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PRINCIPAL FUNCTIONS OF IMPULSIVE DIFFERENCE
OPERATORS ON SEMI AXIS

ŞEYHMUS YARDIMCI AND IBRAHIM ERDAL

Abstract. In this paper, we investigate the continuous spectrum and resol-
vent operator of a second-order difference operator with an impulsive condition.
Then, under certain conditions, we prove finiteness of eigenvalues, spectral sin-
gularities. At last, we present principal functions of corresponding impulsive
operator.

1. Introduction

Researchers often encounter some discontinuities or degenerations during many
evolution processes. At a certain moment, the state may change abruptly and takes
a short time compared to the whole duration. These sudden effects are recognized
as instantaneous impulses. The models involving impulsive effects are called impul-
sive equations. There are great contributions in [1, 2, 3] to the theory of impulsive
differential equations. The mathematical or physical models concerning such im-
pulses are also called the equations with a transmission effect, or the equations with
a point interaction [4, 5]. Over the years, some results arising from impulsive effects
were carried over quite easily to the discrete case. [6, 7, 8] are outstanding studies
on impulsive difference equations.
The main equation we investigate in this paper is

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N, (1)

which is the discrete analogue of the Sturm—Liouville equation

− y′′ + q(x)y = λ2y, x ∈ [0,∞) , (2)

where λ is a spectral parameter, {an}n∈N∪{0}, {bn}n∈N are complex sequences and
q is a complex valued function. Naimark [9] initiated the study of continuous and
discrete spectrum of Sturm—Liouville operator corresponding to (2) with a boundary
condition y(0) = 0. In addition to [9], we refer to [10, 11] for further information
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on spectral theory of Sturm—Liouville equations. On the other hand, for difference
equations, a lot of spectral results have been investigated in the literature [12, 13].
Moreover, for the spectral theory of difference equations, [14, 15, 16, 17, 18, 19,
20] are detailed references for the readers. But these references are all related to
general boundary conditions. Hence, the aim of this paper is to study some spectral
properties of the impulsive difference operator mentioned in [20] which is still an
uninvestigated problem in literature.
We shall consider the following second-order difference equation

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N \ {k − 1, k, k + 1} (3)

with the boundary condition
y0 = 0 (4)

and the impulsive condition(
yk+1

∆yk+1

)
= B

(
yk−1
∇yk−1

)
, B =

(
α β
γ δ

)
, (5)

where λ = 2 cos z is a spectral parameter, α, β, γ, δ are complex numbers, ∇ denotes
the backward difference operator and ∆ denotes the forward difference operator,
i.e.,

∇yn : = yn − yn−1
∆yn : = yn+1 − yn.

Throughout the paper, we assume that an 6= 0, for all n ∈ N∪{0} , {an}n∈N∪{0}
and {bn}n∈N are complex sequences satisfying the condition∑

n∈N
n (|1− an|+ |bn|) <∞. (6)

Without impulsive condition (5), equation (3) has the bounded solution satisfying
the condition

lim
n→∞

e−inzen (z) = 1,

for λ = 2 cos z, where z ∈ C+ := {z ∈ C : Im z ≥ 0} . en (z) is called the Jost solu-
tion of (3). It is analytic with respect to z in C+ := {z ∈ C : Im z > 0} , continuous
in C+ and en(z + 2π) = en(z) for all z in C+. Besides, the function en (z) has the
representation [17]

en (z) = µne
inz

(
1 +

∞∑
m=1

Anme
imz

)
, n ∈ N, (7)

where µn andAnm are expressed in terms of the sequences {an}n∈N∪{0} and {bn}n∈N
as

µn =

{ ∞∏
k=n

ak

}−1
,

An1 = −
∞∑

k=n+1

bk,
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An2 =
∞∑

k=n+1

{(
1− a2k

)
+ bk

∞∑
s=k+1

bs

}
,

An,m+2 = An+1,m +
∞∑

k=n+1

{(
1− a2k

)
Ak+1,m − bkAk,m+1

}
, m = 1, 2, ...;n ∈ N.

Moreover, Anm satisfies

|Anm| ≤ c
∞∑

k=n+[m2 ]

(|1− ak|+ |bk|) , (8)

where c > 0 is a constant and
[
m
2

]
denotes the integer part of m2 .

