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Abstract 

In this study, we described tubular surface around a Legendre curve in 

Riemannian Sasaki space with respected to Frenet frame. And than we give some 

definitions about special curve lying on this surface. 

Keywords: Canal surfaces, Tubular surfaces, Connections, Geodesics, Sasaki 

spaces, Legendre curve. 

 

 

Sasaki Uzayında Bir Legendre Eğrisi Çevresindeki Boru Yüzeyi 

Özet 

Bu çalışmada, Riemannian Sasaki uzayındaki Legendre eğrisi etrafındaki tübüler 

yüzeyini Frenet çatısına göre tanımladık.  Bu yüzeyde yatan özel eğriler hakkında bazı 

tanımlar verdik. 

Anahtar Kelimeler: Kanal yüzeyler, Boru yüzeyler, Konneksiyonlar, Geodezikler, 

Sasaki uzaylar, Legendre eğrisi. 
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1. Introduction 

Recall definitions and results[1, 5, 7]. If the four-elements structure  ),,,( M   

provide the following conditions, it is called an almost contact manifold and the three-

elements structure  ),,(    is called almost contact structure.  
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where  M  , ,  and      are  3  manifold,  )1,1(   tensor ,    )0,1(   tensor and 

)1,0(  tensor, respectively.  Let  g   be   a  Riemannian metric on  .M   If  

),()(),(),( YXYXgYXg    

the five-elements structure  ),,,,( gM   is called an almost contact metric manifold. 

Moreover, if  

),,(),( YXdYXg    

the five-elements structure  ),,,,( gM   is named contact metric manifold where  

d   is  )2,0(  tensor. On the other hand if  

0),(2),](,[),()1(   YXdYXYXN  

for  )(, MYX    then the five-elements structure  ),,,,( gM   is named Sasakian 

manifold. Next if 

,)(),()( XYYXgYX    

the five-elements structure  ),,,,( gM    is Sasakian manifold where     is Levi-

Civita connection on  M  .  The opposite of the last sentence is also true. 

If the structure vector     is a Killing vector field with respect to  g   i.e.  gL 0 , the 

five-elements structure  ),,,,( gM   is called a  K  -contact structure. 



  

136 

 

The contact subbundle   0)(:)(  XmTXD Mm    of  TM   is called contact 

distribution. The 1-dimensional integral submanifold of a contact distribution is called a 

Legendre curve. 

In contact geometry, it is useful to give the following proposition, lemma and two 

theorems, which related to this study. 

Proposition 1.1 [1,2]  Let  ),,,( g   be contact metric manifold . If     is a 

Killing vector, we have 

1)  ,XX     

2) The sectional curvature of any plane spanned by     is 1. 

Lemma 1.2 [1,2] Let  M   be a Sasakian manifold with the five-elements 

structure  M,,,,g  . We obtain 

RXY  YX  XY,

RXY  YX  gX,Y  XY.
 

Moreover,   XRX   for all unit vector fields  X   orthogonal to    . 

Theorem 1.3 [1,2] If  ,)()( YXXYRXY     then  M   is a Sasakian manifold, 

where     is a Killing vector. 

Theorem 1.4 Let  M   be a Sasakian manifold with the five-elements structure  

M,,,,g .  The torsion of its Legendre curve which is not geodesic is equal to 1. 

Proof.  Let     be an unite speed non geodesic Legendre curve on  M    

 : I  Dm  M

s  s  1s,2s,3s
.

 

We know  0)(
.

   and  .)(
.

Ts    The Frenet vector fields of     is obtained as the 

following way  
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  BNT   

On the other hand we have  

 TT  T, TT  N.   #   
 

 

  Afterward we can calculate the directional derivative of   TN    and      as 

follows.  

TN  TT

 TT  TT

 T  

 T  B
 

and  

.N

TT



 
 

Hence  

   1.   #   
 

 

After now, we will admit that a Legendre curve is non geodesic an unite speed 

Legendre curve on  M  Sasakian space. 

