CONVOLUTION PROPERTIES FOR SALAGEAN-TYPE ANALYTIC FUNCTIONS DEFINED BY q-DIFFERENCE OPERATOR

ASENA ÇETINKAYA

Abstract

In this paper, we define Salagean-type analytic functions by using concept of q-derivative operator. We investigate convolution properties and coefficient estimates for Salagean-type analytic functions denoted by $\mathcal{S}_{q}^{m, \lambda}[A, B]$.

1. Introduction

Let \mathcal{A} be the class of functions f defined by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

that are analytic in the open unit disc $U=\{z:|z|<1\}$ and Ω be the family of functions w which are analytic in U and satisfy the conditions $w(0)=0,|w(z)|<1$ for all $z \in U$. If f_{1} and f_{2} are analytic functions in U, then we say that f_{1} is subordinate to f_{2} written as $f_{1} \prec f_{2}$ if there exists a Schwarz function $w \in \Omega$ such that $f_{1}(z)=f_{2}(w(z)), z \in U$. We also note that if f_{2} univalent in U, then $f_{1} \prec f_{2}$ if and only if $f_{1}(0)=f_{2}(0), f_{1}(U) \subset f_{2}(U)$ (see [5]).

Let $f_{1}(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $f_{2}(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ be elements in \mathcal{A}. Then the Hadamard product or convolution of these functions is defined by

$$
f_{1}(z) * f_{2}(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

Next, for arbitrary fixed numbers $A, B,-1 \leq B<A \leq 1$, denote by $\mathcal{P}[A, B]$ the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$, analytic in U such that $p \in \mathcal{P}[A, B]$

[^0]if and only if
$$
p(z)=\frac{1+A w(z)}{1+B w(z)}
$$
for some functions $w \in \Omega$ and every $z \in U$. This class was introduced by Janowski [8].

In 1909 and 1910 Jackson [6, 7] initiated a study of q-difference operator D_{q} defined by

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} \quad \text { for } \quad z \in B \backslash\{0\} \tag{2}
\end{equation*}
$$

where B is a subset of complex plane \mathbb{C}, called q-geometric set if $q z \in B$, whenever $z \in B$. Obviously, $D_{q} f(z) \rightarrow f^{\prime}(z)$ as $q \rightarrow 1^{-}$. The q-difference operator (2) is also called Jackson q-difference operator. Note that such an operator plays an important role in the theory of hypergeometric series and quantum physics (see for instance [1, 3, 4, 9]).

Since

$$
D_{q} z^{n}=\frac{1-q^{n}}{1-q} z^{n-1}=[n]_{q} z^{n-1}
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q}$, it follows that for any $f \in \mathcal{A}$, we have

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

where $q \in(0,1)$. Clearly, as $q \rightarrow 1^{-},[n]_{q} \rightarrow n$. For notations, one may refer to 4.
The Salagean differential operator R^{m} was introduced by Salagean [10] in 1998. Since then, many mathematicians used the idea of Salagean differential operator in their papers (see [2]). q-Salagean differential operator is defined as below:

Definition 1. The q-analogue of Salagean differential operator $R_{q}^{m} f(z): \mathcal{A} \rightarrow \mathcal{A}$ is formed by

$$
\begin{aligned}
R_{q}^{0} f(z) & =f(z) \\
R_{q}^{1} f(z) & =z D_{q}(f(z)) \\
\vdots & \\
R_{q}^{m} f(z) & =z D_{q}^{1}\left(R_{q}^{m-1} f(z)\right)
\end{aligned}
$$

From definition $R_{q}^{m} f(z)$, we obtain

$$
\begin{equation*}
R_{q}^{m} f(z)=z+\sum_{n=2}^{\infty}[n]_{q}^{m} a_{n} z^{n}, \tag{3}
\end{equation*}
$$

where $[n]_{q}^{m}=\left(\frac{1-q^{n}}{1-q}\right)^{m}, q \in(0,1), m \in \mathbb{N}$. Clearly, as $q \rightarrow 1^{-}$, the equation (3) reduces to Salagean differential operator.

Motivated by q-Salagean differential operator, we define the class of Salageantype analytic functions denoted by $\mathcal{S}_{q}^{m, \lambda}[A, B]$.