On the other hand, two solutions of impulsive difference boundary value problem
(3)−(5) are stated in [20] as

En(z) =

{
M22

detM
Qn(z)− M21

detM
Pn(z), n = 0, 1, 2, ..., k − 1

en(z), n = k + 1, k + 2, ...
(9)

and

Fn(z) =

{
Pn(z), n = 0, 1, 2, ..., k − 1

M12en(z) +M22en(−z), n = k + 1, k + 2, ...
, (10)

where Qn(z) and Pn(z) are the fundamental solutions of (3) satisfying

Q0(z) =
1

a0
, Q1(z) = 0

P0(z) = 0, P1(z) = 1.

Remember that en(−z) is another solution of (3) fulfilling the asymptotic condition

lim
n→∞

einzen (−z) = 1, z ∈ C− := {z ∈ C : Im z ≤ 0} ,

and coeffi cients M = [Mij ]2x2 i, j = 1, 2 is defined as transfer matrix M such that

M22 (z) = − ak+1
2i sin z

{−∆ek+1(z) [αPk−1(z) + β∇Pk−1(z)]

+ ek+1(z) [γPk−1(z) + δ∇Pk−1(z)]} , (11)

M12 (z) = − ak+1
2i sin z

{∆ek+1(−z) [αPk−1(z) + β∇Pk−1(z)]

− ek+1(−z) [γPk−1(z) + δ∇Pk−1(z)]} . (12)

Hence, it is obvious to calculate

(i) W [En(z), Fn(z)] =
M22

detM
, n = 0, 1, 2, ..., k − 1,

(ii) W [En(z), Fn(z)] = −2iM22 sin z, n = k + 1, k + 2, ...

for all z ∈
[
−π2 ,

3π
2

]
\ {0, π} .
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2. Resolvent operator and continuous spectrum

Let us introduce the impulsive difference operator L generated by the impulsive
difference boundary value problem (3)−(5) in the Hilbert space `2(N) such that

`2(N) :=

{
y = {yn}n∈N , yn ∈ C, |y|

2
=
∑
n∈N
|yn|2 <∞

}
.

We shall define two semi strips

S0 :=

{
z : z = η + iξ,−π

2
≤ η ≤ 3π

2
, ξ > 0

}
and

S := S0 ∪
[
−π

2
,

3π

2

]
.

In view of (9), it is obvious that En(z) has an analytic continuation from
[
−π

2
,

3π

2

]
to S0 and continuous up to

[
−π

2
,

3π

2

]
because of analytic properties of Qn(z), Pn(z)

and en(z). Thus, Fn(z) turns into

F̂n(z) =

{
Pn(z), n = 0, 1, 2, ..., k − 1

M̂12(z)en(z) +M22(z)ên(z), n = k + 1, k + 2, ...
, (13)

where ên(z) is the unbounded solution of (3), satisfying the condition

lim
n→∞

einz ên(z) = 1, z ∈ C+

for n = k + 1, k + 2, ... .
We remark here that under the analytic continuation, function M22 remains

unchanged, whereas M12 turns into

M̂12(z) = − ak+1
2i sin z

{∆êk+1(z) [αPk−1(z) + β 5 Pk−1(z)]

−êk+1(z) [γPk−1(z) + δ5 Pk−1(z)]} .

Lemma 1. The following equations hold for all z ∈ S \ {0, π} .

(i) W
[
F̂n(z), En(z)

]
= −M22(z)

detM
, n→ 0,

(ii) W
[
F̂n(z), En(z)

]
= 2iM22(z) sin z, n→∞.

Proof. Recall that Wronskian of any two solutions y = {yn}n∈N and
u = {un}n∈N of (3) is defined as

W [y, u] := an [ynun+1 − yn+1un] .
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Then, due to the fact that

W [en(z), ên(z)] = −2i sin z, z ∈ C+,
it is obvious to calculate Wronskian of the solutions F̂n and En. �
In view of these solutions, we can compute the resolvent operator of L.

Theorem 2.

(Rλ(L)ψ)n :=
∑
m∈N
Gn,m(z)ψm, ψ := {ψm}m∈N ∈ `

2(N), n ∈ N,

is the resolvent operator of L, where

Gn,m(z) =


En(z)F̂m(z)

W [F̂n(z), En(z)]
, m = 0, 1, 2, ..., n− 1

Em(z)F̂n(z)

W [F̂n(z), En(z)]
, m = n, n+ 1, ...

