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Abstract: In this work we have studied the evolution of a warped product (WP) manifold under second order
renormalization group (RG-2) flow. We have shown some conditions for the existence of a solution of RG-2
flow on WP manifolds. Also, we have found a necessary condition for warped function under RG-2 flow. In
particular, we study some special WP metric of real line with a manifold. Eventually, by extending conditions
to pseudo-Riemannian manifold, we find a PDE for Robertson-Walker (RW) metrics, and show that there is
no RG-2 flow for RW metrics.
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1. Introduction

The Ricci flow was introduced and studied by Hamilton [8], and has been a topic of interest in
both mathematics and physics. The Ricci flow is an evolution equation for Riemannian metrics.
In the Ricci flow, one begins with a smooth Riemannian manifold M, equipped with a smooth

Riemannian metric go and evolves its metric by the equation

5:8(t) = —2Ric(g(1)),
8(0) = o,

where ¢ € 1, I is an interval, and Ric(g(¢)) denotes the Ricci curvature of g(z).
Many authors, have tried to extend Ricci flow from different point of views. The Ricci flow is the
first-order approximation of renormalization group flow for nonlinear sigma models in quantum
field theory. The second order approximation of the renormalization group flow for the nonlinear
sigma model of quantum field theory, which we label by RG-2 flow, is specified by

Sg= —2Ric—%Rm2, 1)
where

Rm; = g% ¢"" RiimR jpgn, 2)
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denotes the quadratic curvature and « is a positive parameter. Note that for our purposes here, we
can assume o to be non-negative. For ov = 0, the system (1) reduces to the Ricci flow.

RG-2 flow is diffeomorphism invariant but unlike the Ricci flow, it is not a weakly parabolic sys-
tem. Gimre, Guenther and Isenberg, modifying De-Turck method for RG-2, proved conditions for
the short time existence of the second order renormalization group flow in general dimension [4].
Some of the mathematical features of this flow have been studied in recent years, [5], [6], [7] and
[14].

The concept of warped product (WP) metrics was first introduced by Bishop and O’Neill [1]. In
Riemannian geometry, warped product manifolds have been used to construct new examples. The
warped product B X, F' of two Riemannian manifolds B and F' and real warped function u : B — R,
is the product manifold B x F furnished with the metric g = g% + u?g"".

The Ricci flow on warped product manifolds was studied over the last few years [3], [12], [13],
[16] and [17]. In this work, we have studied the property of second order renormalization group
flow on warped product manifolds. First, we investigate an existence condition of RG-2 on WP
manifolds, and extend the curvature criterion of short-time existence. Then, using WP metric cur-
vature and RG-2 flow, we find some relations for warped function.

Many exact solutions of the Einstein field equations and modified field equations are warped prod-
ucts, for instance, the Robertson-Walker (RW) models are warped products. Robertson and Walker
independently showed in the mid-1930s that this is the most general metric possible for describing
an expanding, homogeneous and isotropic universe. Hesamifard and Rezaii, studied RG-2 flow on
RW metric in spherical coordinates [10]. Using property of RG-2 flow on WP manifolds, we have
found a PDE, and we have studied some properties of its solution. We have shown as in [10], that

there is no solution of RG-2 flow on RW manifolds.

2. Preliminaries

For any closed Riemannian manifold (M, go), and for all sectional curvatures Kp(go), at all point
p € M and planes P C T,M, if
1+aKp >0,

then there exists a unique solution g(t) of the initial value problem d,g = —Ric — $Rm?, g(0) = go,
on some time interval [0,7") [4].

Let gf be a Riemannian metric on an n-dimensional manifold F* with constant curvature k, then
Rict = k(n—1)gl and Rm*" = 2k*(n—1)gf. If g"'(¢) is a solution of the second order renormal-

ization group flow (1), with initial metric g (0) = g£, then g’ (r) preserves its conformal class,
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and we may write g7 (t) = ¢ (t)gk , where ¢(¢) obtained by the following implicit function [5], [6]

o(t) = —2k(n— 1)1 +1+ % ‘2¢()+—ak‘

2 2+ ok

Note that Ric(¢g) = Ric(g) and Rm?*(¢g) = 1Rm (g))-

Let (B, g®) and (F,g") be two (Pseudo-) Rlemannian manifolds with dimensions m and n, respec-
tively. Let M = B x, F and g = g% + u?g" where u : B — R is smooth positive function. For
any point (x,y) € M, and vectors X5 Y8 78... € T.B and X ,YF,ZF ... € T,F, we have for the

Riemannian curvature of warped product manifold (M, g) [15];

=

(X8 YB)zF = R(XF,YF)ZB =0,

(X8, YB)7zB = RB(XB Y5)Z5,

(XF,YB)ZE = LHessB(u)(YE,ZB)XT, 3)
(XvaF)ZF =ug (YF ZF)VB (VBM)7

(XF,YF)ZF = RF(XT,YF)ZF — |VBul2, (g (XT,ZF)YF — gF (Y7, 2F)XT).

