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ON SOME NEW INEQUALITIES OF HERMITE HADAMARD
TYPES FOR HYPERBOLIC p-CONVEX FUNCTIONS

NASHAT FARIED, MOHAMED S. S. ALI, AND ZEINAB M. YEHIA

Abstract. In this paper, we show that the power function fn(x) is hyperbolic
p-convex function. Furthermore, we establish some new integral inequalities
for higher powers of hyperbolic p-convex functions. Also, some applications
for special means are provided as well.

1. Introduction

Let f : I → R be a convex function on the interval I of real numbers and a, b ∈ I
with a < b. There are many generalizations of the notion of convex functions see
[2, 3, 5, 6]. One way to generalize the notion of convex function is to replace linear
functions by another family of functions in the sense of Beckenbach [2]. In this
paper, we deal with a family of hyperbolic functions

H(x) = A cosh px+B sinh px,

where A,B arbitrary constants and p ∈ R \ {0}.
The Hermite-Hadamard integral inequality for convex functions f : [a, b]→ R

f(
a+ b

2
) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1)

is well known in the literature and has many applications for special means, see for
example [7, 8, 9]. This inequality 1 was extended for hyperbolic p-convex functions
in [1] as

2

p
f(
a+ b

2
) sinh p(

b− a
2
) ≤

∫ b

a

f(x)dx ≤ 1
p
[f(a) + f(b)] tanh p(

b− a
2
).

In current work, we proved that the higher powers of f(x) is hyperbolic p-convex
function in addition to establish some new integral inequalities for higher powers
of hyperbolic p-convex functions.
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2. Definitions and Preliminary Results

In this section, we introduce the basic definitions and results which will be used
later. For more informations see [1], [4], [10].

Definition 1. A function f : I → R is said to be sub H-function on I or hyperbolic
p-convex function, if for any arbitrary closed subinterval [u, v] of I the graph of f(x)
for x ∈ [u, v] lies nowhere above the function, determined by the equation:
H(x) = H(x, u, v, f) = A cosh px+B sinh px; p ∈ R \ {0}
where A and B are chosen such that H(u) = f(u), and H(v) = f(v).
Equivalently, for all x ∈ [u, v]

f(x) ≤ H(x) = f(u) sinh p(v − x) + f(v) sinh p(x− u)
sinh p(v − u) . (2)

Remark 2. The hyperbolic p-convex functions possess a number of properties anal-
ogous to those of convex functions. For example: If f : I → R is hyperbolic p-convex
function, then for any u, v ∈ I, the inequality f(x) ≥ H(x) holds outside the inter-
val [u, v].

Definition 3. Let a function f : I → R be hyperbolic p-convex function
Su(x) = A cosh px+B sinh px
is said to be supporting function for f(x) at the point u ∈ (a, b) if
(1) Su(u) = f(u)
(2) Su(x) ≤ f(x) ∀x ∈ I.
That is, if f(x) and Su(x) agree at x = u the graph of f(x) does not lie under

the support curve.

Proposition 4. If f : I → R is a differentiable hyperbolic p-convex function, then
the supporting function for f(x) at the point u ∈ I has the form

Su(x) = f(u) cosh p(x− u) + f ′(u)

p
sinh p(x− u). (3)

Theorem 5. Let f : I → R be a two times continuously differentiable function.
Then f is hyperbolic p-convex function on I if and only if f ′′2f(x) ≥ 0 for all x in
I.

Example 6. Let fs : (0,∞) → (0,∞), fs(x) = xs with p ∈ R \ {0}. If s ∈
(−∞, 0) ∪ [1,∞) and

f ′′s (x)− p2fs(x) = s(s− 1)xs−2 − p2xs = p2xs−2(
s(s− 1)
p2

− x2).

Then,

f ′′s (x)− p2fs(x) ≥ 0 for x ∈ (0,
√
s(s− 1)
|p| )
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Hence, the power function fs for s ∈ (−∞, 0)∪[1,∞) is hyperbolic p-convex function
on (0,

√
s(s−1)
|p| ).

