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Abstract— We have previously shown that the standard deviation of 

background activity in bandpass filtered extracellular neural recording 

snippets is strongly modulated by behavior such that it can be used to 

decode behavioral variables with up to 100% accuracy. Here we show 

that the mean background activity is also strongly modulated by behavior 

and that it too can be used to decode behavioral variables with up to 

100% accuracy. To the best of our knowledge, our method extracts the 

weakest signal that has ever been extracted from extracellular neural 

recordings, which can still be used to decode a behavioral variable with 

very high accuracy. Our results demonstrate that both the standard 

deviation and the mean of the background activity can be exploited in 

brain-machine interfaces.  
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1 .  I N T R O D U C T I O N  

xtracellular neural recordings provide a wealth of 

information about the information encoded in the spiking 

activity of individual and populations of neurons [1]. In the 

past several decades this technique has yielded substantial 

amounts of information about what types of movement-related 

information are encoded in the activity of individual neurons 

in the motor cortices [2]. At the turn of this century brain-

machine interface systems that use such information to infer 

behavioral variables have become a reality [3]. Initially, such 

systems decoded behavioral variables by modeling the spiking 

activity of populations of neurons. However this approach 

requires first to recover the spike trains of individual neurons 

from extracellular neural recordings; a process called spike 

sorting. In spike sorting extracellular recordings are first 

bandpass filtered with a pass band that is suitable for spike 

detection. Bandpass filtered recording is then thresholded and 

suprathreshold waveforms are clustered in high-dimensional 

feature spaces to identify the spikes fired by distinct neurons 

[4]. Usually a high threshold, such as three to five times the 

standard deviation of the filtered recording (3-5), is used as 

the threshold to make sure that suprathreshold waveforms are 

sufficiently well-defined and can from distinct clusters [5, 6, 

7]. As the number of electrodes increased in advanced brain-

machine interface systems, spike sorting emerged as a 

computational bottleneck for real-time decoding of behavioral 

information from extracellular neural recordings. This led 

researchers to question whether decoding could be carried out 

without spike sorting [7]. It was found that decoding could 

indeed be performed without spike sorting but that thresholds 

in the range of 3-5 were too high for that purpose [7]. This 

raised the problem of optimizing the threshold. It has been 

proposed that the threshold that maximizes the signal to noise 

ratio of the behavioral variable of interest in suprathreshold 

activity can be used as the amplitude threshold (SNR-

threshold) [8]. While this method is more principled and 

usually yields thresholds smaller than 3-5, it does however 

depend on the behavioral variable of interest. Therefore more 

information may be available in the filtered recording than 

what the SNR-thresholds yield. Exploring the nature of that 

residual information would be informative from the point of 

view of both basic neuroscience research and brain-machine 

interface technology. This issue of residual information has 

been addressed by a method that we developed to 

automatically compute a pair of amplitude thresholds for 

filtered recordings using only neural data in a fully data-driven 

way [9]. Our method computes a pair of thresholds, called 

truncation thresholds, such that the distribution of the 

subthreshold data obeys a well-defined noise distribution 

according to Kolmogorov-Smirnov test with a significance 

level greater than 0.05 and the thresholds are as far away from 

each other as possible. This method yields thresholds far 

below 3-5 in real data [9], attesting to the fact that there is 

more information in filtered recordings than what is extracted 

using 3-5 thresholds. 

The mean (tr) and the standard deviation (tr) of the 

background activity are automatically estimated by maximum 

likelihood in our method as a byproduct of the computation of 

the truncation thresholds. We have previously shown using 

simulated data that tr is more accurate than alternative scale 

estimators, such as the conventional standard deviation 

formula, robust median estimator, mean absolute deviation, Sn, 

Qn, trimmed estimator, winsorized estimator and DATE [9, 10, 

11]. Moreover, we have shown that, in extracellular recordings 

from the rat primary motor cortex, tr exhibits significant 

changes in different periods of a behavioral task where 

subjects press a right or left lever with their respective front 

paw in response to a visual stimulus [12]. This modulation is 

so strong that what lever the subject presses can be inferred 

with up to 100% accuracy using a logistic regression model 

where the independent variables are tr estimates obtained 

from filtered recording snippets in the vicinity of the lever 

pressing time. These results showed for the first time in the 

literature that samples that would normally be considered 
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noise in filtered extracellular neural recordings are actually 

very informative about the subjects’ behavior. 

