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Tubular Surface Around a Legendre Curve in Sasaki Space
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Abstract

In this study, we described tubular surface around a Legendre curve in
Riemannian Sasaki space with respected to Frenet frame. And than we give some

definitions about special curve lying on this surface.

Keywords: Canal surfaces, Tubular surfaces, Connections, Geodesics, Sasaki

spaces, Legendre curve.

Sasaki Uzayinda Bir Legendre Egrisi Cevresindeki Boru Yiizeyi

Ozet

Bu ¢alismada, Riemannian Sasaki uzaymdaki Legendre egrisi etrafindaki tiibiiler
ylizeyini Frenet cgatisina gore tanimladik. Bu ylizeyde yatan 6zel egriler hakkinda bazi

tanimlar verdik.

Anahtar Kelimeler: Kanal yiizeyler, Boru yiizeyler, Konneksiyonlar, Geodezikler,

Sasaki uzaylar, Legendre egrisi.
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1. Introduction

Recall definitions and results[1, 5, 7]. If the four-elements structure (M,n,<,p)

provide the following conditions, it is called an almost contact manifold and the three-

elements structure (n,&, @) is called almost contact structure.

2

- = —l+ng
s =0
ng =1

where M , ¢, £ and 1n are 3-— manifold, (,1) tensor, (1,0) tensor and
(0,2) tensor, respectively. Let 9 be a Riemannian metricon M. If

g(eX, oY) =g(X,Y)—n(X)n(Y),

the five-elements structure (M,n,&,¢,g) is called an almost contact metric manifold.

Moreover, if
g(X,eY)=dn(X,Y),

the five-elements structure (M,n,&,0,9) is named contact metric manifold where

dn is (0,2) tensor. On the other hand if
N®(X,Y) =[p,@](X,Y)+2d7(X,Y)E=0

for VX,Y € y(M) then the five-elements structure (M,7n,&,¢,g9) is named Sasakian

manifold. Next if

(Vx@)Y =g(X,Y)g-n(Y)X,

the five-elements structure (M,n,&,¢,9) is Sasakian manifold where V is Levi-

Civita connection on M . The opposite of the last sentence is also true.

If the structure vector & is a Killing vector field with respectto 9 ie. L.g =0, the

five-elements structure (M,n,&,¢,9) iscalleda K -contact structure.
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The contact subbundle D, ={X eT,,(m): 7(X)=0} of TM is called contact

distribution. The 1-dimensional integral submanifold of a contact distribution is called a

Legendre curve.

In contact geometry, it is useful to give the following proposition, lemma and two

theorems, which related to this study.

Proposition 1.1 [1,2] Let (n,&,¢,9) be contact metric manifold . If & is a

Killing vector, we have

1) Vyi&=-¢X,

2) The sectional curvature of any plane spanned by ¢ is 1.

Lemma 1.2 [1,2] Let M be a Sasakian manifold with the five-elements

structure (M,n,&,9,9) . We obtain

Rvé = ()X - n(X)Y,
RxeY = n(VX - g(X, NE = ~(Vx@)Y.

Moreover, R,.X =—¢ for all unit vector fields X orthogonal to ¢ .

Theorem 1.3 [1,2] If R, & =n(Y)X —n(X)Y, then M is a Sasakian manifold,
where ¢ is a Killing vector.

Theorem 1.4 Let M be a Sasakian manifold with the five-elements structure

(M,n,&,9,9). The torsion of its Legendre curve which is not geodesic is equal to 1.

Proof. Let ¥ be an unite speed non geodesic Legendre curve on M

y: 1 — DpcM
s — () = (r1(9,7209),73(8)

We know 77(;?):0 and j/(s):T. The Frenet vector fields of 7 is obtained as the

following way
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{T =7,N =¢7,B=§}.
On the other hand we have
V1T = kT, ViT = kN.

Afterward we can calculate the directional derivative of N =¢T and ¢ as

follows.
VTN = VT(pT
= (pVTT + (VT(p)T
= pkeT) +&
=—«kT+B
and
V&= —gT
=—N.
Hence
T=1

After now, we will admit that a Legendre curve is non geodesic an unite speed

Legendre curve on M — Sasakian space.
2. Tubular Surface

Let us recall the definitions and the results of [3]. A canal surface is named as the
envelope of a family of 1-parameter spheres. In other words, it is the envelope of a

moving sphere with varying radius, defined by the trajectory with center y(t) and a
radius function r(t) . This moving sphere S(t) touches it at a characteristic circle

K(t) . If the radius function r(t)=r is a constant, then it is called a tubular or pipe

surface. Let {T,N,B} be the Frenet vector fields of ¥ ,where T , N and B are
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tangent, principal normal and binormal vectors to 7 , respectively. Since the canal
surface K(t,8) is the envelope of a family of one parameter spheres with the center ¥

and radius function r , it is parametrized as

Figure 1. A section of the canal surface (Dogan 2011).