=
I

x =

where, R, R® and R" are Riemannian curvatures of (M, g), (B,g?) and (F,g"), respectively. Also,

we have for the Ricci tensor [15]

Ric(XB.YF) =0,
Ric(X®,Y®) = Ric® (X8 Y®) — Hess® (u)(X®,Y®), 4)
Ric(XF,YF) = Rict (XF,YF) — (uAgsu+ (n— 1)\V3u\§3)gF(XF,YF),

where, Ric, Ric® and Ric" define Ricci tensors of (M, g), (B,g®) and (g7, F), respectively.
Generaly, at a point (x,y) € M and vectors X,Y € T, ,,M, where X = X? + X",y =yP 4+ v",
XB Y8 € T.Band X ,Y¥ € T,F, we have

Ric(X,Y) = Ric®(X®,Y®)+Ric" (X', Y")—2Hess®(u)(X®,Y?)
—ubgsugh (XT,¥T) = (n—1)|VEul2,g" (X7, ¥T).

Directly, we can calculate, the Riemannian curvature R(X,Y,Z, W) = g(R(X,Y)Z,W), and have:

) = RXF)YF zB wh)=R(XB Y8 ZF WwF) =0,

) — RB(XB,YB,ZB,WB),

R(XB YF ZB.WF) = —uHess®(u)(XB,28)g" (YF' ,WF), (5)
) = w’RO(XTYFZF W)
_MZ‘VBM‘EB(gF(XF,ZF)gF(YFij)_gF(YszF)gF(XF7WF)>.

Let (N, h) be an m-dimensional (m > 2) Riemannian manifold, and / be an open interval of the real
line equipped with the negative of the standard metric. A Lorentzian manifold (M =1 x;N,g =
—ds® + f?(s)h of dimension m + 1 is a generalized Robertson-Walker space time where f: 1 — R+

is a smooth function [2].
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When, (N,h) is a three-dimensional manifold with constant curvature, we call (M, g) a Robertson
Walker space time. In terms of spherical coordinates, Robertson-Walker metric can be written in

the form

d 2
g=—ds’+(5)| 5 rk 5 +12(d6? +sin® 0d9?) |.
—kr

3. Short-Time Existence

On a Riemannian manifold, if the sectional curvatures satisfies certain conditions, then the flow is
(weakly) parabolic. We extend this curvature criterion for short-time existence for the RG-2 flow

to WP manifolds. At first, we calculate the sectional curvature of WP manifolds.

Lemma 1. Let (M = B x, F,g = g% +u?g") be a WP manifold, then at point (x,y) € M and any

linear independent vectors X2 Y% € T.B and X¥,Y¥ € T,F, we have

XEAYER = [XEAYP,
XEAYFR = wXPAYEL,
IXEAYPIZ = uwlgP(XP,XP)gh (YF,¥T),
(XB+XF)AYBZ = [XBAYER+(XFAYFL, (6)
(XBE+XPYAYF2 = |XBAYFZ4|XFAYF2,
((XB+XPYAYB+YE)2 = |XBAYE|4+ |XEAYFRZ 4+ |XBAYT24 VB AXT)

2 (XP YP)g (X YF).
where |X A Y|§ =g(X,X)g(Y,Y)—g*(X,Y) is the area of a parallelogram in T(\,yM spanned by X
and Y.

Proof. The proof is directly obtained from the definition as follows:
We have for linear independent vectors X5, Y2 ¢ T,B
XEAYIE = gx XP)g(r,vP) @ (X7, ¥")
g2 (XP XP)gP (Y2, YP) — (682 (XP,YP) = |XP AYP|%,.
For linear independent vectors X/ YF € T,F, we have
XEAYFR = e(XT XP)g(Y Y ") — g (X7, YT)
2
— W2¢F(XFXF)ugF (YF,YF) — (MZgF<XF7YF)) — u*|XF /\YF|§F‘
Also, for vectors X2 € T.B and Y¥ & Ty, we have
XEAYTS = g(XP XP)g(YT,¥T) — g (XE¥T) = u?gP (XP XP)g" (Y7, ¥").
Now, for linear independent vectors X = X? + X" € T, ,,M and Y? € T\B, we have
XAYPS = e(XP+XTXP+XT)g(YP,YP) — g2 (X2 + X", YP)
= (8(X2.XP)+g(X" XF))g(Y®,¥?) — (X", Y?)
= (8(XBXP)g(Y2,YP) — (X)) +g(X" XF)g(YP,Y?)
= [XBAYB+|XFAYFL.
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Moreover, for linear independent vectors X = XB4xF e T(x’y)M and Y¥ € T,F, we have
IXAYFZ = g(XB+XF XB4XF)g(YF ¥F)—g*(XB+XF YF)
= (g(X®,X5) +g(X" XF))g(r" . ¥F) = (X" ¥F)
= (X7 XF)g(r"YF) = 2(XFYF) ) +g(XPXP)g(¥" . ¥T)
= [XFAYFR+|XBAYEL.
Eventually, for linear independent vectors X = X2 4+ Y7y =Y8 +vF ¢ T(x,yM, we have
IXAYE = g(XB4+XF XBLXF)g(YB+YF YB4YF) — g2 (XB+XF YB4YF)
= (g(X”.XP)+g(x" . X")) (g(Y®,¥®) + (" ¥"))
(5. ) 1 g(x7 )’
= (8(XBXP)g(Y2¥®) — 2(X2,¥P))
+(8(XF XF)g(YF,¥F) = (X, ¥F))
(8CxPXP)g(r"¥F) ) + (X, XF)g(v2,v"))
—2g(X%,¥P)g(X".¥T)
= [XEAYPR+IXEAYFR+XEAYFR+XEAYE]
—2u2gB(XB ¥B)gF (XF ¥F).
]
Proposition 1. Let M = B x, F be a warped product manifold, then at any point (x,y) € M, the

