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Abstract
In this work, new analytic solutions for the nonlinear space-time fractional (3 + 1)-dimensional Jimbo-
Miwa equation and Burger-like equation including conformable derivative are obtained by using the
G′/G expansion method. The obtained traveling wave solutions are represented by the hyperbolic,
trigonometric and rational functions. Simulations of the obtained solutions are presented at the end of
the paper.
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1. Introduction
Fractional partial differential equations play an important role in various fields of science and engineering.

Recently, scientists have developed various methods to solve such equations [1–12].
Jimbo and Miwa [13] first studied the (3 + 1)-dimensional Jimbo-Miwa equation as the second equation in the

well known Kadomtsev-Petviashvili hierarchy of integrable systems. Certain interesting (3+1)-dimensional waves
in physics but not pass any of the conventional integrability tests are modelled by the Jimbo-Miwa equation [14].
Furthermore, it plays an important role in modeling of the three-dimensional waves in plasma and optics. Hirota?s
bilinear method, Kudryashov method, sub equation method, Exp-function method and generalized three-wave
method have been applied to the (3 + 1)-dimensional Jimbo-Miwa equation in [15–19], respectively. Space-time
fractional (3 + 1)-dimensional Jimbo-Miwa equation in the sense of Jumarie?s modified Riemann-Liouville derivative
has been solved by using the generalized Bernoulli equation method and the (G′/G, 1/G)-expansion method in
[20, 21], respectively. Conformable time fractional (3+1)-dimensional Jimbo-Miwa equation has been solved by
using the modified form of the Kudryashov method [22].

Burgers equation is related to applications in acoustic phenomena and have been used to model turbulence
and certain steady-state viscous flows. The Burgers equation has an important place in various areas of applied
sciences and physical applications, such as modeling of fluid mechanics and financial mathematics, astrophysics [23].
Different varieties of Burger equation are available in literature such as inviscid Burgers? equation, viscous Burgers?
equation, Burgers-like equation and coupled Burger?s equations. Improved tanh function method, sub-equation
method, tan(F ( ξ2 ))-expansion method have been applied to the Burgers-like equations in [24–26]. The space and
time fractional Burgers-like equations with Caputo fractional derivative by the variational iteration method have
been solved in [27].

(3 + 1)-dimensional Jimbo-Miwa equation and Burger-like equation have been widely studied in the literature.
But there is not much work for the conformable fractional derivative case. To our knowledge, only time-fractional

Received : 30–07–2018, Accepted : 06–03–2019



48 H. Çerdik Yaslan & Ayşe Girgin

(3 + 1)-dimensional Jimbo-Miwa equation has been investigated [22]. In this study, we consider conformable
space-time fractional (3 + 1)-dimensional Jimbo-Miwa equation and Burger-like equation. We establish new exact
solitary wave solutions to these equations by G′/G expansion method.

2. Description of conformable fractional derivative and its properties

For a function f : (0,∞)→ R, the conformable fractional derivative of f of order 0 < α < 1 is defined as (see,
for example, [28])

Tαt f(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε

. (2.1)

Some important properties of the conformable fractional derivative are as follows:

Tαt (af + bg)(t) = aTαt f(t) + bTαt g(t), ∀a, b ∈ R, (2.2)
Tαt (t

µ) = µtµ−α, (2.3)

Tαt (f(g(t)) = t1−αg
′
(t)f

′
(g(t)). (2.4)

3. Analytic solutions to the conformable space-time fractional Jimbo-Miwa Equation
equation

The conformable space-time fractional (3 + 1)-dimensional Jimbo-Miwa equation is given as follows (see, for
example, [15–19])

T βx T
β
x T

β
x T

γ
y u+ 3T βx T

γ
y uT

β
x u+ 3T γy uT

β
x T

β
x u+ 2T γy T

α
t u− 3T βx T

θ
z = 0, (3.1)

0 < α ≤ 1, 0 < β ≤ 1, 0 < γ ≤ 1, 0 < θ ≤ 1.

Let us consider the following transformation

u(x, y, z, t) = U(ξ), ξ = k
tα

α
+m

xβ

β
+ n

yγ

γ
+ p

zθ

θ
, (3.2)

where k, m, n, p are constants. Substituting (3.2) into Eq.(3.1) we obtain the following ordinary differential equation
(ODE)

m3nU (4) + 6m2nU ′U ′′ + (2kn− 3mp)U ′′ = 0. (3.3)

Integrating of Eq.(3.3) with zero constant of integration, we have

m3nU ′′′ + 3m2n(U ′)2 + (2kn− 3mp)U ′ = 0. (3.4)

Let us suppose that the solution of Eq.(3.4) can be expressed in the following form:

U(ξ) =

N∑
i=0

ai(
G(ξ)′

G(ξ)
)i, (3.5)

where G = G(ξ) satisfies the linear ODE in the form

G′′ + λG′ + µG = 0, λ 6= 0, µ 6= 0, (3.6)

where ai, λ and µ are constants to be determined.
Substituting Eq.(3.5) into Eq.(3.4) and then by balancing the highest order derivative term and nonlinear term in

result equation, the value of N can be determined as 1. Therefore, Eq.(3.5) reduces to

U(ξ) = a0 + a1

(G′
G

)
. (3.7)
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Substituting Eq.(3.7) into Eq.(3.4), collecting all the terms with the same power of G
′

G , we can obtain a set of algebraic
equations for the unknowns a0, a1, λ, µ, k,m,n,p:

3na21m
2 − 6na1m

3 = 0,

6λna21m
2 − 12λna1m

3 = 0,

3a1mp− 2a1kn−m3n(a1λ
2 + 2a1µ) + 3a21m

2n(λ2 + 2µ)− 6a1m
3µn− 6a1λ

2m3n = 0,

3a1λmp− 2a1kλn− λm3n(a1λ
2 + 2a1µ) + 6a21λm

2µn− 6a1λm
3µn = 0,

3a1mµp− 2a1kµn−m3µn(a1λ
2 + 2a1µ) + 3a21m

2µ2n = 0.

Solving the algebraic equations in Mathematica, we obtain the following set of solutions: k = −λ
2m3n−4m3µn−3mp

2n ,
a1 = 2m.

When λ2 − 4µ > 0,

u1(x, y, z, t) = a0 + 2m
(
− λ

2
+

√
λ2 − 4µ

2

(C1 sinh(

√
λ2−4µξ

2 ) + C2 cosh(

√
λ2−4µξ

2 )

C1 cosh(

√
λ2−4µξ

2 ) + C2 sinh(

√
λ2−4µξ

2 )

))
.

When λ2 − 4µ < 0,

u2(x, y, z, t) = a0 + 2m
(
− λ

2
+

√
4µ− λ2
2

(−C1 sin(

√
4µ−λ2ξ

2 ) + C2 cos(

√
4µ−λ2ξ

2 )

C1 cos(

√
4µ−λ2ξ

2 ) + C2 sin(

√
4µ−λ2ξ

2 )

))
.

When λ2 − 4µ = 0,

u3(x, y, z, t) = a0 + 2m
(
− λ

2
+

C2

C1 + C2ξ

)
. (3.8)

Here ξ = (−λ
2m3n−4m3µn−3mp

2n
tα

α +mxβ

β + ny
γ

γ + p z
θ

θ ). In Fig.1 and Fig.2, we obtain simulation of the periodic
solution (3.8). Fig.1 shows 3D plot of the traveling wave solution u2(x, 0.03, 0.03, t) of Eq.(3.1) for α = 0.75, β = 1,
γ = 0.5, θ = 0.75, m = 1, n = 5, p = −2, a0 = 10, λ = 0.02, µ = 0.3, C1 = −3, C2 = 4, −10 < x < 10 and
0 < t < 10. Fig.2 shows 2D plot of the traveling wave solution u2(x, 0.03, 0.03, 0.5) of Eq.(3.1) for α = 0.75, β = 1,
γ = 0.5, θ = 0.75, m = 1, n = 5, p = −2, a0 = 10, λ = 0.02, µ = 0.3, C1 = −3, C2 = 4, −10 < x < 10 at t = 0.5.
Note that the 3D graph gives the action of u in space x at time t and illustrates the change of amplitude and shape
for each obtained solitary wave solutions. 2D graph shows the action of u in space x at fixed time t = 0.5.

4. Analytic solutions to the conformable space-time fractional Burgers-like equation

We consider conformable space-time fractional Burger-like equation (see, for example, [24–26])

Tαt u+ T βx u+ uT βx u+
1

2
T βx T

β
x u = 0, 0 < α ≤ 1, 0 < β ≤ 1. (4.1)

Let us consider the following transformation

u(x, t) = U(ξ), ξ = k
tα

α
+m

xβ

β
, (4.2)

where k, m are constants. Substituting (4.2) into Eq.(4.1) we obtain the following differential equations

(k +m)U ′ +mUU ′ +
m2

2
U ′′ = 0. (4.3)

Integrating of (4.3) with zero constant of integration, we have

(k +m)U +
m

2
U2 +

m2

2
U ′ = 0. (4.4)
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Let us suppose that the solution of Eq.(4.4) can be expressed in the form Eq.(3.5). Substituting Eq.(3.5) into
Eq.(4.4) and then by balancing the highest order derivative term and nonlinear term in result equation, the value of
N can be determined as 1. Therefore, Eq.(3.5) reduces to

U(ξ) = a0 + a1

(G′
G

)
. (4.5)

Substituting Eq.(4.5) into Eq.(4.4), collecting all the terms with the same power of G
′

G , we can obtain a set of algebraic
equations for the unknowns a0, a1, λ, µ, k,m:

(ma21)/2− (m2a1)/2 = 0,

a1(k +m) + a0a1m− (a1λm
2)/2 = 0,

(ma20)/2 + (k +m)a0 − (a1m
2µ)/2 = 0.