Definition 2. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{S}_{q}^{m, \lambda}[A, B]$ such that

$$
1+\frac{e^{i \lambda}}{\cos \lambda}\left(\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-1\right) \prec \frac{1+A z}{1+B z}
$$

where $q \in(0,1),|\lambda|<\frac{\pi}{2}, m \in \mathbb{N}, z \in U$.
Also, we note that $\mathcal{C}_{q}^{m, \lambda}[A, B]$ is the class of functions $f \in \mathcal{A}$ satisfying $z D_{q} f \in$ $\mathcal{S}_{q}^{m, \lambda}[A, B]$.

In this paper, we investigate the necessary and sufficient convolution conditions and coefficient estimates for the class $\mathcal{S}_{q}^{m, \lambda}[A, B]$ associated with the q-derivative operator.

2. Main Results

We first begin with necessary and sufficient convolution conditions of our class $\mathcal{S}_{q}^{m, \lambda}[A, B]$.

Theorem 3. The function f defined by (1) is in the class $\mathcal{S}_{q}^{m, \lambda}[A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[R_{q}^{m} f(z) * \frac{z-L q z^{2}}{(1-z)(1-q z)}\right] \neq 0 \tag{4}
\end{equation*}
$$

for all $L=\frac{e^{-i \theta}+(A-B) \cos \lambda e^{-i \lambda}+B}{(A-B) \cos \lambda e^{-i \lambda}}$, where $\theta \in[0,2 \pi], q \in(0,1),|\lambda|<\frac{\pi}{2}$ and also $L=1$.

Proof. First suppose $f \in \mathcal{S}_{q}^{m, \lambda}[A, B]$, then we have

$$
\begin{equation*}
1+\frac{e^{i \lambda}}{\cos \lambda}\left(\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-1\right) \prec \frac{1+A z}{1+B z} \tag{5}
\end{equation*}
$$

therefore we get

$$
\begin{equation*}
\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)} \prec \frac{1+\left((A-B) \cos \lambda e^{-i \lambda}+B\right) z}{1+B z} \tag{6}
\end{equation*}
$$

Since the function from the left-hand side of the subordination is analytic in U, it follows $f(z) \neq 0, z \in U^{*}=U \backslash\{0\}$; that is, $\frac{1}{z} f(z) \neq 0$ and this is equivalent to the fact that (4) holds for $L=1$. From (6) according to the subordination of two analytic functions, we say that there exists a function w analytic in U with $w(0)=0,|w(z)|<1$ such that

$$
\begin{equation*}
\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}=\frac{1+\left((A-B) \cos \lambda e^{-i \lambda}+B\right) w(z)}{1+B w(z)} \tag{7}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)} \neq \frac{1+\left((A-B) \cos \lambda e^{-i \lambda}+B\right) e^{i \theta}}{1+B e^{i \theta}} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{z}\left[\left(1+B e^{i \theta}\right) R_{q}^{m+1} f(z)-\left(1+\left((A-B) \cos \lambda e^{-i \lambda}+B\right) e^{i \theta}\right) R_{q}^{m} f(z)\right] \neq 0 \tag{9}
\end{equation*}
$$

Since

$$
\begin{gathered}
R_{q}^{m} f(z) * \frac{z}{1-z}=R_{q}^{m} f(z) \\
R_{q}^{m} f(z) * \frac{z}{(1-z)(1-q z)}=R_{q}^{m+1} f(z)
\end{gathered}
$$

we may write (9) as

$$
\frac{1}{z}\left[R_{q}^{m} f(z) *\left(\frac{\left(1+B e^{i \theta}\right) z}{(1-z)(1-q z)}-\frac{\left(1+\left((A-B) \cos \lambda e^{-i \lambda}+B\right) e^{i \theta}\right) z}{(1-z)}\right)\right] \neq 0
$$