sectional curvature of warped product metric g = g% + u?g" is calculated as follows. In fact, for

linear independent vectors X2 Y% € T.B and X7, YT € T,F, we have

K(XP.YP) = KF(XP.YP),
HessB(u)(XB,XB)
K(XxBy") = - ,
e ugP (X XP) @
1
KX YF) = (KFXEYF) = VBl )
where K, K and K*' are sectional curvatures of (M, g), (B,g?) and (F,g"), respectively. Also, we
have B yB)|xB A yB|2 F yB\|YF A VB2
K(XB,YB)|XBAYB2+K(XF,YB)|XF AY
Ko ysy = KOO AV KX Y0 X YO
[ XBAYB|Z+ |XFAYB|Z
- K(XB YF)XBEAYF S+ K(XF,YF)|XFAYF;
KX, YF) =
IXBAYFZ+|XEAYE2 8)
1
K(X,)Y) = (KXB,YB XBAYB2+K(XF YF)|XF AYF|?
00) = g (KO YDAV KX P AT

+K (X2 YP)XBEAYFS+ K(XF,YB) X AYEZ —2R(XB,YF,YB,XF)>,
where X = X84+ XF Yy =YB+YF e T, M.

Proof. By (5), (6) and definition of sectional curvature, for a plane in 7,.B, generated by vectors

X8 and Y2, we have
R(XB YB xB yB) RB(XByB xByB
K(XB,YB) — ( ) 9 ) ) _ ( 1) 9 9 )

= = KB(xB Y®).
IXBAYB[2 XEAYE[, ( )
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Also, for a plane in T, F, generated by vectors X Fand YF, we have
R(XF YF xF yF)y wREXTYPXEYE) [ VPuly | XP AYP [,
IXEAYFZ u | XEAYF|?,
8

L r P yF |VBM|52'B
= ;K (X", y") — "

K(XF,YF) =

For a plane in 7(, )M, generated by vectors X B and YF, we have
R(XBYF XBYF)  —uHess®(u)(X® X®)g" (YF,Y")
XEAYF2 2P (XP XP)gF (Y ¥F)

Hess®(u)(XB,XB)
ugh(X®,x8)
Now, from (5) we have
R(xB+xF v® xB 4+ xF vB)=R(X® Y® xB v®)+ R(XF Y8 XV Y?),
R(XB4+xF yF xB+xF vF)=R(XB,vF xB yF)+R(XF,YF xF vF),

K(XByF)

RIXB+XF ) YB+YF XB 4 XF YB+YF) = R(XB,YB XBYB)+R(XF ) YF XF YF)
+R(XF,YB XF ¥B) +R(XB,YF XB yF)
—2R(XB YT Y8 XF).
From (6) and (9) we have
K(XP L XF yP) — R(X®+ X Y8 X8+ X Y5)
’ [XB 4+ XF A\YE|2
R(XB Y8 XB YB)+R(XF Y8 XxF YB)
IXBAYB[Z+|XF AYBZ
K(XBYB)|XBAYBZ+K(XF,YB) X AYEZ
IXBAYB|2+ [XF AYB]2 '
Also, from (6) and (10) we have
B F yF yB F yF
K(XP+ X ¥F) = R(XB4+XF yF xB 4+ xF yF)
’ |XB+XEAYT|2
R(XB.YF xB yF)+ R(XF YF XxF yF)
IXBAYF2+ |XF AYF2
K(XBYF)XBAYFZ+K(XF,YF)XE AYF[;
IXBAYFZ+ |XFAYE2 ‘
Atlast,let X = XB+XF andY = Y2 +YF, so from (5) and (11) we have
R(X,Y,X,Y)
K(X,Y) —
X AY[2
1
= ———(R(XB,YE XB YB)+R(XF,YF X ¥F
|X/\Y§( ( ) ) ) )+ ( Y ) 9 )
+R(XF,YB,XF,YB)+R(XB,YF,XB,YF)—2R(XB,YF,YB,XF))

85

(&)
(10)

(1)

1
— (K(XB,YB)|XB AYBZ+ K(XE YE)XEAYFR+K(XB,YF)XBAYF:

IXAY|2
+K(XT,YE)[XT AYE2 + 2uHess® (u) (X, YB)gF(YF,XF)) .