(14)

is defined as Green function for z ∈ S and m,n 6= k.

Proof. In order to get the resolvent operator, we need to find the general solution
of the equation

an−1yn−1 + bnyn + anyn+1 − λyn = ψn, n ∈ N \ {k − 1, k, k + 1} , (15)

where ψn ∈ `2(N). For this reason, we use the solutions F̂n and En to write
the general solution of the homogenous part of (15). So, by the help of variation
of parameters method and some iterations, we get Green function and resolvent
operator of L. �
Theorem 3. Assuming that the condition (6) satisfies, then σc(L) = [−2, 2], where
σc(L) denotes the continuous spectrum of L.

Proof. In order to prove to this theorem, we first need to introduce the difference
operators L0 and L1 generated by the following difference expressions in `2(N)
together with (5)

(`0y)n = yn−1 + yn+1, n ∈ N\{k − 1, k + 1}

(`1y)n = (an−1 − 1) yn−1 + bnyn + (an − 1)yn+1, n ∈ N\{k − 1, k, k + 1},
respectively. It is evident that L0 is not selfadjoint but it can be written as the
sum of a selfadjoint and a finite dimensional operator in `2 (N). On the other
hand, L1 is a compact operator [21]. Since all finite dimensional operators are
compact, the impulsive operator L can be represented as the sum of a selfadjoint
and two compact operators. By Weyl theorem of a compact perturbation [22], the
continuous spectrum of L coincides with the continuous spectrum of the selfadjoint
operator which is [−2, 2]. So, the proof is completed. �
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3. Main results

In this section, we determine the sets of eigenvalues and spectral singularities
and discuss their numerical properties.
From the definition of eigenvalues and (14), we introduce the set of eigenvalues

of impulsive operator L as

σd(L) = {λ ∈ C : λ = 2 cos z, z ∈ S0, M22(z) = 0} . (16)

Spectral singularities are defined as the poles of the kernel of resolvent operator
and are also embedded in the continuous spectrum. Hence, we have

σss(L) =

{
λ ∈ C : λ = 2 cos z, z ∈

[
−π

2
,

3π

2

]
\ {0, π} , M22(z) = 0

}
, (17)

where σss(L) denotes the set of spectral singularities of L.
To study numerical properties of the sets σd(L) and σss(L), we need to examine

the numerical properties of the zeros of M22 in S. For this reason, we define the
sets

S1 := {z : z ∈ S0,M22(z) = 0} , (18)

S2 :=

{
z : z ∈

[
−π

2
,

3π

2

]
,M22(z) = 0

}
. (19)

To prove the next lemma and theorem, we need the following theorem given in
[20]:

Theorem 4. Under the condition (6), the function M22 satisfies the following
asymptotics for ξ →∞, where z = η + iξ,
(i) If α+ β + γ + δ 6= 0,

M22 = e4iz
(
k−2∏
n=1

an

)−1 [
(α+ β + γ + δ)µk+1 + o(1)

]
.

(ii) If α+ β + γ + δ = 0,

M22 = e5iz
(
k−3∏
n=1

an

)−1 [
−a−1k−2 (α+ β)µk+2 − (β + δ)µk+1 + o(1)

]
.

Lemma 5. Assume (6).
(i) The set S1 is bounded, is no more than countable number of elements and its

limit points can lie only in
[
−π

2
,

3π

2

]
.

(ii) The set S2 is compact and its linear Lebesgue measure is zero.

Proof. (i) Theorem 4 proves that M22 cannot equal to zero for suffi ciently large
λ ∈ C+. Thus, the boundedness of the sets S1 and S2 is clear from Theorem 4.
Moreover, since M22 is analytic in C+, the set S1 has at most countable number of

elements, and its limit points can only lie in
[
−π

2
,

3π

2

]
.
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(ii) Using uniqueness theorem of analytic functions [23], we obtain that S2 is a
closed set and its linear Lebesgue measure is zero. �

We can give following theorem as a direct consequence of (16), (17) and
Lemma 5.

Theorem 6. Under the condition (6),
(i) the set of eigenvalues of L is bounded and countable, its limit points can lie

only in [−2, 2],
(ii) the set of spectral singularities of L is compact and its linear Lebesgue mea-

sure is zero.