Theorem 7. A function f : I → R is hyperbolic p-convex function on I if and only
if there exist a supporting function for f(x) at each point x ∈ I.

3. Main Results

Theorem 8. Let f : I → R be non-negative, two times continuously differentiable
and hyperbolic p-convex functions then the higher powers of f(x) is hyperbolic p-
convex function.

Proof. Since, f(x) be non-negative and hyperbolic p-convex function, then using
Theorem 5, we get

f(x) ≥ 0 and f ′′2f(x) ≥ 0 ∀x ∈ I. (4)

Hence,

f ′′2f(x) ≥ p2

n
f(x) ∀n ∈ N. (5)

(fn(x))′n−1(x)f ′(x)

(fn(x))′′n−2(x)(f ′2 + nfn−1(x)f ′′(x)

(fn(x))′′2fn(x) = n(n− 1)fn−2(x)(f ′2 + nfn−1(x)f ′′2fn(x)

= n(n− 1)fn−2(x)(f ′2 + nfn−1(x)(f ′′(x)− p2

n
f(x)).

Now using (4), (5) we conclude that

(fn(x))′′2fn(x) ≥ 0.

Hence, fn(x) is hyperbolic p-convex function ∀n ∈ N. �

Theorem 9. Let f : I → R be a non-negative hyperbolic p-convex function, n ∈ N,
and a, b ∈ I with a < b, Then∫ b

a

fn(x)dx ≤ sinh−n p(b− a)
n∑
r=0

1

µ

(
n

r

)
[f(a)]n−r[f(b)]r[eµb+λ − eµa+λ], (6)

where λ = pb(n− r)− arp, and µ = (2r − n)p.

Proof. Since, f(x) is hyperbolic p-convex function, then from Definition 1 we have

f(x) ≤ H(x) ∀x ∈ [a, b].

As f(x) is non-negative, we get:

fn(x) ≤ Hn(x) ∀n ∈ N
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Thus, using (2), one obtains∫ b

a

fn(x)dx ≤
∫ b

a

Hn(x)dx

=
1

sinhn p(b− a)

∫ b

a

[f(a) sinh p(b− x) + f(b) sinh p(x− a)]ndx

= sinh−n p(b− a)
n∑
r=0

(
n

r

)
[f(a)]n−r[f(b)]r

∫ b

a

sinhr p(x− a) sinhn−r p(b− x)dx

= sinh−n p(b− a)
n∑
r=0

(
n

r

)
[f(a)]n−r[f(b)]r

×
∫ b

a

[
ep(x−a) − e−p(x−a)

2
]r[
ep(b−x) − e−p(b−x)

2
]n−rdx

≤ sinh−n p(b− a)
n∑
r=0

(
n

r

)
[f(a)]n−r[f(b)]r

∫ b

a

erp(x−a)ep(n−r)(b−x)dx

= sinh−n p(b− a)
n∑
r=0

(
n

r

)
[f(a)]n−r[f(b)]r

∫ b

a

erp(x−a)+p(n−r)(b−x)dx

= sinh−n p(b− a)
n∑
r=0

(
n

r

)
[f(a)]n−r[f(b)]r

∫ b

a

ep(2r−n)x+pb(n−r)−arpdx

= sinh−n p(b− a)
n∑
r=0

1

µ

(
n

r

)
[f(a)]n−r[f(b)]r[eµb+λ − eµa+λ],

where λ = pb(n− r)− arp, and µ = (2r − n)p.
Hence, the theorem follows. �

Theorem 10. Let f : I → R be a differentiable hyperbolic p-convex function,
n ∈ N, and a, b ∈ I with a < b, Then∫ b

a

f2n−1(x)dx ≥
2n−1∑
r=0

(
2n− 1
r

)
f2n−r−1(a)(

f ′(a)

p
)r

r∑
k=0

(−1)k
2rα

(
r

k

)
[eαb+β−eαa+β ],

(7)
where α = p(r − 2k), and β = ap(2k − r).