By extending short-time existence of RG-2 flow we have the following theorem.
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Theorem 1. Let (M = B x,,, F,go = g5 + u3gl’) be a closed Riemannian manifold, which satisfies
the following conditions:

i) For all points x € B, and planes P C T;B, the sectional curvature K of (B, gf) satisfies:
1+ akKp > 0.
ii) For all points y € F, and planes P, C T,F, the sectional curvature Kg of (F, gOF ) satisfies:
oK}, > sup <a]VBu0]§g — u2>.
x€B

iii) The tensor uggh — otHess® (uo) is positive definite.

iv) For all point x € B, and linear independent vectors X2 Y2 € T,B, we have
aHess® (uo) (XB,Y®) = uogB (XB,Y5).

Then there exist a unique solution g(¢) of second order renormalization group flow (1), with initial

metric g(0) = go = g5 + ujgk, on some interval [0,7).

Proof. If 1+ OCKE] (g8) > 0 for any x € B and planes P, C T,B C T(x )M, by (7) we have 1+
OCKp1 (go) > 0.
Also, if OtKI{T2 > a\VBuo@g —u}, forany x € B, y € F and planes P, C T,F C T\, M, we have

o
14— (KR (65) = [VPuoly ) > 0.
0

so, by (7), we have 1+ aKp,(go) > 0.
Let gf — ;X Hess"(uo) be positive definite, this means (gf — = Hess" (uo)) (X", X") > 0, for all
point x € B and all vectors X® € T,B. So, for any point y € F and Y € T,F, we have

Hess®(uo)(XB,XB) gl (YF,YT)

-
uogf (XB,XB) gl (YF,YT)

> 0.

Then, from (7), at the point (x,y) € M = B x F, and planes P; C T(, )M spanned by X B e T.Band
YF € T,F, we have 1 + aKp,(go) > 0.

Now, from (i) we have

akB(xB yB)XEAYE| > —|xBAYE, (12)
and from (ii), we have
|XF A YF|2 2 2
Tga(KF(XF,yF)_vauygo) > —[XF AYFL2, (13)
also, from (iii), we have
—owHess® (u) (X", XP)g" (Y" . ¥") > —|XBAYFZ, (14)

—owHess® (u) (Y2, Y?)g" (X¥,X") > —|yP AXF2. (15)
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Let X = X84+ XF anY = Y2 + Y*. By adding two sides of inequalities (12) and (15) we have

Oc(K(XB,YB)|XB AYP2 4 K(XT, V) X" AYB|§) < —[XPAYBR—XTAYPR (16)
So, from (8) and (16) we have 1 + aKp, > 0, where P, C T{, ;)M spanned by vectors X and ¥ B,
Now, By adding two sides of inequalities (12) and (14) we have

a(K(XB,YF)\XBAYF\§+K(XF,YF)\XFAYF|§> < —IXEAYFR—XFAYFR a7

So, from (8) and (17), we have 1 + aK); > 0, where Ps C T{, ,,M spanned by vectors X and YF.
Finally, by adding two sides of inequalities (12), (13), (14) and (15) we have

aK(X,Y)XNY; > —|XBAYE|—|XFAYFZ—|XBAYF]; as)
—|YBAXF|Z +2auHess® (u) (X5, Y8) " (XF,YF).

‘We have from (6) and (18)

oaK(X,Y)[XAY[; > —|XAY[;—22gP (X YB)g" (X ¥F)

(19)
+2auHess® (u)(XB,Y8)gf (XF¥T).

Then, from (19) and (iv), we have 1 + oKp, > 0, where Fs C Tix, y)M, is spanned by vectors X

and Y.

Therefore, at any point (x,y) € M = B x F and all plane P C T{,)(B x F), we have
1+ OCKp(g()> >0,

then from [4], there exist a unique solution g(¢) of (1) on M = B X, F with gy = gg + u%gOF . n

Remark 3.1. The first condition of the short-time existence for the RG-2 flow on (B x, F, g5 +

u*gl), satisfies the condition of existence of RG-2 flow for (B, g5), too.
Remark 3.2. From (iii) and (iv), we know aAPug < mug, where m is the dimension of B.

Remark 3.3. Let $? be endowed with metric g = d6? + sin®> ¢d¢> and (F,gl) be a closed
Riemannian manifold with positive sectional curvature bigger than 1. If in local coordinates
up(6,9) = cosBsing, where —% < 0 < % and 0 < ¢ < 7, then there exist a unique solution

of RG-2 flow, with initial metric g(0) = g + u3gh, on some interval [0,T).

