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CONVOLUTION PROPERTIES FOR SALAGEAN-TYPE
ANALYTIC FUNCTIONS DEFINED BY q−DIFFERENCE

OPERATOR

ASENA ÇETINKAYA

Abstract. In this paper, we define Salagean-type analytic functions by us-
ing concept of q−derivative operator. We investigate convolution proper-
ties and coeffi cient estimates for Salagean-type analytic functions denoted by
Sm,λq [A,B].

1. Introduction

Let A be the class of functions f defined by

f(z) = z +

∞∑
n=2

anz
n, (1)

that are analytic in the open unit disc U = {z : |z| < 1} and Ω be the family of
functions w which are analytic in U and satisfy the conditions w(0) = 0, |w(z)| < 1
for all z ∈ U . If f1 and f2 are analytic functions in U , then we say that f1 is
subordinate to f2 written as f1 ≺ f2 if there exists a Schwarz function w ∈ Ω such
that f1(z) = f2(w(z)), z ∈ U . We also note that if f2 univalent in U , then f1 ≺ f2
if and only if f1(0) = f2(0), f1(U) ⊂ f2(U) (see [5]).
Let f1(z) = z+

∑∞
n=2 anz

n and f2(z) = z+
∑∞
n=2 bnz

n be elements in A. Then
the Hadamard product or convolution of these functions is defined by

f1(z) ∗ f2(z) = z +

∞∑
n=2

anbnz
n.

Next, for arbitrary fixed numbers A,B, −1 ≤ B < A ≤ 1, denote by P[A,B] the
family of functions p(z) = 1 +p1z+p2z

2+ · · · , analytic in U such that p ∈ P[A,B]
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if and only if

p(z) =
1 +Aw(z)

1 +Bw(z)

for some functions w ∈ Ω and every z ∈ U . This class was introduced by Janowski
[8].
In 1909 and 1910 Jackson [6, 7] initiated a study of q−difference operator Dq

defined by

Dqf(z) =
f(z)− f(qz)

(1− q)z for z ∈ B\{0}, (2)

where B is a subset of complex plane C, called q−geometric set if qz ∈ B, whenever
z ∈ B. Obviously, Dqf(z) → f ′(z) as q → 1−. The q−difference operator (2) is
also called Jackson q−difference operator. Note that such an operator plays an
important role in the theory of hypergeometric series and quantum physics (see for
instance [1, 3, 4, 9]).
Since

Dqz
n =

1− qn
1− q z

n−1 = [n]qz
n−1,

where [n]q = 1−qn
1−q , it follows that for any f ∈ A, we have

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1,

where q ∈ (0, 1). Clearly, as q → 1−, [n]q → n. For notations, one may refer to [4].
The Salagean differential operator Rm was introduced by Salagean [10] in 1998.

Since then, many mathematicians used the idea of Salagean differential operator in
their papers (see [2]). q−Salagean differential operator is defined as below:

Definition 1. The q−analogue of Salagean differential operator Rmq f(z) : A → A
is formed by

R0qf(z) = f(z)

R1qf(z) = zDq(f(z))

...

Rmq f(z) = zD1
q(R

m−1
q f(z)).

From definition Rmq f(z), we obtain

Rmq f(z) = z +

∞∑
n=2

[n]mq anz
n, (3)

where [n]mq = ( 1−q
n

1−q )m, q ∈ (0, 1), m ∈ N. Clearly, as q → 1−, the equation (3)
reduces to Salagean differential operator.
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Motivated by q−Salagean differential operator, we define the class of Salagean-
type analytic functions denoted by Sm,λq [A,B].

Definition 2. A function f ∈ A is said to be in the class Sm,λq [A,B] such that

1 +
eiλ

cosλ

(
Rm+1q f(z)

Rmq f(z)
− 1

)
≺ 1 +Az

1 +Bz
,

where q ∈ (0, 1), |λ| < π
2 ,m ∈ N, z ∈ U .

Also, we note that Cm,λq [A,B] is the class of functions f ∈ A satisfying zDqf ∈
Sm,λq [A,B].

In this paper, we investigate the necessary and suffi cient convolution conditions
and coeffi cient estimates for the class Sm,λq [A,B] associated with the q−derivative
operator.

2. Main Results

We first begin with necessary and suffi cient convolution conditions of our class
Sm,λq [A,B].