Therefore we obtain

$$
\begin{equation*}
\frac{\left((B-A) \cos \lambda e^{-i \lambda}\right) e^{i \theta}}{z}\left[R_{q}^{m} f(z) * \frac{z-\frac{e^{-i \theta}+(A-B) \cos \lambda e^{-i \lambda}+B}{(A-B) \cos \lambda e^{-i \lambda}} q z^{2}}{(1-z)(1-q z)}\right] \neq 0 \tag{10}
\end{equation*}
$$

which leads to (4) and the necessary part of Theorem 3.
Conversely, because assumption (4) holds for $L=1$, it follows that $\frac{1}{z} f(z) \neq 0$ for all $z \in U$; hence, the function $\varphi(z)=1+\frac{e^{i \lambda}}{\cos \lambda}\left(\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-1\right)$ is analytic in U. Since it was shown in the first part of the proof that assumption (4) is equivalent to (8), we obtain that

$$
\begin{equation*}
\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)} \neq \frac{1+\left((A-B) \cos \lambda e^{-i \lambda}+B\right) e^{i \theta}}{1+B e^{i \theta}} \tag{11}
\end{equation*}
$$

and if we denote

$$
\begin{equation*}
\psi(z)=\frac{1+\left((A-B) \cos \lambda e^{-i \lambda}+B\right) z}{1+B z} \tag{12}
\end{equation*}
$$

relation (11) shows that $\varphi(U) \cap \psi(U)=\emptyset$. Thus, the simply connected domain $\varphi(U)$ is included in a connected component of $C \backslash \psi(\partial U)$. From here, using the fact that $\varphi(0)=\psi(0)$ together with the univalence of the function ψ, it follows that $\varphi(z) \prec \psi(z)$, which represents in fact subordination (6); that is, $f \in \mathcal{S}_{q}^{m, \lambda}[A, B]$. This completes the proof of Theorem 3.

Taking $q \rightarrow 1^{-}$in Theorem 3, we obtain the following result.
Corollary 4. The function f defined by 1) is in the class $\mathcal{S}^{m, \lambda}[A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[R^{m} f(z) * \frac{z-L z^{2}}{(1-z)^{2}}\right] \neq 0 \tag{13}
\end{equation*}
$$

for all $L=\frac{e^{-i \theta}+(A-B) \cos \lambda e^{-i \lambda}+B}{(A-B) \cos \lambda e^{-i \lambda}}$, where $\theta \in[0,2 \pi],|\lambda|<\frac{\pi}{2}$ and also $L=1$.
Theorem 5. A necessary and sufficient condition for the function f defined by (1) to be in the class $\mathcal{S}_{q}^{m, \lambda}[A, B]$ is that

$$
\begin{equation*}
1-\sum_{n=2}^{\infty}[n]_{q}^{m} \frac{[n]_{q}\left(e^{-i \theta}+B\right)-e^{-i \theta}+(B-A) \cos \lambda e^{-i \lambda}-B}{(A-B) \cos \lambda e^{-i \lambda}} a_{n} z^{n-1} \neq 0 . \tag{14}
\end{equation*}
$$

Proof. From Theorem $3, f \in \mathcal{S}_{q}^{m, \lambda}[A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[R_{q}^{m} f(z) * \frac{z-L q z^{2}}{(1-z)(1-q z)}\right] \neq 0 \tag{15}
\end{equation*}
$$

for all $L=\frac{e^{-i \theta}+(A-B) \cos \lambda e^{-i \lambda}+B}{(A-B) \cos \lambda e^{-i \lambda}}$ and also $L=1$. The left-hand side of 15 can be written as

$$
\begin{aligned}
& \frac{1}{z}\left[R_{q}^{m} f(z) *\left(\frac{z}{(1-z)(1-q z)}-\frac{L q z^{2}}{(1-z)(1-q z)}\right)\right] \\
& =\frac{1}{z}\left\{R_{q}^{m+1} f(z)-L\left[R_{q}^{m+1} f(z)-R_{q}^{m} f(z)\right]\right\} \\
& =1-\sum_{n=2}^{\infty}[n]_{q}^{m}\left([n]_{q}(L-1)-L\right) a_{n} z^{n-1} \\
& =1-\sum_{n=2}^{\infty}[n]_{q}^{m} \frac{[n]_{q}\left(e^{-i \theta}+B\right)-e^{-i \theta}+(B-A) \cos \lambda e^{-i \lambda}-B}{(A-B) \cos \lambda e^{-i \lambda}} a_{n} z^{n-1} .
\end{aligned}
$$