4. Evolution Of Warped Product Metrics

Now, we try to find a family of WP metrics g(¢) = g?(¢) +u?(x,)g" (t) on some interval [0,T),
with u : B x [0,T) — R™, that satisfy the RG-2 flow on product manifold M = B x F. First, we
calculate quadratic curvature Rm? of any WP manifold.

In local coordinates, we use i, j, k, ... for the indices of coordinates of B, and 3,7, A, ... for indices

of coordinates of F. Also, A,B,C, ... show the indices of coordinates of B and F', generally.
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Proposition 2. Let M = B x, F be a warped product manifold, then at any point (x,y) € M, for
XB YB € T.Band XF' | YF € T,F, the quadratic curvatures of warped product metric g = g8 +ulgh

are as follows

Rm*(XBYF) = 0,
2

Rm2(XB,YB) = Rm?(XB,Y5)+ = gb(Hess®(u)(X5,.), HessB(u)(Y5,.), 0
u

Rm>(XF,YF) = %RmZF(XF,YF)—%‘VBM@BRLICF(XF,YF)

+2”14;21]VBM|2BgF(XF,YF)—|—2|HessB(u)\§BgF(XF,YF).

where Ricf" denotes the Ricci tensor of (F,g"), and Rm?8 and Rm?F are quadratic curvatures of

(B,g®) and (F,g"), respectively.

Proof. By curvature tensor properties in local coordinates;

Rapcp = —Rpacp,
Rapep = Repas = Rpapc, (21)

Rapcc = Raacp = 0.

Also, by using (5), we have in local coordinates;

Rpijk = Rpyij = Rpyei = 0,
Riixi =RE. .
Rigjy = —uHess (u)ijgﬁy,

Rﬁyex = MQREyg;L - ”2|VB”‘§B (8596’% *gl;egg;t)-
Then, from (2), (21) and (22) we have

R mZB — gCD

; 85 ¢“" RicecRppru
= g™ g'PgqmRijiRpipm + 8787 8" RijipRprpy + ™ €78 Rijui Rpieym
+/*g" g ANR; jurRpiyn + 8787 8" RiyjiR gyiom +gngkgMRiuj/lRﬁykn
+g‘uyglngijiu)LjR/3ynk + guyglngGCRiukeRﬁynC =0.
All terms in above equation are zero. Similarly,
lezj = gPgEF gCHRcpGR pFH
&g &P RitonpR jing + 8P 8487 Ry R jp1s. + 8P 87 8 RiyuR i
_ gB;kl gB;mngB;[JKIRgcmp Ré}lnq +2( LTIZ gF;,uﬁ) gB;kl( ;12 gF;y), )
X (—MHBSSB(u)ing;.u'J/)(—MHESSB(M)jlggl)

2n .
= Rm,-ZJB + ﬁgB’leessB(u)ikHessB(u)ﬂ.
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Also,
R m% L = P gEF ¢OH Ry i Ry
= &g g% RpunsRynco + 878" ¢ ReiuRynco + 8 8"* 84 RpipuRy
= (g (") (g 00) (RS, 5 — 121 VPuy (86 8hs — Shnghs)
< (1R g =121V (el 85 — 8 810)
+2gF;ing;kl(I:—ZgF;M)(—uHessB(u),-kggu)(—uHessB(u)ﬂg%)
= @ (gF;MgF;nggF;SGRguMR%CG +2|VPuliy (n—1)gp, — 4gF;#5RI€M§WBu‘§B>
+2g3;ijg3;k1HessB(u)ikHessB(u)ﬂggy
= LR 4 2m \VBufd el — A Ricl [VEul, +2|Hess® (u) gl
where |HessB(u)\§B = gBiigBM g essB (u)Hess® (u) . u

We know from remark 3.1, the conditions for short-time existence of RG-2 flow on B X, F with
initial WP metric gg = gg + u2g5 , we show that at least there is a solution of RG-2 flow on B with
initial metric g5. So, for finding RG-2 flow g(¢) on M = B x F, we assume there is RG-2 flow

¢8(t) and g¥ (t) on manifolds B and F, with initial metric g5 and g, respectively.

Proposition 3. Let (B,g%(t)) and (F,g" (1)) be the RG-2 flows, i.e. d,g® = —2Ric® — $Rm*® and
08" = —2Ric" — $Rm*F . Letu: Bx [0,T) — R be a function satisfying

uHess®(u)(XB,Y8) = %gB(HessB(u)(XB,.),HessB(u)(YB,.)), (23)
n—1 o
dug" (XFYF) = T VB2, (12— T VRulZ, ) g (XF,¥T)
o 1
+<—3|V3u|23+u—f)RicF(XF,YF) (24)
u u
aut =1 opur yr
g R (P,

for any vectors X8 Y8 € TBand X¥',Y¥ € TF. Then, there is solution of RG-2 flow on M = B x , F
with the metric g(¢) = gB() +u(t)g" (¢).

