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CONVOLUTION PROPERTIES FOR SALAGEAN-TYPE
ANALYTIC FUNCTIONS DEFINED BY ¢—DIFFERENCE
OPERATOR

ASENA CETINKAYA

ABSTRACT. In this paper, we define Salagean-type analytic functions by us-

ing concept of g—derivative operator. We investigate convolution proper-

ties and coefficient estimates for Salagean-type analytic functions denoted by
m,A

S A, Bl

1. INTRODUCTION

Let A be the class of functions f defined by
(oo}
f(z)=z+ Z anz", (1)
n=2

that are analytic in the open unit disc U = {z : |z| < 1} and 2 be the family of
functions w which are analytic in U and satisfy the conditions w(0) = 0, |w(z)| < 1
for all z € U. If f; and fy are analytic functions in U, then we say that f; is
subordinate to fo written as f; < fo if there exists a Schwarz function w €  such
that f1(z) = fa(w(z)),z € U. We also note that if fo univalent in U, then f; < fo
if and only if f1(0) = f2(0), f1(U) C f2(U) (see [5]).

Let fi(2) = 24> .- ,an2™ and fo(z) = 24+ >, b, 2" be elements in A. Then
the Hadamard product or convolution of these functions is defined by

fi() * fol2) = 2+ Y anb"
n=2

Next, for arbitrary fixed numbers A, B, —1 < B < A < 1, denote by P[A, B] the
family of functions p(z) = 1+p1z+p2z2+- -+, analytic in U such that p € P[A, B]
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if and only if
1+ Aw(z)
p(2) = 1+ Bw(z)
for some functions w € Q and every z € U. This class was introduced by Janowski
8.
In 1909 and 1910 Jackson [l [7] initiated a study of g—difference operator D,
defined by

FERCEE

where B is a subset of complex plane C, called g—geometric set if gz € B, whenever
z € B. Obviously, D,f(z) — f'(z) as ¢ — 1. The g—difference operator (2) is
also called Jackson g—difference operator. Note that such an operator plays an
important role in the theory of hypergeometric series and quantum physics (see for
instance [T}, 3], 4, @]).

for z € B\{0}, (2)

Since
1—qg"
qun _ q n—1 _ [n]qznfl,
I—gq
where [n], = 11__‘1;, it follows that for any f € A, we have

Duf(z) =1+ Inlgan """,
n=2

where ¢ € (0,1). Clearly, as ¢ — 17, [n], — n. For notations, one may refer to [4)].

The Salagean differential operator R™ was introduced by Salagean [10] in 1998.
Since then, many mathematicians used the idea of Salagean differential operator in
their papers (see [2]). g—Salagean differential operator is defined as below:

Definition 1. The g—analogue of Salagean differential operator Rg“f(z) A—- A
is formed by

Ryf(2)
Ryf(2)

f(2)
2Dg(f(2))

Ry f(z) = 2DY(Ry £(2).

From definition R f(2), we obtain
Ry f(z) =2+ ) _[nljans", (3)
n=2

where [n] = (ﬂ%‘{:)m, q € (0,1), m € N. Clearly, as ¢ — 17, the equation (3)

reduces to Salagean differential operator.
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Motivated by g—Salagean differential operator, we define the class of Salagean-
type analytic functions denoted by Sg””’)‘[A, BJ.

Definition 2. A function f € A is said to be in the class S;”)‘[A, B] such that
et (RITUf(2) ) 1+ Az
cos A\ R f(z) 1+ Bz’

where g € (0,1),[\[ < F,meN,zeU.

Also, we note that C;”’)‘[A, B] is the class of functions f € A satisfying zD, f €
S A, B].

In this paper, we investigate the necessary and sufficient convolution conditions
and coefficient estimates for the class S;"*/\[A, B associated with the g—derivative
operator.

2. MAIN RESULTS

We first begin with necessary and sufficient convolution conditions of our class
SAA, Bl.

Theorem 3. The function f defined by is in the class S(’;M[A,B] if and only
if

1o )k z— Lqz?
ot o W

for all L = eiw'é:f“i;?gss;\i:th, where § € [0,27], ¢ € (0,1), |A| < § and also
L=1

Proof. First suppose f € Sg”’)‘[A, B, then we have

L (RPN 144
cos A\ RIf(z) 1+ Bz’

therefore we get

R f(z) 1+ ((A— B)coshe ™ + B)z

Rrf(z) 1+ Bz (©6)

Since the function from the left-hand side of the subordination is analytic in U,
it follows f(z) # 0,z € U* = U\{0}; that is, £f(z) # 0 and this is equivalent
to the fact that holds for L = 1. From @ according to the subordination of
two analytic functions, we say that there exists a function w analytic in U with
w(0) = 0, |w(z)| < 1 such that