Thus, the proof is completed.
Taking $q \rightarrow 1^{-}$in Theorem 5 , we get the following result.
Corollary 6. A necessary and sufficient condition for the function f defined by (1) is in the class $\mathcal{S}^{m, \lambda}[A, B]$ is that

$$
\begin{equation*}
1-\sum_{n=2}^{\infty} n^{m} \frac{n\left(e^{-i \theta}+B\right)-e^{-i \theta}+(B-A) \cos \lambda e^{-i \lambda}-B}{(A-B) \cos \lambda e^{-i \lambda}} a_{n} z^{n-1} \neq 0 . \tag{16}
\end{equation*}
$$

We next determine coefficient estimate for a function of form to be in the class $\mathcal{S}_{q}^{m, \lambda}[A, B]$.

Theorem 7. If the function f defined by (1) satisfies the following inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q}^{m}\left\{[n]_{q}(1-B)-1+(A-B) \cos \lambda+B\right\}\left|a_{n}\right| \leq(A-B) \cos \lambda \tag{17}
\end{equation*}
$$

then $f \in \mathcal{S}_{q}^{m, \lambda}[A, B]$.

Proof. From Theorem 5, we write

$$
\begin{aligned}
& \left|1-\sum_{n=2}^{\infty}[n]_{q}^{m} \frac{[n]_{q}\left(e^{-i \theta}+B\right)-e^{-i \theta}+(B-A) \cos \lambda e^{-i \lambda}-B}{(A-B) \cos \lambda e^{-i \lambda}} a_{n} z^{n-1}\right| \\
& >1-\sum_{n=2}^{\infty}\left|[n]_{q}^{m} \frac{[n]_{q}\left(e^{-i \theta}+B\right)-e^{-i \theta}+(B-A) \cos \lambda e^{-i \lambda}-B}{(A-B) \cos \lambda e^{-i \lambda}}\right|\left|a_{n}\right| \\
& \geq 1-\sum_{n=2}^{\infty}[n]_{q}^{m} \frac{[n]_{q}(1-B)-1+\left|(A-B) \cos \lambda e^{-i \lambda}\right|+B}{\left|(A-B) \cos \lambda e^{-i \lambda}\right|}\left|a_{n}\right| \\
& =1-\sum_{n=2}^{\infty}[n]_{q}^{m} \frac{[n]_{q}(1-B)-1+(A-B) \cos \lambda+B}{(A-B) \cos \lambda}\left|a_{n}\right|>0
\end{aligned}
$$

then $f \in \mathcal{S}_{q}^{m, \lambda}[A, B]$.
Corollary 8. Taking $q \rightarrow 1^{-}$in Theorem 7, we obtain

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{m}\{n(1-B)-1+(A-B) \cos \lambda+B\}\left|a_{n}\right| \leq(A-B) \cos \lambda \tag{18}
\end{equation*}
$$

then $f \in \mathcal{S}^{m, \lambda}[A, B]$.

References

[1] Andrews, G. E., Applications of basic hypergeometric functions, SIA M Rev. 16 (1974), 441484.
[2] Çaglar, M. and Deniz, E., Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66 (1) (2017), 85-91.
[3] Fine, N. J., Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
[4] Gasper, G. and Rahman, M., Basic hypergeometric series, Cambridge University Press, 2004.
[5] Goodman, A. W., Univalent functions, Volume I and Volume II, Mariner Pub. Co. Inc. Tampa Florida, 1984.
[6] Jackson, F. H., On q - functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281.
[7] Jackson, F. H., q- difference equations, Amer. J. Math. 32 (1910), 305-314.
[8] Janowski, W., Some extremal problems for certain families of analytic Functions I, Ann. Polon. Math. 28 (1973), 297-326.
[9] Kac, V. and Cheung, P., Quantum calculus, Springer, 2002.
[10] Salagean, G. S., Subclass of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1 (1998), 362-372.
Current address: Asena Çetinkaya: Department of Mathematics and Computer Sciences, Istanbul Kültür University, Istanbul, Turkey.

E-mail address: asnfigen@hotmail.com
ORCID Address: http://orcid.org/0000-0002-8815-5642

[^0]: Received by the editors: May 03, 2018; Accepted: November 16, 2018.
 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Salagean differential operator, q-difference operator, convolution, coefficient estimate.