Proof. From (23), we have

al g
Hess® (u);; = 3 ~ &M Hess® (u)Hess® (u) (25)
u
Also, we have
. o
9,8ij = 8;g5 = —2chf§- - ERm,sz. (26)
Therefore by (4), (20), (25) and (26), we have d;g; i = —2Ric;j — %Rm?j.

Since the Agsu = g%V Hess® (u);;, by taking trace of the two sides of equality (25), we have

al
Agsu = §;|Hess3(u)|§3. (27)
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From (24) and (27), we have

. o 1
2udugt = 2(u*— 2)Rlcg},+ E(u2 — ;)lezf; 1
n—
+2(uAg3u+(n—I)WBu@B)gﬁy—aTWBuEBgSY (28)

20,0 14 i F B(,\2 oF
—1—;\V u\gBRchy—a]Hess (u)\gggm.

Also,
dgpy = 8t(u2ggy):2u8,uggy+u28ggy

29
= 2u8tugﬁy 2u2Rlcl37—u ngM 29)

From (4), (20), (28) and (29), we have 8,gﬁy = —Ricgy — ERm Also, from (4) and (20),

By
digip = —Ric;g — Rm ip 1 obvious [ ]

Corollary 1. With the same assumption as in proposition (3), a necessary conditions for solution

of the second order renormalization group flow is

(04
Ul gsu = ) |HessB(u)\§B, (30)
1 21 a
ou = ( 3|VB |4 i )scalF—i-—l4 | F|2
N u dn (3D
+ 3 |VBu\§B (uz - §|VBM|§B>.
where scal® and R denote the scaler curvature and Riemannian curvature of (F, g (¢)).
Proof. The equation (30) will proved by taking trace of (23). We have
2F _ F; 2F _ oFiBY gFiCA oF Mk oF i66 _|pF2
trer,Rm™ =g BYRmBy By gFibh ghimp oFie RﬁCTIS s = IR [or- (32)
By taking trace of the two sides of equality (24), the equality (31) can be concluded. n

Remark 4.1. Note, that the eqality (23), for Ricci flow reduces to Hess? (u)(X2,Y8) =0 [12].

Remark 4.2. Any part of (31) depends on parameter ¢ and point x € B, and is independent of
y € F, except the first two, they depend on point y € F, as well. So,

2 4
uw—-—1 o oaut—1
(= Ve sl + 3 = IR

is independent of y.

For the Ricci flow, the necessary condition reduces to [12]

-1
scalF

Ot = Agsu+ 7]VB |23 4+

As it is seen, all part are independent of g € F, except the last one. So, scal’’ is independent of

g, this shows Ricci flow (F,g" (t)) has constant scaler curvature. Comparing with Ricci flow, this
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fact for second order renormalization group flow is totally different.

We have for the 2-dimensional Riemannian manifold (F,g"), Ricl = %scalF gl and Rm* =

1

3(scal™)?g" [14]. So, we can simplify corollary (1) to the following corollary.

Corollary 2. Let (B,g5) be a Riemannian manifold and (F,g}) be a 2-dimensional Riemannian
manifold, and g5(¢) and g (¢) be solution of RG-2 flow on B and F with initial value g5 and gf,
respectively. Obviously, the WP metric g(¢) = g5(t) +u?(¢)g" (t) on M = B x F is RG-2 flow if

lya, g o u—1 Foaut—1
u = E(EW M|g3+T)SCCll +§ 3

1 o
+u—3|VBu|§B <u2 - §|VBM|§B)~

(scal™)?

Now, important question is whether there is a solution of PDE system (23) and (24)? We know, that
it can not be solved, by standard methods for solving a PDE. Therefore, we assume that manifold
F has constant sectional curvature, and we will get a simpler differential equation, which does not

depend on the points of manifold F.

Proposition 4. Let (B,g5) be a Riemannian manifold and g®(¢) be a solution of RG-2 on B with
initial value g%(0) = g5. Moreover, let (F,gf ) be a Riemannian manifold with constant curvature
k. Then the WP metric g(¢) = g5(t) +u*gl on M = B x F is an RG-2 flow, if the warped function

u satisfies
(04
UA U = §|Hess3(u)\§g, (33)
n—1 oan—1 2
o =" (1V2ulZs =) =35 — (1v2ui2, ~ ) (34)
Proof. Analogous to the proposition 3 and corollary 1, from (33) and 8tg?j = —2Ricfj — %Rmizf ,
we conclude d;g;; = —2Ric;j — %ngj.