Definition 7. The multiplicity of a zero of M22 in S is called the multiplicity of
corresponding eigenvalue or spectral singularity of impulsive operator L.

Theorem 8. If
sup
n∈N
{eεn (|1− an|+ |bn|)} <∞ (20)

for some ε > 0, then there are finitely number of eigenvalues and spectral singular-
ities of the operator L, and each of them has finite multiplicity.

Proof. Under the condition (20), it follows from (8) that

|Aj,m| ≤ ce
−
ε

4
m
, j = k + 1, k + 2; m = 1, 2, ..., (21)

where c is an arbitrary constant. From (11), M22(z) has following representation

M22(z) = − ak+1
2i sin z

{
− (α+ β)Pk−1(z)µk+2e

i(k+2)z

(
1 +

∞∑
m=1

Ak+2,me
imz

)

+βPk−2(z)µk+2e
i(k+2)z

(
1 +

∞∑
m=1

Ak+2,me
imz

)
(22)

+ (α+ β + γ + δ)Pk−1(z)µk+1e
i(k+1)z

(
1 +

∞∑
m=1

Ak+1,me
imz

)

− (β + δ)Pk−2(z)µk+1e
i(k+1)z

(
1 +

∞∑
m=1

Ak+1,me
imz

)}
.

By the help of (21) and (22), we conclude thatM22 has an analytic continuation to

the half plane Im z > − ε
4
. Hence, the sets σd(L) and σss(L) have no limit points

in
[
−π

2
,

3π

2

]
. By Theorem 6, we find that these sets are bounded and have a finite

number of elements. Finally, using uniqueness theorem of analytic functions, we
see that all zeros of M22 in S have finite multiplicities. �



1804 ŞEYHMUS YARDIMCI AND IBRAHIM ERDAL

Let us denote the sets of all limit points of S1 and S2 by S3 and S4, respectively
and the set of all zeros of M22 with infinite multiplicity in S by S5. From the
uniqueness theorem of analytic functions, we find that

S1 ∩ S5 = ∅, S3 ⊂ S2, S4 ⊂ S2, S5 ⊂ S2 S3 ⊂ S5, S4 ⊂ S5
and

µ(S3) = µ(S4) = µ(S5) = 0.

Now, for some ε > 0 and 1
2 ≤ ρ < 1, let us consider the condition

sup
n∈N

{
eεn

ρ

(|1− an|+ |bn|)
}
<∞, (23)

which is weaker than (20). Under the condition (23), the function M22 cannot be

continued analytically from
[
−π

2
,

3π

2

]
to the lower half plane. So, we need some

preliminaries before giving the main result.
For the sake of simplicity, let us define

H(z) := M22(z)2i sin z, (24)

which is also analytic in C+ and infinitely differentiable on real axis.

Lemma 9. Under the condition (23), following inequality holds:∣∣∣H(n)(z)
∣∣∣ ≤ An (25)

for z ∈ S and n = 0, 1, ..., where

An ≤ C̃2nKbkk!kk
1−ρ
ρ ,

C̃,K, b are positive constants depending on ε and ρ.

Proof. From (22), we can write

H(z) = −ak+1

{
− (α+ β)µk+2e

i(k+2)z

(
1 +

∞∑
m=1

Ak+2,me
imz

)

×


(
eiz + e−iz

)k−2
k−2∏
i=1

ai

+ pk−3(z)



+βµk+2e
i(k+2)z

(
1 +

∞∑
m=1

Ak+2,me
imz

)
(
eiz + e−iz

)k−3
k−3∏
i=1

ai

+ pk−4(z)


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+ (α+ β + γ + δ)µk+1e
i(k+1)z

(
1 +

∞∑
m=1

Ak+1,me
imz

)

×


(
eiz + e−iz

)k−2
k−2∏
i=1

ai

+ pk−3(z)


− (β + δ)µk+1e

i(k+1)z

(
1 +

∞∑
m=1

Ak+1,me
imz

)

×


(
eiz + e−iz

)k−3
k−3∏
i=1

ai

+ pk−4(z)




,

where the polynomial function pk(z) is of k-th degree. Moreover, by direct compu-
tation, we find