Solving the algebraic equations in Mathematica, we obtain the following set of solutions:
Case 1: a0 = m

2

(
λ+

√
λ2 − 4µ

)
, a1 = m, k = m

2

(
− 2−m

√
λ2 − 4µ

)
:

When λ2 − 4µ > 0,

u1(x, y, t) =
m

2

(
λ+

√
λ2 − 4µ

)
+m

(
− λ

2
+

√
λ2 − 4µ

2

(C1 sinh(

√
λ2−4µξ

2 ) + C2 cosh(

√
λ2−4µξ

2 )

C1 cosh(

√
λ2−4µξ

2 ) + C2 sinh(

√
λ2−4µξ

2 )

))
.

When λ2 − 4µ < 0,

u2(x, y, t) =
m

2

(
λ+

√
λ2 − 4µ

)
+m

(
− λ

2
+

√
4µ− λ2
2

(−C1 sin(

√
4µ−λ2ξ

2 ) + C2 cos(

√
4µ−λ2ξ

2 )

C1 cos(

√
4µ−λ2ξ

2 ) + C2 sin(

√
4µ−λ2ξ

2 )

))
.

When λ2 − 4µ = 0,

u3(x, y, t) =
m

2

(
λ+

√
λ2 − 4µ

)
+m

(
− λ

2
+

C2

C1 + C2ξ

)
. (4.6)

Here ξ = m
2

(
− 2−m

√
λ2 − 4µ

)
tα

α +mxβ

β .

Case 2: a0 = m
2

(
λ−

√
λ2 − 4µ

)
, a1 = m, k = m

2

(
− 2 +m

√
λ2 − 4µ

)
:

When λ2 − 4µ > 0,

u4(x, y, t) =
m

2

(
λ−

√
λ2 − 4µ

)
+m

(
− λ

2
+

√
λ2 − 4µ

2

(C1 sinh(

√
λ2−4µξ

2 ) + C2 cosh(

√
λ2−4µξ

2 )

C1 cosh(

√
λ2−4µξ

2 ) + C2 sinh(

√
λ2−4µξ

2 )

))
.

When λ2 − 4µ < 0,

u5(x, y, t) =
m

2

(
λ−

√
λ2 − 4µ

)
+m

(
− λ

2
+

√
4µ− λ2
2

(−C1 sin(

√
4µ−λ2ξ

2 ) + C2 cos(

√
4µ−λ2ξ

2 )

C1 cos(

√
4µ−λ2ξ

2 ) + C2 sin(

√
4µ−λ2ξ
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.

When λ2 − 4µ = 0,

u6(x, y, t) =
m

2

(
λ−

√
λ2 − 4µ

)
+m

(
− λ

2
+

C2

C1 + C2ξ

)
.

Here ξ = m
2

(
− 2 +m

√
λ2 − 4µ

)
tα

α +mxβ

β .
In Fig.3, we obtain simulation of the solitary wave solution (4.6). Fig.3 is simulation of the kink-shaped soliton

solution. Kink wave is traveling wave which rises or descends from one asymptotic state to another. The kink
solution approaches a constant at infinity. Fig.3 presents 3D plot of the traveling wave solution u1(x, 1, t) of Eq.(4.1)
for α = 0.5, β = 1, θ = 0.75, m = 1, n = 0.5, λ = 3, µ = 2, C1 = 0.5 C2 = −0.25, −5 < x < 15, 0 < t < 15.



(G′/G)-expansion Method for the Conformable space-time Fractional Jimbo-Miwa... 51

5. Conclusion
In the present paper, theG′/G expansion method is applied to solve the space-time fractional (3 + 1)-dimensional

Jimbo-Miwa equation and Burger-like equation including conformable derivative. The obtained traveling wave
solutions are represented by the hyperbolic, trigonometric and rational functions. The obtained solutions by using
presented method are new and have not been expressed in the literature so far. The method can also be applied to
the other conformable nonlinear fractional differential equations.
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Figure 1. 3D plot of the periodic wave solution u2(x, 0.03, 0.03, t) of Eq.(3.1) .

Figure 2. 2D plot of the periodic wave solution u2(x, 0.03, 0.03, 0.5) of Eq.(3.1).

Figure 3. 3D plot of the solitary wave solutions u1(x, 1, t) of Eq.(4.1) .
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