Proof. Since, f(x) is hyperbolic p-convex function, then from Definition 3, we have

f(x) ≥ Sa(x) ∀x ∈ I

and consequently,

f2n−1(x) ≥ S2n−1a (x) ∀n ∈ N
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Thus, using (3) and cosh p(x− a) ≥ 1, one has∫ b

a

f2n−1(x)dx ≥
∫ b

a

S2n−1a (x)dx

=

∫ b

a

[f(a) cosh p(x− a) + f ′(a)

p
sinh p(x− a)]2n−1dx

=

2n−1∑
r=0

(
2n− 1
r

)
f2n−r−1(a)(

f ′(a)

p
)r
∫ b

a

cosh2n−r−1 p(x− a) sinhr p(x− a)dx.

≥
2n−1∑
r=0

(
2n− 1
r

)
f2n−r−1(a)(

f ′(a)

p
)r
∫ b

a

sinhr p(x− a)dx

=

2n−1∑
r=0

(
2n− 1
r

)
f2n−r−1(a)(

f ′(a)

p
)r
∫ b

a

[
ep(x−a) − e−p(x−a)

2
]rdx

=

2n−1∑
r=0

(
2n− 1
r

)
f2n−r−1(a)(

f ′(a)

p
)r
∫ b

a

r∑
k=0

(−1)k
2r

(
r

k

)
ep(r−k)(x−a)e−pk(x−a)dx

=

2n−1∑
r=0

(
2n− 1
r

)
f2n−r−1(a)(

f ′(a)

p
)r

r∑
k=0

(−1)k
2r

(
r

k

)∫ b

a

ep(r−2k)x+ap(2k−r)

=

2n−1∑
r=0

(
2n− 1
r

)
f2n−r−1(a)(

f ′(a)

p
)r

r∑
k=0

(−1)k
2rα

(
r

k

)
[eαb+β − eαa+β ],

where α = p(r − 2k), and β = ap(2k − r).
Hence, the theorem follows. �
Theorem 11. Let f : [0,∞)→ R be a differentiable hyperbolic p-convex function,
n ∈ N, and a, b ∈ [0,∞] with a < b. Such that f(0) > 0, f ′(0) > 0. Then∫ b

a

f2n(x)dx ≥
2n∑
r=0

(
2n

r

)
f2n−r(0)(

f ′(0)

p
)r

r∑
k=0

(−1)k
2rγ

(
r

k

)
[eγb − eγa],

where, γ = p(r − 2k).

Proof. Since, f(x) is hyperbolic p-convex function, then from Definition 3, we have

f(x) ≥ S0(x) ∀x ∈ [0,∞)
As f(0) > 0 and f ′(0) > 0,
using Proposition 4, we conclude that S0(x) > 0, ∀x ∈ [0,∞) and consequently,

f2n(x) ≥ S2n0 (x) ∀n ∈ N
Thus, using (3) and cosh px ≥ 1, one has∫ b

a

f2n(x)dx ≥
∫ b

a

S2n0 (x)dx
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=

∫ b

a

[f(0) cosh px+
f ′(0)

p
sinh px]2ndx

=

2n∑
r=0

(
2n

r

)
f2n−r(0)(

f ′(0)

p
)r
∫ b

a

cosh2n−r px sinhr px dx

≥
2n∑
r=0

(
2n

r

)
f2n−r(0)(

f ′(0)

p
)r
∫ b

a

sinhr px dx

=

2n∑
r=0

(
2n

r

)
f2n−r(0)(

f ′(0)

p
)r
∫ b

a

[
epx − e−px

2
]rdx

=

2n∑
r=0

(
2n

r

)
f2n−r(0)(

f ′(0)

p
)r

r∑
k=0

(−1)k
2r

(
r

k

)∫ b

a

ep(r−k)xe−pkxdx

=

2n∑
r=0

(
2n

r

)
f2n−r(0)(

f ′(0)

p
)r

r∑
k=0

(−1)k
2r

(
r

k

)∫ b

a

ep(r−2k)xdx

=

2n∑
r=0

(
2n

r

)
f2n−r(0)(

f ′(0)

p
)r

r∑
k=0

(−1)k
2rγ

(
r

k

)
[eγb − eγa],

where, γ = p(r − 2k).
Hence, the theorem follows. �

Theorem 12. Let f : [0,∞) → R be a non-negative differentiable hyperbolic p-
convex function, n ∈ N, and a, b ∈ [0,∞) with a < b. Such that f ′(0) = 0, then has
the following inequalities∫ b

a

f2n(x)dx ≥ (
f(0)