∣∣∣H(n)(z)
∣∣∣ ≤ |ak+1|


∣∣(α+ β)µk+2

∣∣ C∣∣∣∣∣
k−2∏
i=1

ai

∣∣∣∣∣
n∑
s=0

(
n
s

)( ∞∑
m=1

|Ak+2,m|mk−s

)
(2k)

s

+
∣∣βµk+2∣∣ C∣∣∣∣∣

k−3∏
i=1

ai

∣∣∣∣∣
n∑
s=0

(
n
s

)( ∞∑
m=1

|Ak+2,m|mk−s

)
(2k − 1)

s

+
∣∣(α+ β + γ + δ)µk+1

∣∣ C∣∣∣∣∣
k−2∏
i=1

ai

∣∣∣∣∣
n∑
s=0

(
n
s

)( ∞∑
m=1

|Ak+1,m|mk−s

)
(2k − 1)

s

+
∣∣(β + δ)µk+1

∣∣ C∣∣∣∣∣
k−3∏
i=1

ai

∣∣∣∣∣
n∑
s=0

(
n
s

)( ∞∑
m=1

|Ak+1,m|mk−s

)
[2 (k − 1)]

s


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In accordance with (8) and (23), we get

|Aj,m| ≤ c1e
−
ε

2
(m2 )

ρ

, j = k + 1, k + 2; m = 1, 2, ..., (26)

where c1 is an arbitrary positive constant. Therefore, by (26), we arrive at∣∣∣H(n)(z)
∣∣∣ ≤ K |ak+1| 2nC̃ ∞∑

m=1

e−
ε
2 (m2 )

ρ

mk,

where

K : =

∣∣(α+ β)µk+2
∣∣(k−2∏

i=1

ai

)−1
+
∣∣βµk+2∣∣

(
k−3∏
i=1

ai

)−1

+
∣∣(α+ β + γ + δ)µk+1

∣∣(k−2∏
i=1

ai

)−1
+
∣∣(β + δ)µk+1

∣∣(k−3∏
i=1

ai

)−1 .

On the other hand, if we define

Dk :=

∞∑
m=1

e−
ε
2 (m2 )

ρ

mk

by the help of Gamma function we estimate

Dk =

∞∫
0

tke−
ε
2 ( t2 )

ρ

dt =
2k+1+

k+1
ρ

ρε
k+1
ρ

(
k + 1

ρ
− 1

)
Γ

(
k + 1

ρ
− 1

)
.

After that, using the inequalities 1 +
1

k
≤ e and kk ≤ ekk! for k ∈ N, we get

Dk ≤ bkKk!kk
1−ρ
ρ

which gives the proof of the lemma. �

Theorem 10. Under the condition (23), S5 = ∅.

Proof. Since the function M22 is not equal to zero identically, according to [15], we
obtain

w∫
0

lnT (s)dµ(S5, s) > −∞, (27)

where

T (s) = inf
k

Hks
k

k!
, k ∈ N ∪ {0},

µ(S5, s) denotes the Lebesque measure of s−neighbourhood of S5 and Hk is defined
by Lemma 9. Using Lemma 9, we calculate
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T (s) ≤ K exp

{
−1− ρ

ρ
e−1b−

ρ
1−ρ s−

ρ
1−ρ

}
.

Hence, we see from (27) that
w∫
0

s−
δ

1−δ dµ(S5, s) ≤ −
w∫
0

lnT (s)dµ(S5, s) <∞.

Since ρ
1−ρ ≥ 1, the integral on the left handside is convergent for arbitrary s if and

only if µ(S5, s) = 0, i.e., S5 = ∅. �

4. Principal functions

In this section, we determine the principal functions of impulsive operator L.
Since, λ = 2 cos z transforms the semi strip S0 to the set Ω := C \ [−2, 2] . We shall
define the functions

F̃n(λ) : = F̂n

(
arccos

λ

2

)
, n ∈ N \ {k} ,

Ẽn(λ) : = En

(
arccos

λ

2

)
, n ∈ N \ {k} ,

M̃22(λ) : = M22

(
arccos

λ

2

)
.

Obviously, F̃n(λ) and Ẽn(λ) are solutions of (3)-(5). By (16) and (17), we obtain
that

σd(L) =
{
λ : λ ∈ Ω, M̃22(λ) = 0

}
,

σss(L) =
{
λ : λ ∈ [−2, 2] , M̃22(λ) = 0

}
.

