗
1 = x. Then we can write the last equality as

G(x) = (1+ x)b(1− β
x
)ex− x

R (1+x)b(1− β
x ).

Remark. SinceG(x) → 0 asx → ∞, there exist one critical point which is local maximum of function G. Here,G(β ) = 0,

G′(β ) = (β+1)b

β eβ > 0.
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2.3 Stability analysis of system (1)

In this section, we will examine the local stability of equilibrium points. Firstly, we assume that inequality (7) is not

satisfied. Namely, we have only unique equilibrium point(H∗,0). Let’s write (1) as

F(Ht ,Pt) =
RHt

(1+Ht)b e−Pt +β

G(Ht ,Pt) = Ht(1− e−Pt).

If the Jacobian matrix of system (1) is created, then we have

J =

(

R(1+H)−b−1[1+(1− b)H]e−P −e−P RH
(1+H)b

(1− e−P) He−P

)

. (10)

The Jacobian matrix which is evaluated the neighborhood of(H∗,0) is written as

J =

(

R(1+H∗)−b−1[1+(1− b)H∗] − RH∗
(1+H∗)b

0 H∗

)

.

From this, we get thatλ1 = R(1+H∗)−b−1[1+(1− b)H∗] andλ2 = H∗. So,(H∗,0) is local stable ıf

R(1+H∗)−b−1[1+(1− b)H∗]< 1 andH∗ < 1. (11)

Let’s assume thatR(1+H∗)−b−1[1+(1−b)H∗]> 1 andH∗ > 1. So,(H∗,0) is unstable, and the system of (1) has uniqe

equilibrium point(H∗
1 ,P

∗
1 ). Let’s consider charecteristic equation of Jacobian matrixof system (1) for (H∗

1 ,P
∗
1 ). So, we

get

λ 2− trJλ +detJ = 0.

If (see [1], page 64)

|trJ|< 1+detJ < 2, (12)

then(H∗
1 ,P

∗
1 ) is stable such that

trJ = R(1+H∗
1)

−b−1[1+(2− b)H∗
1]e

−P∗
1

detJ = R(1+H∗
1)

−b−1[1+(1− b)H∗
1]H

∗
1e−2P∗

1 +(1− e−P∗
1)e−P∗

1
RH∗

1

(1+H∗
1)

b .

As a result of this, we get that(H∗
1 ,P

∗
1 ) is local stable from (12) if

e−P∗
1

[

R(1+H∗
1)

−b−1(1+(2− b)H∗
1)− (1− e−P∗

1 )
RH∗

1

(1+H∗
1)

b

]

− e−P∗
1 H∗

1R(1+H∗
1)

−b−1(1+(1− b)H∗
1)< 1, (13)

e−P∗
1

[

R(1+H∗
1)

−b−1(1+(2− b)H∗
1)− (1− e−P∗

1)
RH∗

1

(1+H∗
1)

b

]

+ e−P∗
1 H∗

1R(1+H∗
1)

−b−1(1+(1− b)H∗
1)>−1, (14)

and

R(1+H∗
1)

−b−1[1+(1− b)H∗
1]H

∗
1e−P∗

1 +(1− e−P∗
1 )e−P∗

1
RH∗

1

(1+H∗
1)

b < 1. (15)
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(a) Graph of the function ofy = G(x)
and the line ofy = R such thatb =
2.1,β = 0.1 andR = 0.5.

(b) Graph of the function ofy = G(x)
and the line ofy = R such thatb =
2.1,β = 1.1 andR = 0.5.

Fig. 1

Corollary 1. When the inequality (7) is not provided, (H∗,0) is uniqe positive equilibrium point of system (1) under the

inequality
−(β−bβ−2)+

√
β 2(1−b)2+4(1+β )

2(b−2) < H∗, b > 2. If the inequality (7) is provided such that

−(β−bβ−2)+
√

β 2(1−b)2+4(1+β )
2(b−2) < H∗, b > 2, the system (1) has the positive equilibrium points (H∗,0) and (H∗

1 ,P
∗
1 ).

Corollary 2. If the system (1) has the equilibrium points (H∗,0) and (H∗
1 ,P

∗
1 ), the following statements hold true.

(i) If the equilibrium point (H∗,0) is not stable, then the equilibrium point (H∗
1 ,P

∗
1 ) is stable under conditions (13),(2.3)

and (15).

(ii) If the equilibrium point (H∗
1 ,P

∗
1 ) is not stable, then the equilibrium point (H∗,0) is stable under condition (11).

Also, the following examples confirm our the theoretical result.

3 Numerical simulations

Here, we confirm our theoretical results by using Mathematica and Scientific WorkPlace 5.5 program. The initial

conditions are takenH0 = 0.2 andP0 = 0.1.

Example 1. Let’s choose the system as

Ht+1 =
0.5Ht

(1+Ht)2.1 e−Pt +β

Pt+1 = Ht(1− e−Pt)

where the functionsG(x) as follows.

G(x) = (1+ x)2.1(1− β
x
)ex(1− (1+x)2.1(x−β)

0.5x ).

Example 2. Let’s choose the system as

Ht+1 = f rac30Ht(1+Ht)
6e−Pt +β

Pt+1 = Ht(1− e−Pt)
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(a) Time series diagram of the model
(1) whereb = 2.1,β = 0.1 andR = 0.5.

(b) Time series diagram of the model
(1) whereb = 2.1,β = 1.1 andR = 0.5.

Fig. 2

(a) Phase Diagram of the model (1)
whereb = 2.1,β = 0.1 andR = 0.5.

(b) Phase Diagram of the model (1)
whereb = 2.1,β = 1.1 andR = 0.5.

Fig. 3

(a) Time series diagram of the model
(1) whereb = 6,β = 0,5 andR = 30.

(b) Time series diagram of the model
(1) whereb = 6,β = 0.9 andR = 30.

(c) Time series diagram of the model (1)
whereb = 6,β = 10 andR = 30.

Fig. 4

where the functionsG(x) as follows

G(x) = (1+ x)6(1− β
x
)ex(1− (1+x)6(x−β)

30x ).

4 Discussion and conclusion

Most studies dealing with the immigration effect on population models focus on the stability analysis of the equilibrium

points. When a population is exposed to an invasion, it is important to determine under what conditions the population’s
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equilibrium point will be stable or unstable. Even if the impact on a population is a small constant value, it leads to major

behavioral changes on populations. That is why we are interested in exploring the consequences of immigration effect.

Does this effect reach the population exhibiting chaos behavior or cyclical oscillations of long period to a balance by

restoring equilibrium point? In this paper, we investigated the equilibrium points of discrete-time host-parasite model and

examined the local stability of this system. So, the impact of the immigration parameter on the system is presented as

mathematical consequences.which offer an effect that simplifies the system.
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[9] U. Ufuktepe, S. Kapçak.: Stability analysis of a host parasite model, Advances of Difference Equations79 (2013) 2-7.
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