We have for constant curvature manifold gf ,

Ric = k(n—1)gf,

(35)
Rm* = 2k*(n—1)gt.
As aresult of (4), (20) and (35);
Ricgy, = (k(n—1)—uAgpu—(n— 1)\VBu]§B)gEY
Ry, = (2L —4RL VU2, + 255 \VBul, 2 Hess ()2, )¢, (36)
2
2851 (]VBu@B - k) ggy+ 2|HessB(u) ];ngy
Also, we have
d8py = 8t(u2g§y) = 2u8,ug£y (37)
From (33) and (34) we have
an—1 2 o
udu = (n—1) (WBM@B —k) e (|V3u\§g —k) +ubgu— 5 Hess® (W% (38)
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From (36), (37) and (38), we have d,gg, = —2Ricgy — %lezsy. ]
Corollary 3. The function u in proposition 4, satisfies the following inequality
(1) < Uy exp(" 1) (39)
uix X)eEXpl———
) — p 2a )

where U is a positive real function on B, i.e. U : B— R*.

Proof. From (34), we have

2 20 3
a2(]VBu|23 —k) —2au2(]VBu|23 —k) S Y
g 3 n—1
2 200 3
= (OC|VBu|23—ka—u2) —ut = g = ((n—l)u—2058,u).
8 n—1 n—1
So (n—1)u—2a.d,u > 0, that means function u is a sub-solution of the following
8;1/[ n—1
u - 2o

Now, as an example of the gained equation, we study the case (B, g?) = (R, ds?).

Corollary 4. Let (F, g{ ) be a n-dimensional manifold, with constant curvature k. If the function

u(s,t) satisfies the following PDEs:

o
Ulgg = 5(”ss)2 (40)
n—1 an—1 2
=" () k) = T () =k) @1
or, equivalently,
2a 2
- =) = (o) ke~ “2)

the warped product metric g(t) = ds® + u?(s,t)gf on M = I x,, F is a solution of RG-2 flow.

Remark 4.3. From (40), u is the solution of ODE ug = 0 or %uss = u. So,the warped function u
is one of the following:

i) u(s,t) = A(t)s+ B(1),

ii) u(s,t) = A(r) exp(as) + B(t) exp(—as),

where A and B are real functions, and aa? = 2.

Corollary 5. Let the warped product metric g(¢) = ds* +u?(s,t)gk is a fixed point of RG-2 flow.
Then, the warped function « has one of the following forms:

i) u(s) = bs+c, for k = b?,

ii) u(s) = Zsinh(as +c), for k = b2,

iii) u(s) = 2 cosh(as +c), for k = —1?,

iv) u(s) = exp(as+-c), fork =0,

where aa® =2, b € R and c is a constant parametr.
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Proof. If u, = 0, then from (41)
(us)? = k. (43)
Or
2
(us)? = auz +k. (44)
Let k = b?, then from (43), u(s) = bs + c, this proves (i).
Also, from (44), u; = v/ a?u? + b2, where ata® = 2. The solution of the above equation is as follows
Ln(/ a*u* + b*+ au) — Lnb = as + c.
So
b .
u(s) = —sinh(as+c),
a
wich is (ii).
Let k = —b?, then from (44), u; = Va?u? — b2, where aa®> = 2. Also, The solution of above

equation is as follow
Ln(\/ a*u? —b*+au) — Lnb = as+c.

So

b

u(s) = —cosh(as+c).

a
wich proves (iii).
Now. let k = 0, then from (44), u; = au, where oa® = 2. So,

u(s) =exp(as+c).

ie. (v) [ ]

Corollary 6. There is no RG-2 flow on WP manifolds M = R x,, F with WP metric g(t) = ds* +
u®(s,1)gF, except fixed point of RG-2 flow, or (non-warped) product metric g(t) = ds* + u?(t)gF .

Proof. From part (i) of remark 4.3, let u(s,7) = A(t)s+ B(r). we have, u; =A and u; = A's + B .

So
20 20, /
ud(u— lut) = (As+B)3<As—|—B——1(As+B)>
— n_
2a / 2a / /
- <A4 YL >s4 + (4A3B ~ 2% A2(AB +3BA )>s3
n— 16(x n—1 (45)
<6A232 — -~ AB(BA +AB’)) 52
n_
2 / i 2 /
+(44B° - —ale(3AB +BA))s+ B (B~ 7“13 ).
n— n—
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Similarly

2 2
(oa(us)2 —ka — uz) = (ocA2 —ka — (As +B)2>
= A%t 1aadBS 4 (4A232 +2A20(kB? —Az))s2 (46)
2
4AB (32 ko — ocA2>s + <32 ko — aAZ) .

From (45), (46) and by comparing the coefficients of s* 53, ... at two sides of (42), we have

AA =0,
A(AB +3BA') =0,
6a / /
242 (kB? — A?) = 2AB? — —IAB(BA +AB), (47)
n_

2(n—1)AB(k—A%) + B*(3AB + BA) = 0,
2 /
a(k—A?)% +2kB> —2A%B? + — BB =0.

n—

From, first condition of (47), we have A = 0 or A '=0.LetA=0,so0

2 /
ok® 4 2kB? + —1333 =0. (48)

For k = 0, B is constant.