Theorem 3. The function f defined by (1) is in the class Sm,λq [A,B] if and only
if

1

z

[
Rmq f(z) ∗ z − Lqz2

(1− z)(1− qz)

]
6= 0 (4)

for all L = e−iθ+(A−B) cosλe−iλ+B
(A−B) cosλe−iλ , where θ ∈ [0, 2π], q ∈ (0, 1), |λ| < π

2 and also
L = 1.

Proof. First suppose f ∈ Sm,λq [A,B], then we have

1 +
eiλ

cosλ

(
Rm+1q f(z)

Rmq f(z)
− 1

)
≺ 1 +Az

1 +Bz
, (5)

therefore we get

Rm+1q f(z)

Rmq f(z)
≺ 1 + ((A−B) cosλe−iλ +B)z

1 +Bz
. (6)

Since the function from the left-hand side of the subordination is analytic in U ,
it follows f(z) 6= 0, z ∈ U∗ = U\{0}; that is, 1

z f(z) 6= 0 and this is equivalent
to the fact that (4) holds for L = 1. From (6) according to the subordination of
two analytic functions, we say that there exists a function w analytic in U with
w(0) = 0, |w(z)| < 1 such that

Rm+1q f(z)

Rmq f(z)
=

1 + ((A−B) cosλe−iλ +B)w(z)

1 +Bw(z)
, (7)
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which is equivalent to

Rm+1q f(z)

Rmq f(z)
6= 1 + ((A−B) cosλe−iλ +B)eiθ

1 +Beiθ
(8)

or
1

z

[
(1 +Beiθ)Rm+1q f(z)− (1 + ((A−B) cosλe−iλ +B)eiθ)Rmq f(z)

]
6= 0. (9)

Since
Rmq f(z) ∗ z

1− z = Rmq f(z),

Rmq f(z) ∗ z

(1− z)(1− qz) = Rm+1q f(z),

we may write (9) as

1

z

[
Rmq f(z) ∗

(
(1 +Beiθ)z

(1− z)(1− qz) −
(1 + ((A−B) cosλe−iλ +B)eiθ)z

(1− z)

)]
6= 0.

Therefore we obtain

((B −A) cosλe−iλ)eiθ

z

[
Rmq f(z) ∗

z − e−iθ+(A−B) cosλe−iλ+B
(A−B) cosλe−iλ qz2

(1− z)(1− qz)

]
6= 0, (10)

which leads to (4) and the necessary part of Theorem 3.
Conversely, because assumption (4) holds for L = 1, it follows that 1

z f(z) 6= 0

for all z ∈ U ; hence, the function ϕ(z) = 1 + eiλ

cosλ (
Rm+1
q f(z)

Rmq f(z)
− 1) is analytic in U .

Since it was shown in the first part of the proof that assumption (4) is equivalent
to (8), we obtain that

Rm+1q f(z)

Rmq f(z)
6= 1 + ((A−B) cosλe−iλ +B)eiθ

1 +Beiθ
(11)

and if we denote

ψ(z) =
1 + ((A−B) cosλe−iλ +B)z

1 +Bz
, (12)

relation (11) shows that ϕ(U) ∩ ψ(U) = ∅. Thus, the simply connected domain
ϕ(U) is included in a connected component of C\ψ(∂U). From here, using the fact
that ϕ(0) = ψ(0) together with the univalence of the function ψ, it follows that
ϕ(z) ≺ ψ(z), which represents in fact subordination (6); that is, f ∈ Sm,λq [A,B].
This completes the proof of Theorem 3. �

Taking q → 1− in Theorem 3, we obtain the following result.

Corollary 4. The function f defined by (1) is in the class Sm,λ[A,B] if and only
if

1

z

[
Rmf(z) ∗ z − Lz

2

(1− z)2

]
6= 0 (13)
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for all L = e−iθ+(A−B) cosλe−iλ+B
(A−B) cosλe−iλ , where θ ∈ [0, 2π], |λ| < π

2 and also L = 1.