K(t.6)= 7t -r@)r @)

o
o -r o
o
b of -r o
o

+cosor(t) N (t)

+sin 6 (t) B(t).

This surface is called the canal surface around the curve 7 . Clearly, N(t) and B(t)

are spanning the plane that contains the characteristic circle. If the spine curve y(5s)
has an arclenght parametrization (”7/ (S)H :1) , then the canal surface is reparametrized

as

K(s,0) = y(s)=r(s)r (s)T(s)
+cosar(s)y1—r (s)°N(s)
+5sin Or(s)y1—r (5)2B(S).
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For the constant radius case r(s)=r , the canal surface is called a tubular (pipe)

surface and in this case the equation takes the form
L(s,8) = y(s) + r(cos&N(s) +sin 4B(s)), (1)

where 0<0<2r .

After this, it will be admited that the tubular surface around of a Legendre curve is

the tubular surface.

3. The Tubular Surface's Fundamental Forms

Let y=y(s): | >E® be Legendre curve. A parametrization L(s,d) of the

tubular surface has given in (1). The partial derivatives of L with respect to the

surface parameters s and @ can be expressed in terms of Frenet vector fields of

as

L, = r(~sin &N +coséB),
.= (L-rxcosd)T +L,
L,, = —r(coséN +sin 6B)
L, = r(— x'cos@ + xsin O)T + [ — r(x? +1)cosoN
—rsin 6B,
L, =rxsindl + L,

—
I

We can also choose a unit normal vector field U of L as

U :H:—cosa\l —sin 6B,
s/\ 0
where we know that
IL, AL =EG—~F? =r?(1-rxcosd). )

The first fundamental form | of L is defined as
| = Edx® + 2Fdxdy + Gdy?

where
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E=<L,,L, >=r*+(1-rxcosd),
F=<L,L,>=r?
G=<L, L,>=r.

On the other hand, the second fundamental form Il of L is defined as
Il =edx’ + 2 fdxdy+ gdy?
in which

e=<U,L, >=r—xcosé(l-rxcosh),

f =<U,L,, >=-T,
g=<U,L, >=r.

When on any surface EG—F*=0 , it is regular surface.

Lemma 3.1 L(s,0) isaregular tube, iff cos@=1, x=0 and 70 .

Proof. It can easily be proved by using equation (2).

Theorem 3.2 Gaussian and the mean curvatures of a regular surface L(s,t) are

_eg-f?  —xcosd
EG-F? r(l-rxcosé)

and

eG—2fF +gE 1(1 j
= v == —+Kr
2(EG-F?) 2lr

respectively.

4. Some Special Parameter Curves in The Tubular Surface

Theorem 4.1 [4,6,8] Let the curve 7 lie on a surface. If » is an asymptotic

curve, then the acceleration vector is orthogonal to the normal vector of the surface.

Thatis, <U,y >=e=0.
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Theorem 4.2 Let L(s,#) be tubular surface around focal curve of «(s) .
(1) If the L, curves are asymptotic, then x =rz°cosd(l—cosd) and cosd =0

(2) The L, curves are asymptotic.

Proof. For the s— parameter curves we obtain the first coefficient e of

second fundamental form as

e=<U, L, >=x—-rr’cosd(l-cosb)

! s

showing that if the L, curves is geodesic, then x =rz?cosé(1—cosé) . Because of
Kk #0, cos@=0. Similarly, for the t— parameter curves we obtain the third

coefficient g of second fundamental form as
g=<U,Ly,>=r=0
which implies that they can not be asymptotic.
Theorem 4.3 [5] Let the curve y lie on a surface. If » is a geodesic curve,
then the acceleration vector ;/” and the normal vector U of the surface are linearly
dependent. Thatis, U Ay =0.

Theorem 4.4 Let L(s,0) be atubular surface around a focal curve of «(s),
then

(1)The L, curves cannot be geodesic

(2) The L, curves are geodesic curves.

Proof. For the s— parameter curves, we have

U AL = cosrsin 6 +rz'(1—cosd)|T
+sin @[zsin 6+ rz'(1-cosé)|N
+rzsin O(1-cos6)B.

If the last equation were zero, i.e., U AL, =0 , we would have
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cosé[zsin 0+ rz'(1-cos6)]
sin @[zsin @+ rz'(1-coso)|
rz?sin 6(1—coso)

0
0, ©)
0

since the vectors {T,N,B} are linearly independent. However, since L(s,f) is a
regular surface, equation (3) can not be zero, namely rz?sin 9(1—cos€)¢ 0 . Therefore

U AL, #0 which shows that L, curves can not be geodesics. On the other hand,

since
UaL,=UAru=0

the @ — parameter curves L, are geodesics. Converse is also true.
5. 3-dimensional Sasakian-Heisenberg Spaces

Let (x,y,z) be the standard coordinates on R® and consider the 1-form

n :%(dz - ydx) .We put &= 28i and consider the endomorphism of ¢ defined by
z

the matrix
0O 1 0
-1 0 O
0 0

with respect to the standard basis of R® . Here 7(£)=1 and ¢’ =-1+7®¢&. Hence

(p,&,;7) is an almost contact structure on R®. Next, we consider the metric tensor
1 2 2
g :Z(dxl +dx; )+77®77.