For k = —b?, we have B = %, where aa® = 2. Or, B is the following implicit function
o
B’ = o kLn(ok+ 2B%) 4 2k(1 —n)t +c, (49)

where c is a constant dependent on ug.
For k = b?%, B is not constant, and B is the implicit function (49).
Now, Let A" =0 and A = 0, from the second condition of (47), we have B =0. So, from (47)

(otk — 1)B? = A2,
B(k—A%) =0, (50)
a(k —A?)? +2kB> — 2A’B?> = 0.

Since the A # 0 and from the first condition of (50), we have B # 0 and @k # 1, so from second

condition we have k = A2. It is the same as part (i) of corollary 5.

From part (ii) of remark 4.3, let u(s,t) = A(t) exp(as) + B(t) exp(—as). we have, u; = aA exp(as) —
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aBexp(—as) and u, = A’ exp(as) + B exp(—as), where ota® = 2. So

200
u(u— lu,) = <Aexp(as)+Bexp(—as)>
n—
2 ! /
X (A exp(as) + Bexp(—as) — —al (A exp(as)+B exp(—as))
n—
2 , 2 /
= A (A - —alA ) exp(4as) + B> (B - —alB ) exp(—4as)
n— n—
W o 51)
(44%8- —alAz(AB +3B4)) ) exp(2as)
n —_
2 ! /
+ (4AB3 - 70‘132 (BA' +3AB )) exp(—2as)
n J—
2 / 2 /
(3AZB(B - —O‘IB )+ 3AB%(A — —O‘IA )) .
Moreover,
(ot(ug)? —koe —u?)? = <Oc(aA exp(as) —aBexp(—as))* — ko — (Aexp(as)
2
+Bexp(—as))2> 52)
= A%exp(4as) + B*exp(—4das) + (38A2B%> + K*a* + 12k0AB)
—2A%(6AB + ko) exp(2as) — 2B*(6AB + ko) exp(—2as).
From (51), (52) and by comparing two sides of (42), we have
AA =0,
BB =0,
16438+ 2kad? — =% A2(AB +3BA") = 0
n 1 ’ (53)
16AB® + 2katB? — —O‘IB2 (BA' +3AB) =0,
n —_—

6Q / /
32A%B% + —IAB(AB +BA') + kK*o® + 12katAB = 0.
n_

From the first condition of (53), A =0 or A" = 0, and from second condition of that, B=0or B = 0.
By some conclusion we have either A=B=k=0,0rA,B#0. IfA,B # 0 and A'=B =0, from
third condition of (53), we have 8AB = —ka. It is the same as parts (ii) and (iii) of corollary 5. ®

Corollary 7. Let (N,h) be a n-dimensional non-flat manifolds with constant curvature k. Let u(z)
is the following implicit function:

ak+2u*(t)

o
W (t) = —kLn( k2

- >+2k(1—n)t+1, (54)

the metric family g(¢) = ds? + u?(¢)h is RG-2 flow, with u(0) = 1.

In special case, if @ =2, n =3 and k = 1, the function u(z) is as the following:
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u(t)

e+

it shows that the solution is ancient, and pinch at time 79 = %(1 —Ln2). Also, if « =1, n =3 and

k = —1, the function u(z) is as the following:

A

! (t) L~ et - - _

k=—1l,a=1,n=3

Y

5. Evolution Of RobertsonWalker Metrics

One of the important pseudo-Riemannian metrics in general relativity is Robertson-Walker metric.
We shall consider a RobertsonWalker spacetime as a warped product metric.
The Properties (4) and (5) are established for pseudo-Riemannian manifolds, too. So, the propo-

sitions 2 and 3 apply to warped product manifolds of pseudo-Riemannian manifolds.

Proposition 5. Let (N, /) be a 3-dimensional manifold, with constant curvature k, the Robertson-
Walker metric g(t) = —ds* + f2(s,t)h is a solution of (1), if f satisfies the following PDEs:

ffss = _%(fss)z (55)
fi= = (P4 ) = (2 8) (56)

Proof. Let (B,g%) := (I, —ds?) and (F,g") := (N,h). We have VBf = — f; and Hess®(f) = fs
Then,

IVF12s = g% (f0s, £05) = —(£)%,
and

’HessB(f)‘gB = (fss)z'
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From proposition (4), desired outcome is obtained. [ |

From (55), is either f(s,t) = A(t)s + B(s), or f(s,t) = A(¢) sin(as) 4+ B(t) cos(as). Therefore, the

following corollary from [10] is a consequence of corollary (6).

Corollary 8. There is no RG-2 flow on Robertson-Walker manifolds with WP metric g(z) =
ds® + f*(s,t)h.
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