The present study continues along the same lines and 

explores whether tr too depends on behavior and whether it 

too can be used to decode behavioral variables with high 

accuracy. 

2 .  M E T H O D S  

In this section first the data that are used in the analyses are 

explained. Next, the estimation of tr is presented. Finally, the 

logistic regression modeling of the lever pressing behavior is 

explained. All computations were performed in MATLAB 

(R2015a, MathWorks, Inc., USA) under 64 bit Windows 8.1 

Single Language (2013) operating system on a laptop 

computer with 6 GB RAM and 2.60 GHz Intel® Core™ i5-

3230M CPU. 

2.1. Data 

Neural and behavioral data were recorded from a rat by one of 

the authors (M.K.) in a previous study. The recording was 

made using a neuroprosthetic design environment [13] from 

the primary motor cortex (area M1) of a rat during lever-

pressing in response to visual stimuli. In the experimental 

setup the rat initiates a trial by a nose poke into a port 

equipped with a photodetector. This triggers a visual stimulus 

that informs the subject about whether pressing the right or the 

left lever is the correct response at that trial. The subject 

responds by pressing the right or the left lever using its 

ipsilateral front paw. Correct responses are rewarded by 

approximately a 0.03 ml water reward. The experiment 

consists of 82 trials. The subject failed to respond at one trial 

and gave an incorrect response at another trial. The present 

analysis uses the data obtained in the remaining 80 trials. 

Neural data were recorded using a 16-channel microelectrode 

array with a sampling rate of 40 kHz per channel. Eight 

microelectrodes were implanted in each cortical hemisphere. 

Data were then digitally bandpass filtered between 400 Hz and 

8 kHz using a 4th order Butterworth filter. The responses of 

the subject were recorded as a binary series in which a 0 

represents a left lever-press and a 1 represents a right lever-

press. 

 The length of the time interval between the start of the 

recording and the initiation of the trial, as well as the response 

time of the subject, are different at each trial. At each trial 

there is at least a 2 s recording time before the trial is started 

by the subject, and at least 0.8 s between the start of the trial 

and the time of response. At each trial neural recording 

continues for at least 1 s after the response is given.  

To examine the dependency between neural activity and 

behavior, truncation thresholds, along with tr and tr, have 

been computed at each trial for eight recording snippets of 0.5 

s duration each (Fig. 1 and Fig. 2). These snippets correspond 

to the 2 s interval immediately preceding the start of the trial 

(pre-start; PRS for short), the 0.5 s interval immediately 

following the start of the trial (post-start; POS for short), the 

0.5 s interval immediately preceding the response (pre-

response; PRR for short) and the 1 s interval immediately 

following the response (post-response; POR for short). In this 

way, the PRS epoch consists of four consecutive snippets, the 

POS and PRR epochs consist of one snippet each, and the 

POR epoch consists of two consecutive snippets (Fig. 2). 

2.2. Estimation of tr 

tr is estimated automatically as a byproduct of the 

computation of truncation thresholds. The source code and 

standalone executables of the software that computes the 

truncation thresholds are registered with SciCrunch.org under 

the name “Truncation Thresholds Software” 

(RRID:SCR_014637) and are freely available. The algorithm 

implemented in this software has been explained in detail in 

our previous work [9, 14]. Briefly, the algorithm uses the 

bisection method [15] to iteratively compute the truncation 

thresholds in three steps. The cardinality of the set of 

candidate solutions is halved at each iteration. For a time 

series consisting of N samples the algorithm reaches the 

solution in approximately 𝑙𝑜𝑔2(𝑁
3/4) iterations. The 

algorithm generates approximately 𝑙𝑜𝑔2(𝑁) pairs of candidate 

thresholds and picks the pair that yields the widest interval and 

for which the distribution of the subthreshold samples is 

statistically indistinguishable, according to Kolmogorov-

Smirnov test at level P0.05, from a truncated normal 

distribution, truncated at the threshold values. The standard 

deviation (tr) and the mean (tr) of the truncated normal 

distribution are estimated by maximum likelihood from the 

data. 