2. Tubular Surface 

Let us recall the definitions and the results of [3]. A canal surface is named as the 

envelope of a family of 1-parameter spheres. In other words, it is the envelope of a 

moving sphere with varying radius, defined by the trajectory with center  )(t   and a 

radius function  )(tr  . This moving sphere  )(tS   touches it at a characteristic circle  

)(tK  . If the radius function  rtr )(   is a constant, then it is called a tubular or pipe 

surface. Let   BNT ,,   be the Frenet vector fields of    , where  T  ,  N   and  B   are 
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tangent, principal normal and binormal vectors to    , respectively. Since the canal 

surface  ),( tK   is the envelope of a family of one parameter spheres with the center     

and radius function  r  , it is parametrized as 

 

Figure 1.  A section of the canal surface (Doğan 2011). 
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 This surface is called the canal surface around the curve    . Clearly,  )(tN   and  )(tB   

are spanning the plane that contains the characteristic circle. If the spine curve  )(s   

has an arclenght parametrization   1)( 


s  , then the canal surface is reparametrized 

as 

).()(1)(sin

)()(1)(cos

)()()()(),(
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For the constant radius case  rsr )(  , the canal surface is called a tubular (pipe) 

surface and in this case the equation takes the form 

  ,)(sin)(cos)(),( sBsNrssL    (1) 

 where   20   . 

After this, it will be admited that the tubular surface around of a Legendre curve is 

the tubular surface. 

3. The Tubular Surface's Fundamental Forms 

Let  3:)( EIs    be Legendre curve. A parametrization  ),( sL   of the 

tubular surface has given in (1). The partial derivatives of  L   with respect to the 

surface parameters  s   and     can be expressed in terms of Frenet vector fields of     

as  
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We can also choose a unit normal vector field  U   of  L   as 

,sincos BN
LL

LL
U

s

s 


 



  

where we know that 

   .cos1
2222

 rrFEGLLs   (2) 

 The first fundamental form  I   of  L   is defined as  

22 2 GdyFdxdyEdxI   

where 
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On the other hand, the second fundamental form  II   of  L   is defined as  

22 2 gdyfdxdyedxII   

in which 
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,cos1cos,

rLUg
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rrLUe

s
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When on any surface  02 FEG  , it is regular surface. 

Lemma 3.1  ,sL   is a regular tube, iff  ,1cos     0   and  0  . 

Proof.  It can easily be proved by using equation (2). 

Theorem 3.2 Gaussian and the mean curvatures of a regular surface   tsL ,   are 
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respectively. 

4. Some Special Parameter Curves in The Tubular Surface 

Theorem 4.1 [4,6,8] Let the curve     lie on a surface. If     is an asymptotic 

curve, then the acceleration vector is orthogonal to the normal vector of the surface. 

That is,  .0, 


eU    
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  Theorem 4.2 Let  ),( sL   be tubular surface around focal curve of  )(s  . 

(1) If the  sL   curves are asymptotic, then  )cos1(cos2   r   and  0cos    

(2) The  L   curves are asymptotic. 

  Proof. For the  s  parameter curves we obtain the first coefficient  e   of 

second fundamental form as  

)cos1(cos, 2   rLUe ss  

showing that if the  sL   curves is geodesic, then  )cos1(cos2   r  . Because of  

,0    .0cos    Similarly, for the  t  parameter curves we obtain the third 

coefficient  g   of second fundamental form as  

0,  rLUg   

which implies that they can not be asymptotic. 

  Theorem 4.3 [5] Let the curve     lie on a surface. If     is a geodesic curve, 

then the acceleration vector  


   and the normal vector  U   of the surface are linearly 

dependent. That is,  .0


U   

  Theorem 4.4  Let  ),( sL   be a tubular surface around a focal curve of  ),(s   

then 

(1)The  sL  curves  cannot be geodesic        

(2) The  L   curves are geodesic curves. 