2
)2n[

(
2n

n

)
(b− a)

+ 2

n−1∑
r=0

1

p(n− r)

(
2n

r

)
cosh p(n− r)(b+ a) sinh p(n− r)(b− a)],

∫ b

a

f2n−1(x)dx ≥ 4(
f(0)

2
)2n−1

n−1∑
r=0

2n− 1
pr(2n− 2r − 1) cosh p(n− r −

1

2
)(b+ a)

× sinh p(n− r − 1
2
)(b− a).

Proof. Since, f(x) is hyperbolic p-convex function, then from Definition 3, we have

f(x) ≥ S0(x) ∀x ∈ [0,∞) (8)

Since, f(x) is differentiable and f ′(0) = 0, then from Proposition 4, the supporting
function S0(x) for f(x) at the point 0 ∈ [0,∞) can be written in the form

S0(x) = f(0) cosh px. (9)
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Hence, S0(x) ≥ 0 ∀x ∈ [0,∞) Thus, using (8), one obtains

fn(x) ≥ Sn0 (x) ∀n ∈ N (10)

Therefore, from (9) and (10), the following two cases arise,
Case 1.∫ b

a

f2n(x)dx ≥
∫ b

a

S2n0 (x)dx

= f2n(0)

∫ b

a

cosh2n px dx

= (
f(0)

2
)2n
∫ b

a

[

(
2n

n

)
+

n−1∑
r=0

2

(
2n

r

)
cosh 2p(n− r)x]dx

= (
f(0)

2
)2n[

(
2n

n

)
(b− a)

+ 2

n−1∑
r=0

1

p(n− r)

(
2n

r

)
cosh p(n− r)(b+ a) sinh p(n− r)(b− a)].

Case 2.∫ b

a

f2n−1(x)dx ≥
∫ b

a

S2n−10 (x)dx

= f2n−1(0)

∫ b

a

cosh2n−1 px dx

= 2(
f(0)

2
)2n−1

∫ b

a

n−1∑
r=0

(
2n− 1
r

)
cosh p(2n− 2r − 1)xdx

= 4(
f(0)

2
)2n−1

n−1∑
r=0

2n− 1
pr(2n− 2r − 1) cosh p(n− r −

1

2
)(b+ a)

× sinh p(n− r − 1
2
)(b− a).

�

Theorem 13. Let f : [0,∞) → R be an increasing differentiable hyperbolic p-
convex function, n ∈ N, and a, b ∈ [0,∞) with a < b. Such that f(0) = 0, then has
the following inequalities∫ b

a

f2n(x)dx ≥ (
f(0)

2
)2n[

(
2n

n

)
(b− a)

+ 2

n−1∑
r=0

1

p(n− r)

(
2n

r

)
cosh p(n− r)(b+ a) sinh p(n− r)(b− a)],
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a

f2n−1(x)dx ≥ 4(
f(0)

2
)2n−1

n−1∑
r=0

1

p(2n− 2r − 1)
2n− 1
r

cosh p(n− r − 1
2
)

× (b+ a) sinh p(n− r − 1
2
)(b− a).