Theorem 5. A necessary and suffi cient condition for the function f defined by (1)
to be in the class Sm,λq [A,B] is that

1−
∞∑
n=2

[n]mq
[n]q(e

−iθ +B)− e−iθ + (B −A) cosλe−iλ −B
(A−B) cosλe−iλ

anz
n−1 6= 0. (14)

Proof. From Theorem 3, f ∈ Sm,λq [A,B] if and only if

1

z

[
Rmq f(z) ∗ z − Lqz2

(1− z)(1− qz)

]
6= 0 (15)

for all L = e−iθ+(A−B) cosλe−iλ+B
(A−B) cosλe−iλ and also L = 1. The left-hand side of (15) can be

written as

1

z

[
Rmq f(z) ∗

(
z

(1− z)(1− qz) −
Lqz2

(1− z)(1− qz)

)]
=

1

z
{Rm+1q f(z)− L[Rm+1q f(z)−Rmq f(z)]}

= 1−
∞∑
n=2

[n]mq ([n]q(L− 1)− L)anz
n−1

= 1−
∞∑
n=2

[n]mq
[n]q(e

−iθ +B)− e−iθ + (B −A) cosλe−iλ −B
(A−B) cosλe−iλ

anz
n−1.

Thus, the proof is completed. �

Taking q → 1− in Theorem 5, we get the following result.

Corollary 6. A necessary and suffi cient condition for the function f defined by
(1) is in the class Sm,λ[A,B] is that

1−
∞∑
n=2

nm
n(e−iθ +B)− e−iθ + (B −A) cosλe−iλ −B

(A−B) cosλe−iλ
anz

n−1 6= 0. (16)

We next determine coeffi cient estimate for a function of form (1) to be in the
class Sm,λq [A,B].

Theorem 7. If the function f defined by (1) satisfies the following inequality
∞∑
n=2

[n]mq
{

[n]q(1−B)− 1 + (A−B) cosλ+B
}
|an| ≤ (A−B) cosλ, (17)

then f ∈ Sm,λq [A,B].
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Proof. From Theorem 5, we write∣∣∣∣1− ∞∑
n=2

[n]mq
[n]q(e

−iθ +B)− e−iθ + (B −A) cosλe−iλ −B
(A−B) cosλe−iλ

anz
n−1
∣∣∣∣

> 1−
∞∑
n=2

∣∣∣∣[n]mq
[n]q(e

−iθ +B)− e−iθ + (B −A) cosλe−iλ −B
(A−B) cosλe−iλ

∣∣∣∣|an|
≥ 1−

∞∑
n=2

[n]mq
[n]q(1−B)− 1 + |(A−B) cosλe−iλ|+B

|(A−B) cosλe−iλ| |an|

= 1−
∞∑
n=2

[n]mq
[n]q(1−B)− 1 + (A−B) cosλ+B

(A−B) cosλ
|an| > 0,

then f ∈ Sm,λq [A,B]. �

Corollary 8. Taking q → 1− in Theorem 7, we obtain
∞∑
n=2

nm
{
n(1−B)− 1 + (A−B) cosλ+B

}
|an| ≤ (A−B) cosλ, (18)

then f ∈ Sm,λ[A,B].

References

[1] Andrews, G. E., Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441-
484.

[2] Çaglar, M. and Deniz, E., Initial coeffi cients for a subclass of bi-univalent functions defined
by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66
(1) (2017), 85-91.

[3] Fine, N. J., Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
[4] Gasper, G. and Rahman, M., Basic hypergeometric series, Cambridge University Press, 2004.
[5] Goodman, A. W., Univalent functions, Volume I and Volume II, Mariner Pub. Co. Inc. Tampa

Florida, 1984.
[6] Jackson, F. H., On q− functions and a certain difference operator, Trans. Royal Soc. Edin-

burgh, 46 (1909), 253-281.
[7] Jackson, F. H., q− difference equations, Amer. J. Math. 32 (1910), 305-314.
[8] Janowski, W., Some extremal problems for certain families of analytic Functions I, Ann.

Polon. Math. 28 (1973), 297-326.
[9] Kac, V. and Cheung, P., Quantum calculus, Springer, 2002.
[10] Salagean, G. S., Subclass of univalent functions, Complex Analysis-Fifth Romanian Finish

Seminar, Bucharest, 1 (1998), 362-372.

Current address : Asena Çetinkaya: Department of Mathematics and Computer Sciences, Is-
tanbul Kültür University, Istanbul, Turkey.
E-mail address : asnfigen@hotmail.com
ORCID Address: http://orcid.org/0000-0002-8815-5642


	1. Introduction
	2. Main Results
	References