Ry f(2) 1+ ((A=B)coshe™ ™ + B)w(z)
Rrf(z) 1+ Bw(z) ’

(7)
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which is equivalent to
RITf(z) 14 ((A— B)coshe ™ + B)e

R77(2) 15 Bei® ®)
or
% (14 Be®)R™1 f(2) — (14 (A — B)coshe™ ™ + B)e®) R f(2)| #0.  (9)
Since ;
Ry () + 2 = B (2),

Ry f(2) * = Ry f(2),

z
(1—2)(1—qz)
we may write @[) as

11, . (1+ Be'?)z ~ (1+((A—B)cos Ae™ ™ + B)ei?)z
O e = )] #o

Therefore we obtain

) ) ~941(A—B)cos e *+B
(B — A) cos Ae™)e? R™f (=) * Z-° (zg—B)ngiefM qz? £0 (10)
4 (1-2)(1—-gz) ’

which leads to and the necessary part of Theorem 3.

Conversely, because assumption 1) holds for L = 1, it follows that % fiz)#0
Ry f(2)
cosx HEFG)
Since it was shown in the first part of the proof that assumption is equivalent
to , we obtain that

RITf(2) 14 ((A— B)coshe ™ + B)e
R f(2) 1+ Bet

ei)\

for all z € U; hence, the function ¢(z) = 1 + — 1) is analytic in U.

(11)

and if we denote 4 (A= B)coshe— + B)
+ — B)cos e™" + B)z

P(z) = T B> ; (12)
relation shows that o(U) N (U) = 0. Thus, the simply connected domain
©(U) is included in a connected component of C\¢(9U). From here, using the fact
that ¢(0) = 1(0) together with the univalence of the function 1, it follows that
©(z) < 9(z), which represents in fact subordination @; that is, f € S™*[A, B].
This completes the proof of Theorem 3. [

Taking ¢ — 17 in Theorem 3, we obtain the following result.
Corollary 4. The function f defined by is in the class S™[A, B] if and only
if

10 .. >|<z—Lz2
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for all L = eiﬁtgﬁ;?ig:i;\fxx—kB, where 6 € [0,2n], [\| < 5 and also L = 1.

Theorem 5. A necessary and sufficient condition for the function f defined by
to be in the class S;"[A, B] is that

i —i6 _ —if _ —iX _
. Z[n];n [n]g(e™ + B) —e ™ + (B — A)cos e Banznfl 0. (14)
n=2

(A — B) cos Ae~#*

Proof. From Theorem 3, f € S;”’A[A, B if and only if

1 .., . z — Lgz*
2[R | #o 1

for all L = eiwtg{;?ig:iiijﬂﬂ and also L = 1. The left-hand side of can be

written as

1o N z B Lqz*
Z{Rq 1) ((1—z)(1—q2) (1—2)(1—612))}
= LR ) - LR ) - RO

oo

=1-> [y ([nle(L —1) = L)ay="""

n=2
> [n],(e7 + B) —e ¥ + (B — A)cos\e™* — B .
— 1 _ m i " n .
;[n]q (A — B)cos Ae™ n”
Thus, the proof is completed. O

Taking ¢ — 17 in Theorem 5, we get the following result.

Corollary 6. A necessary and sufficient condition for the function f defined by
is in the class S™[A, B] is that

anz" "t £ 0. (16)

1 i nmn(e’w +B)—e "+ (B—-A)coshe ™ - B
~ (A — B) cos Ae~#*

We next determine coefficient estimate for a function of form to be in the
class S;*A, B].

Theorem 7. If the function f defined by satisfies the following inequality

Z[n};"{[n]q(l —B)—1+4(A—B)cosA+ B}|a,| < (A— B)cos ), (17)

n=2

then f € S A, B].
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Proof. From Theorem 5, we write

’1 - i[n]zn [n]y (e~ + B)(;e__i;;((f);i) cos Ae—ih Banz"_l
>1- i [y [rly(c™ + B) (;1 e:i; )+C fgﬁ coshe™ — B |
>1- 2[,431 []¢(1 — B) (—Aljg(io—s fe)—iij de |+ B ]
=1- g[n};" (], (1 — B)(j41_+B()fio—sf) cos A + B|an| o
then f € S7*[A, B]. .

Corollary 8. Taking ¢ — 1~ in Theorem 7, we obtain

inm{n(l — B)— 1+ (A— B)cosA+ B}|a,| < (A— B)cosA, (18)
n=2

then f € S™A[A, B).

tan
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