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Abstract 

In this study, we described tubular surface around a Legendre curve in 

Riemannian Sasaki space with respected to Frenet frame. And than we give some 

definitions about special curve lying on this surface. 

Keywords: Canal surfaces, Tubular surfaces, Connections, Geodesics, Sasaki 

spaces, Legendre curve. 

 

 

Sasaki Uzayında Bir Legendre Eğrisi Çevresindeki Boru Yüzeyi 

Özet 

Bu çalışmada, Riemannian Sasaki uzayındaki Legendre eğrisi etrafındaki tübüler 

yüzeyini Frenet çatısına göre tanımladık.  Bu yüzeyde yatan özel eğriler hakkında bazı 

tanımlar verdik. 

Anahtar Kelimeler: Kanal yüzeyler, Boru yüzeyler, Konneksiyonlar, Geodezikler, 

Sasaki uzaylar, Legendre eğrisi. 
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1. Introduction 

Recall definitions and results[1, 5, 7]. If the four-elements structure  ),,,( M   

provide the following conditions, it is called an almost contact manifold and the three-

elements structure  ),,(    is called almost contact structure.  

.

2

1)(

0


















 I

 

where  M  , ,  and      are  3  manifold,  )1,1(   tensor ,    )0,1(   tensor and 

)1,0(  tensor, respectively.  Let  g   be   a  Riemannian metric on  .M   If  

),()(),(),( YXYXgYXg    

the five-elements structure  ),,,,( gM   is called an almost contact metric manifold. 

Moreover, if  

),,(),( YXdYXg    

the five-elements structure  ),,,,( gM   is named contact metric manifold where  

d   is  )2,0(  tensor. On the other hand if  

0),(2),](,[),()1(   YXdYXYXN  

for  )(, MYX    then the five-elements structure  ),,,,( gM   is named Sasakian 

manifold. Next if 

,)(),()( XYYXgYX    

the five-elements structure  ),,,,( gM    is Sasakian manifold where     is Levi-

Civita connection on  M  .  The opposite of the last sentence is also true. 

If the structure vector     is a Killing vector field with respect to  g   i.e.  gL 0 , the 

five-elements structure  ),,,,( gM   is called a  K  -contact structure. 
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The contact subbundle   0)(:)(  XmTXD Mm    of  TM   is called contact 

distribution. The 1-dimensional integral submanifold of a contact distribution is called a 

Legendre curve. 

In contact geometry, it is useful to give the following proposition, lemma and two 

theorems, which related to this study. 

Proposition 1.1 [1,2]  Let  ),,,( g   be contact metric manifold . If     is a 

Killing vector, we have 

1)  ,XX     

2) The sectional curvature of any plane spanned by     is 1. 

Lemma 1.2 [1,2] Let  M   be a Sasakian manifold with the five-elements 

structure  M,,,,g  . We obtain 

RXY  YX  XY,

RXY  YX  gX,Y  XY.
 

Moreover,   XRX   for all unit vector fields  X   orthogonal to    . 

Theorem 1.3 [1,2] If  ,)()( YXXYRXY     then  M   is a Sasakian manifold, 

where     is a Killing vector. 

Theorem 1.4 Let  M   be a Sasakian manifold with the five-elements structure  

M,,,,g .  The torsion of its Legendre curve which is not geodesic is equal to 1. 

Proof.  Let     be an unite speed non geodesic Legendre curve on  M    

 : I  Dm  M

s  s  1s,2s,3s
.

 

We know  0)(
.

   and  .)(
.

Ts    The Frenet vector fields of     is obtained as the 

following way  
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On the other hand we have  

 TT  T, TT  N.   #   
 

 

  Afterward we can calculate the directional derivative of   TN    and      as 

follows.  

TN  TT

 TT  TT

 T  

 T  B
 

and  

.N

TT



 
 

Hence  

   1.   #   
 

 

After now, we will admit that a Legendre curve is non geodesic an unite speed 

Legendre curve on  M  Sasakian space. 

2. Tubular Surface 

Let us recall the definitions and the results of [3]. A canal surface is named as the 

envelope of a family of 1-parameter spheres. In other words, it is the envelope of a 

moving sphere with varying radius, defined by the trajectory with center  )(t   and a 

radius function  )(tr  . This moving sphere  )(tS   touches it at a characteristic circle  

)(tK  . If the radius function  rtr )(   is a constant, then it is called a tubular or pipe 

surface. Let   BNT ,,   be the Frenet vector fields of    , where  T  ,  N   and  B   are 
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tangent, principal normal and binormal vectors to    , respectively. Since the canal 

surface  ),( tK   is the envelope of a family of one parameter spheres with the center     

and radius function  r  , it is parametrized as 

 

Figure 1.  A section of the canal surface (Doğan 2011). 
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 This surface is called the canal surface around the curve    . Clearly,  )(tN   and  )(tB   

are spanning the plane that contains the characteristic circle. If the spine curve  )(s   

has an arclenght parametrization   1)( 


s  , then the canal surface is reparametrized 

as 
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For the constant radius case  rsr )(  , the canal surface is called a tubular (pipe) 

surface and in this case the equation takes the form 

  ,)(sin)(cos)(),( sBsNrssL    (1) 

 where   20   . 