Proof. Since, f(x) is hyperbolic p-convex function, then from Definition 3, we have

f(x) ≥ S0(x) ∀x ∈ [0,∞). (11)

Since, f(x) is increasing, then f ′(0) ≥ 0. Since, f(x) is differentiable and f(0) = 0,
then from Proposition 4, the supporting function S0(x) for f(x) at the point 0 ∈
[0,∞) can be written in the form

S0(x) =
f ′(0)

p
sinh px. (12)

Hence, S0(x) ≥ 0 ∀x ∈ [0,∞) Thus, using (11), one obtains

fn(x) ≥ Sn0 (x) ∀n ∈ N (13)

Therefore, from (12) and (13), the following two cases arise,
Case 1.∫ b

a

f2n(x)dx ≥
∫ b

a

S2n0 (x)dx

= (
f ′(0)

p
)2n
∫ b

a

sinh2n pxdx

= (
f ′(0)

2p
)2n(−1)n

∫ b

a

[

(
2n

n

)
+

n−1∑
r=0

2(−1)n−r
(
2n

r

)
cosh 2(n− r)px]dx

= (
f ′(0)

2p
)2n(−1)n[

(
2n

n

)
(b− a) + 4

n−1∑
r=0

(−1)n−r
2p(n− r)

(
2n

r

)
cosh p(n− r)(b+ a)

× sinh p(n− r)(b− a)].
Case 2.∫ b

a

f2n−1(x)dx ≥
∫ b

a

S2n−10 (x)dx

= (
f ′(0)

p
)2n−1

∫ b

a

sinh2n−1 px dx

= 2(
f ′(0)

2P
)2n−1(−1)n−1

∫ b

a

n−1∑
r=0

(−1)n+r−1
(
2n− 1
r

)
sinh p(2n− 2r − 1)x dx

= 4(
f(0)

2
)2n−1

n−1∑
r=0

1

p(2n− 2r − 1)
2n− 1
r

cosh p(n− r − 1
2
)
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×(b+ a) sinh p(n− r − 1
2
)(b− a).

�

Remark 14. For the hyperbolic expansions in Theorems 12, 13 one can refer to
[11].

4. Some applications for special means

Recall the following special means
(1) The arithmetic mean

A = A(a, b) :=
a+ b

2
, a, b ≥ 0;

(2) The geometric mean

G = G(a, b) :=
√
ab, a, b ≥ 0;

(3) The harmonic mean

H = H(a, b) :=
2ab

a+ b
, a, b ≥ 0;

(4) The Logarithmic mean

L = L(a, b) :=
b− a

ln b− ln a, a, b ≥ 0, a 6= b;

(5) The Identic mean

I = I(a, b) =
1

e
(
bb

aa
)

1
b−a , a, b ≥ 0, a 6= b;

(6) The m-Logarithmic mean

Lm = Lm(a, b) := (
bm+1 − am+1
(m+ 1)(b− a) )

1
m , a, b ≥ 0, a 6= b;

where, m ∈ R \ {−1, 0}
it is well known that Lm is monotonic nondecreasing over m ∈ R with L−1 := L
and L0 := I.

Proposition 15. Let 0 < a < b and m ∈ R \ {−1, 0}. Then, we have the following
inequality

(b− a)Lmm(a, b) ≤ sinh−n p(b− a)
n∑
r=0

1

µ

(
n

r

)
as(n−r)bsr[eµb+λ − eµa+λ],

Proof. The assertion follows from inequality (6) in Theorem 9, for fs : (0,∞) →
(0,∞), fs(x) = xs in Example 6 provided [a, b] ⊆ (0,

√
s(s−1)
|p| ), p 6= 0 and m =

sn. �
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Proposition 16. Let 0 < a < b and w ∈ R \ {−1, 0}. Then we have the following
inequality

(b−a)Lww(a, b) ≥
2n−1∑
r=0

(
2n− 1
r

)
as(2n−r−1)(

sas−1

p
)r

r∑
k=0

(−1)k
2rα

(
r

k

)
[eαb+β− eαa+β ],

Proof. The assertion follows from inequality (7) in Theorem 10, for fs : (0,∞) →
(0,∞), fs(x) = xs in Example 6 provided [a, b] ⊆ (0,

√
s(s−1)
|p| ), p 6= 0 and w =

s(2n− 1). �
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