In the present analysis tr is estimated using the 

Truncation Thresholds Software (version in English dated 

25.01.2018) for each 0.5 s snippet described in Section 2.1. 

For each of the 16 channels, whether tr estimates obtained in 

the left and right trials differ from each other is tested using 

the Kruskal-Wallis test separately in the first four (PRS 

epochs) and the last four (POS, PRR and POR epochs) of the 

eight epochs considered here. 

2.3 Modelling of the response type as a function of tr 

Response type (0: left; 1 right) has been modelled as a 

function of the   estimates obtained from the POS, PRR and 

POR epochs using quadrivariate logistic regression. The 

parameters of the model have been estimated by maximum 

likelihood using the glmfit.m function of MATLAB 

(MathWorks, Inc., ABD) under a binomial probability model 

for the response type. The output 𝑜[𝑑] of the model at trial 

number 𝑑 is calculated using the glmval.m function with a 

logit link function; 1 ≤ 𝑑 ≤ D, where D is the total number of 

trials considered, which is 80. If 𝑜[𝑑] > 𝜃, then the model is 

accepted to predict that the right lever was pressed at that trial; 

otherwise the model is accepted to predict that the left lever 

was pressed at that trial. The decision threshold 𝜃 was 

determined separately for each electrode by dividing the 

interval [min
𝑑

𝑜[𝑑] ,max
𝑑

𝑜[𝑑]] into 99 equal pieces, yielding 

100 candidates for 𝜃, and selecting the smallest candidate that 

maximized the accuracy, where the latter is defined as the total 

number of true positive and true negative predictions divided 

by D [16]. 
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Fig.2. Change in tr with behavior. Estimates from left (right) trials are shown in dark (light) blue.  

 
Fig.1. Recording snippets, truncation thresholds (red) and tr estimates. 

3 .  R E S U L T S  

Figure 1 shows the filtered recording snippets corresponding 

to the PRR and the first half of POR epochs at trial 30 

collected from electrode 4 (counting from zero) implanted in 

the left hemisphere, along with the estimated tr values and 

their 95% confidence intervals. Truncation thresholds are 

shown in red, while tr estimates are shown in green. The 

subject pressed the left lever at this trial and the response time 

corresponds to 0 s in Fig. 1. 

Figure 2 shows tr estimates from the same electrode at 

all trials in different behavioral epochs. The top four graphs 

show estimates obtained from the last two seconds before the 

trial is started (PRS). In the bottom row, the leftmost graph 

shows estimates obtained from the first 0.5 seconds after the 

trial is started (POS), the next graph shows estimates obtained 

from the last 0.5 seconds before the response is given (PRR), 

the last two graphs show estimates obtained from the first 1 

second after the response is given (POR). 

The difference between the tr estimates obtained from 

the left versus right trials in the PRS epochs was not 

statistically significant in any of the electrodes (P0.05). By 

contrast the difference between the tr estimates obtained from 

the left versus right trials in the POS, PRR and POR epochs 

was statistically significant in eight electrodes (P<0.05). 

The results of the regression analysis that modelled the 

response type as a function of the tr estimates obtained from 

the POS, PRR and POR epochs are summarized in Table 1. 

The lowest accuracy was obtained as %74 at electrodes 8 and 

9 (both in the right hemisphere). High values of the decision 

threshold (0.52 and 0.60) indicate that the model failed to 

generate a low probability for a “right response” at left trials in 

these electrodes. By contrast data from electrodes 3, 4 and 6 

(all in the left hemisphere) predicted the response type with 

100% accuracy. It is seen that the decision threshold is as low 

as 0.01 in these electrodes. Namely the output of the 

regression model is so close to 0 on the left trials that the first 

non-zero decision threshold candidate succeeds in predicting 

the response with 100% accuracy. The average accuracy 

across all 16 electrodes was about 88%. There was no 

hemispheric difference in prediction accuracy (P0.17; 

TABLE I 
PREDICTION ACCURACY 

 Electrode Accuracy (%) 𝜃 

Min. 8, 9 74 0.60, 0.52 

Max. 3, 4, 6 100 0.01 

Mean ± s.e.m - 87.7±2.5 0.37±0.06 
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Kruskal-Wallis test). 