Moreover, condition (23) guarentees finiteness of zeros M̃22 in Ω and in [−2, 2] .

Let λ1, λ2, ..., λp denote the zeros of the function M̃22 in Ω with multiplicities
m1,m2, ...,mp, respectively. Similarly, let λp+1, λp+2, ...λt be zeros of M̃22 in [−2, 2]
with multiplicities mp+1,mp+2, ...,mt, respectively. Thus,{

ds

dλs
W
[
F̃n(λ), Ẽn(λ)

]}
λ=λj

=

{
ds

dλs
M̃22(λ)

}
λ=λj

= 0 (28)

holds for s = 0, 1, ...,mj − 1, j = 1, 2, ..., p, p+ 1, ..., t.

Theorem 11.{
ds

dλs
F̃n(λ)

}
λ=λj

=

s∑
r=0

(
s
r

)
Ar (λj)

{
ds

dλs
Ẽn(λ)

}
λ=λj

(29)

holds for s = 0, 1, ...,mj − 1, j = 1, 2, ..., p, p+ 1, ..., t.
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Proof. We will continue by mathematical induction. Let s = 0. From (28), we find

F̃n(λj) = Ao (λj) Ẽn(λj), n ∈ N,
where Ao (λj) 6= 0. Let us assume that{

ds0

dλs0
F̃n(λ)

}
λ=λj

=

s0∑
r=0

(
s0
r

)
Ar (λj)

{
ds0

dλs0
Ẽn(λ)

}
λ=λj

(30)

holds for 1 ≤ s0 ≤ mj − 2. If {yn (λ)}n∈N is a solution of (3), then we obtain

an−1
ds

dλs
yn−1 (λ) + bn

ds

dλs
yn (λ) + an

ds

dλs
yn+1 (λ)− λ ds

dλs
yn (λ) = s

ds−1

dλs−1
yn (λ) .

Writing last equality for solutions F̃n(λj) and Ẽn(λj) then, using (28) and (30), we
find that (29) holds for s = 0, 1, ...,mj − 1, j = 1, 2, ..., p, p+ 1, ..., t. �

Using the notation

Ar(λj) :=
Ar(λj)

(s− r)! ,

we can write (29) as

1

s!

{
ds

dλs
F̃n(λ)

}
λ=λj

=

s∑
r=0

(
s
r

)
Ar (λj)

1

r!

{
ds

dλs
Ẽn(λ)

}
λ=λj

for s = 0, 1, ...,mj − 1, j = 1, 2, ..., p, p+ 1, ..., t.
Now, let us introduce the functions

U (s)(λj) =
{
U (s)n (λj)

}
n∈N\{k}

, s = 0, 1, ...,mj − 1, j = 1, 2, ..., t,

where

U (s)n (λj) =
1

s!

{
ds

dλs
F̃n(λ)

}
λ=λj

=

s∑
r=0

(
s
r

)
Ar (λj)

1

r!

{
ds

dλs
Ẽn(λ)

}
λ=λj

.

The functions U (s)(λj), s = 0, 1, ...,mj − 1, j = 1, 2, ..., p and U (s)(λj),
s = 0, 1, ...,mj − 1, j = p + 1, p + 2, ..., t are called the principal functions of
eigenvalues and spectral singularities of impulsive operator L, respectively.
In view of the properties of principal functions of corresponding operator, we

easily get the following theorem.

Theorem 12.

U (s)(λj) ∈ `2 (N) , s = 0, 1, ...,mj − 1, j = 1, 2, ..., p.

U (s)(λj) /∈ `2 (N) , s = 0, 1, ...,mj − 1, j = p+ 1, p+ 2, ..., t.
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Current address : Şeyhmus Yardımcı: Ankara University, Faculty of Science, Department of
Mathematics, 06100, Ankara, Turkey.

E-mail address : smyardimci@ankara.edu.tr
ORCID Address: http://orcid.org/0000-0002-1062-9000
Current address : Ibrahim Erdal: Ankara University, Faculty of Science, Department of Math-

ematics, 06100, Ankara, Turkey.
E-mail address : ierdal@ankara.edu.tr
ORCID Address: http://orcid.org/0000-0002-4445-2389


	1. Introduction
	2. Resolvent operator and continuous spectrum
	3. Main results
	4. Principal functions
	References