  Proof. For the  s  parameter curves, we have  

  
  

  .cos1sin

cos1sinsin

cos1sincos

2 Br

Nr

TrLU ss













 

If the last equation were zero, i.e.,  0 ssLU  , we would have  
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  0cos1sin

,0cos1sinsin

,0cos1sincos

2 











r

r

r

 (3) 

since the vectors  },,{ BNT   are linearly independent. However, since  ),( sL   is a 

regular surface, equation (3) can not be zero, namely    0cos1sin2  r  . Therefore  

0 ssLU   which shows that  sL   curves can not be geodesics. On the other hand, 

since  

0 rUULU   

the    parameter curves  L   are geodesics. Converse is also true. 

5.  3-dimensional Sasakian-Heisenberg Spaces 

Let  ),,( zyx   be the standard coordinates on  3R  and consider the 1-form  

 ydxdz 
2

1
  . We put  

z


 2   and consider the endomorphism of     defined by 

the matrix  
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with respect to the standard basis of  3R  . Here    1   and  .2   I   Hence  

  ,,   is an almost contact structure on  .3R   Next, we consider the metric tensor  

  .
4

1 2

2

2

1   dxdxg  

Its matrix representation with respect the standard basis is 
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Using the matrices of the metric  g   and of the endomorphism, we obtain  

   ,, XgX    and     .,, YXgYXd      

After some computations we obtain the connection coeffcients 
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The vector fields  
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e 2,2,2 321   form an orthonormal 

basis with respect to  g   and  .03 ,12 ,21  eeeee    Using the last equations we 

obtain  
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and 

      ., XYYXgYx    

Under the circumstances   g.,,,3 R   is a Sasakian manifold. If dual basis of 

orthonormal basis   321 ,, eee   is   








 ydxdz
dydx

2

1
,

2
,

2

321   . 

  Corollary 5.1  According to the metric  g   if    ))(),(),(( 321 ssss     is an 

unite speed Legendre curve in  ,3R  
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   Proof. Velocity vector of     is 
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According to the orthonormal basis   321 ,, eee   its shape is 
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Because     is an Legendre curve in  ,3R    0)(
.









s   namely      01

.

3

.

 yss    

where  y   is a coordinate fonction. 

  Example 5.1 Given the curve     ssssss 2sincos2,cos2,sin2   .     is an 

unite speed Legendre curve according to the metric  g   in  3R   as Figure 2 shown 

 

Figure 2.  The Legendre curve   

 

Its velocity vector is  

.sincos)( 21

.

seses   

See that  .0)(
.









s    Immediately we can obtain the Frenet vector   BNT ,,   of     

curve as follows 
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The curvature     and the torsion     of the   s   are identical  .1   Namely  1  . 

According to this  



 constant,     Legendre curve is circular helix. If we choose  

,
2

1
r   equation of tubular surface around the Legendre curve     is  
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zyx
,,   is standart basis of   .3R   Tubular surface around the Legendre 

curve     is shown in following Figure 3 where   2,0  s  

 

Figure 3.  Tubular surface around  Legendre curve   
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Example 5.2  Given the curve      ssss cosln,tan,   .     is an unite speed 

Legendre curve according to the metric  g   in  3R   as Figure 4 shown. 

 

Figure 4.  The Legendre curve α. 

 

 

Its velocity vector is  
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s   Immediately we can obtain the Frenet vector   BNT ,,   of     

curve as follows  
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 The curvature     and the torsion     of the   s   are identical  .1   Namely  1 .  

According to this  



 constant,     Legendre curve is circular helix.  Now than for  

,1r   equation of tubular surface around     Legendre curve is  
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  .20 ,)(sin)(cos1)(),(   sBsNssL  
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Tubular surface around     Legendre curve is shown in Figure 5 where  

  0   and  .
2

0 
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Figure 5.  Tubular surface around  Legendre curve α 
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