4 .  D I S C U S S I O N  

Information is usually extracted from extracellular neural 

recordings by thresholding the amplitude of the filtered 

recording and using the suprathreshold data. We have 

previously shown, for the first time in the literature, that the 

standard deviation of the subthreshold data (tr) can also be 

used to extract behavioral information from these recordings 

with very high accuracy [12]. The present results show that the 

mean of the subthreshold data (tr) too can be used for this 

purpose with a similar performance.  

Figure 1 and Fig. 2 show that behavioral modulation of 

tr is a very weak but consistent signal. The average difference 

between the tr estimates obtained in the left versus right trials 

in the first half of the POR epoch is about 1 V (Fig. 2). In 

Fig.1, the tr estimates obtained from consecutive 0.5 s 

intervals intercalating the response time differ by only 0.75 

V, yet this difference is significant as indicated by the non-

overlapping 95% confidence intervals of these estimates. To 

the best of our knowledge, these results suggest that our 

method extracts the faintest signal that has so far been 

extracted from extracellular neural recordings while still being 

capable of inferring behavioral variables with up to 100% 

accuracy.  

The background activity, which forms the subthreshold 

data in these analyses, contains information about the 

ensemble spiking activity of a large number of neurons located 

far from the recording electrode. Therefore firing rate changes 

across relatively large cortical areas may result in changes in 

the statistical structure of the background activity. The present 

results show that the mean background activity waxes and 

wanes slightly but consistently as a function of behavior. In 

bandpass filtered recordings the overall mean is identically 

equal to zero, since the DC component of the signal has been 

filtered out. Yet the mean background activity may deviate 

from 0 when computed in short time windows, as it was done 

in the present analysis. By using time windows of 0.5 s 

duration time locked to behavioral events we have been able to 

show that mean background activity does indeed change with 

behavior and that this signal can be used to infer behavioral 

variables with very high accuracy. 

The finding that tr estimates obtained from time 

windows occurring before the start of the trial (PRS epoch) 

were not significantly different in the left versus right trials is 

not surprising since the subject does not yet have access to 

information about the correct response at that trial during that 

epoch. After the trial is started, however, a visual stimulus 

informs the subject about the correct response at that trial. Our 

results show that this information affects the mean background 

activity in some or all of the POS, PRR and POR epochs in 

some electrodes (Fig. 1, Fig. 2 and Table 1). This effect is so 

strong in some electrodes that when used in a logistic 

regression model to predict the response, the subject’s 

response can be predicted with 100% accuracy (Table 1). 

Truncation thresholds are a tool for segregating the 

signal and noise components of filtered extracellular neural 

recordings in a fully automated and data driven manner [9]. 

Naturally, more detailed information about the behavior is 

available in suprathreshold data. That is because 

suprathreshold data contain spikes fired by neurons located 

near the recording electrode, as shown in Fig. 1, and it is well 

known that different motor cortical neurons encode different 

aspects of the unfolding motor behavior [2]. Therefore it is 

necessary to use suprathreshold data to extract detailed 

information about behavior. However such analyses will 

involve additional computations. By contrast tr is estimated 

automatically as a byproduct of the computation of the 

truncation thresholds. Our results show that our method can be 

used to decode coarse-grained behavioral information that is 

roughly encoded in the activity of large numbers of neurons, 

such as the right or left lever pressing in the present study, 

with very high accuracy and without recurring to 

suprathreshold data analysis. 

5 .  C O N C L U S I O N S  

Our results show that there is practically no noise in bandpass 

filtered extracellular neural recordings, in the sense that even 

the mean value of the background activity is significantly 

modulated by behavior. Provided that a clean recording has 

been obtained, virtually all samples that make up an 

extracellular neural recording are of neural origin and when 

taken in the aggregate, their statistics do carry information 

about the state of the organism. The results show that 

estimation of tr using the truncation thresholds method is 

capable of detecting signal variations on the order of a 

microvolt in these recordings. The high sensitivity of our 

method is due to the computation of truncation thresholds, 

which are an original and novel tool for amplitude 

thresholding. Overall, these results suggest that the use of tr 

can increase the performance of brain-machine interfaces 

when used in conjunction with existing decoding methods. 
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