Its matrix representation with respect the standard basis is

1+y?> 0 -y
l 0 1 0
4

-y y 1
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Using the matrices of the metric g and of the endomorphism, we obtain
n(X)=g(X,&), and dn(X,Y)=g(X,¢Y)

After some computations we obtain the connection coeffcients

y
F112 = —F233 = PX

1
,=-T3=-=,
23 13 2
1—‘121 =-Y,
1H132 == (1_ y2)
2

The vector fields <e = 2(2+ yg}e2 = ZQ,e3 = 22 form an orthonormal
ox oz oy 0z

basis with respect to g and ¢e, =-e, ¢e, =€, ¢e; =0. Using the last equations we

obtain
Velez = _§;
Vezel =S,
V., &=V.e, =€,
V,s=V.e =6,
and

(V)Y =g(X.,Y)é-n(Y)X.

Under the circumstances (R3,¢),§,n.g) is a Sasakian manifold. If dual basis of

orthonormal basis {e,,e,,e,} is {«91 = d—2X,92 = d—2y,¢93 =n= %(dz— ydx)} .

Corollary 5.1 According to the metric g if #(S)=(1(8),7,(5), 75(s)) is an

unite speed Legendre curve in R®,

75(5)=11(5)y.

Proof. Velocity vector of 7 is
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O=(1Oh 6= 1 5 S 10

According to the orthonormal basis {e,,e,,e,} its shape is

He)=2 12(S)e1 o Zz(s)ez +§(73(s)—71(s)yje3-

Because » is an Legendre curve in R®, n(;}(s)jzo namely 7,(s)-7,(s)y=0
where y isa coordinate fonction.

Example 5.1 Given the curve y(s)=(2sins,2coss,2cosssins+2s) . » is an

unite speed Legendre curve according to the metric g in R® as Figure 2 shown

~
12/J

10

|

8_‘

7

Figure 2. The Legendre curve ¥y

Its velocity vector is
7(s) =cosse, —sin se,.

See that n(;?(s)jzo. Immediately we can obtain the Frenet vector {T, N,B} of y

curve as follows
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T = y(s) = cosse, —sin se,,

N = ¢ y(s) =sin se, +cosse,,
B=S=¢;

The curvature x and the torsion 7 of the y(s) areidentical 1. Namely x=7=1.

According to this L constant, y Legendre curve is circular helix. If we choose
K

r= % equation of tubular surface around the Legendre curve y is

L(s,0) = y(s) + %(cosa\l (s)+sin&B(s)), 0< < 2x.

If L(s,0)= [x(s,@)% + y(s,e)% + z(s,@)%) , then

X(s,0) = 2sins +cos@sin s,
y(s,0) = 2c0ss + c0sE oSS,
z(s,0) = 2c0sssin s + 2s + 2c0s#sin SCOSS +Sin .

where {ﬁ 9 2} is standart basis of R®. Tubular surface around the Legendre

ox ' oy oz

curve y isshown in following Figure 3 where 0<68,s<2x

Figure 3. Tubular surface around Legendre curve y
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Example 5.2 Given the curve a(s)=(s,tans,~In(coss)) . « is an unite speed

Legendre curve according to the metric g in R® as Figure 4 shown.

Figure 4. The Legendre curve o.

Its velocity vector is

(secs)’
2

- 1
a(s) :Eel + e,

See that n(d(s))zo. Immediately we can obtain the Frenet vector {T, N,B} of a

curve as follows

T = a(s) = 1 o (secs)’

e 1
Jir(secs) 1+ (secs)
N = pa(s) =sin se, +cosse,,
B=C=¢;

The curvature x and the torsion ¢ of the »(s) areidentical 1. Namely x=7z=1.

According to this L constant, » Legendre curve is circular helix. Now than for
K

r =1, equation of tubular surface around « Legendre curve is

L(s,0) = 7(s) + %(COSHN (s)+sin6B(s)), 0< 0 <2r.
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L(s,8) = a(s) +1(cosN(s) +sin 8B(s)), 0< 6 < 2.

Let L(s,«9):(x(s,0)§+y(s,H)%+z(s,0)§] now than

2

X(5.0)= s+ 2cosd(secs) |
J1+(secs)’
y(s,0) = tans — 206

JL+(secs)'

2cosé(secs) tans
JL+(secs)’

2(s,0) = +2c0sé.

Tubular surface around « Legendre curve is shown in Figure 5 where

(0<o<rx) and (0333%).

Figure 5. Tubular surface around Legendre curve o
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