After this, it will be admited that the tubular surface around of a Legendre curve is 

the tubular surface. 

3. The Tubular Surface's Fundamental Forms 

Let  3:)( EIs    be Legendre curve. A parametrization  ),( sL   of the 

tubular surface has given in (1). The partial derivatives of  L   with respect to the 

surface parameters  s   and     can be expressed in terms of Frenet vector fields of     

as  

 
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We can also choose a unit normal vector field  U   of  L   as 

,sincos BN
LL

LL
U

s

s 


 



  

where we know that 

   .cos1
2222

 rrFEGLLs   (2) 

 The first fundamental form  I   of  L   is defined as  

22 2 GdyFdxdyEdxI   

where 
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 
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On the other hand, the second fundamental form  II   of  L   is defined as  

22 2 gdyfdxdyedxII   

in which 
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When on any surface  02 FEG  , it is regular surface. 

Lemma 3.1  ,sL   is a regular tube, iff  ,1cos     0   and  0  . 

Proof.  It can easily be proved by using equation (2). 

Theorem 3.2 Gaussian and the mean curvatures of a regular surface   tsL ,   are 

 



cos1

cos
2

2

rrFEG

feg
K









  

and  

  



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







 Kr

rFEG

gEfFeG
H

1

2

1

2

2
2

 

respectively. 

4. Some Special Parameter Curves in The Tubular Surface 

Theorem 4.1 [4,6,8] Let the curve     lie on a surface. If     is an asymptotic 

curve, then the acceleration vector is orthogonal to the normal vector of the surface. 

That is,  .0, 


eU    
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  Theorem 4.2 Let  ),( sL   be tubular surface around focal curve of  )(s  . 

(1) If the  sL   curves are asymptotic, then  )cos1(cos2   r   and  0cos    

(2) The  L   curves are asymptotic. 

  Proof. For the  s  parameter curves we obtain the first coefficient  e   of 

second fundamental form as  

)cos1(cos, 2   rLUe ss  

showing that if the  sL   curves is geodesic, then  )cos1(cos2   r  . Because of  

,0    .0cos    Similarly, for the  t  parameter curves we obtain the third 

coefficient  g   of second fundamental form as  

0,  rLUg   

which implies that they can not be asymptotic. 

  Theorem 4.3 [5] Let the curve     lie on a surface. If     is a geodesic curve, 

then the acceleration vector  


   and the normal vector  U   of the surface are linearly 

dependent. That is,  .0


U   

  Theorem 4.4  Let  ),( sL   be a tubular surface around a focal curve of  ),(s   

then 

(1)The  sL  curves  cannot be geodesic        

(2) The  L   curves are geodesic curves. 

  Proof. For the  s  parameter curves, we have  

  
  

  .cos1sin

cos1sinsin

cos1sincos

2 Br

Nr

TrLU ss













 

If the last equation were zero, i.e.,  0 ssLU  , we would have  
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   
  

  0cos1sin

,0cos1sinsin

,0cos1sincos

2 
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







r

r

r

 (3) 

since the vectors  },,{ BNT   are linearly independent. However, since  ),( sL   is a 

regular surface, equation (3) can not be zero, namely    0cos1sin2  r  . Therefore  

0 ssLU   which shows that  sL   curves can not be geodesics. On the other hand, 

since  

0 rUULU   

the    parameter curves  L   are geodesics. Converse is also true. 

5.  3-dimensional Sasakian-Heisenberg Spaces 

Let  ),,( zyx   be the standard coordinates on  3R  and consider the 1-form  

 ydxdz 
2

1
  . We put  

z


 2   and consider the endomorphism of     defined by 

the matrix  



















00

001

010

y

 

with respect to the standard basis of  3R  . Here    1   and  .2   I   Hence  

  ,,   is an almost contact structure on  .3R   Next, we consider the metric tensor  

  .
4

1 2

2

2

1   dxdxg  

Its matrix representation with respect the standard basis is 





















1

010
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4

1

2

yy
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Using the matrices of the metric  g   and of the endomorphism, we obtain  

   ,, XgX    and     .,, YXgYXd      

After some computations we obtain the connection coeffcients 

 
.

2
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,

,
2

1
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2

2
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The vector fields  
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


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x
e 2,2,2 321   form an orthonormal 

basis with respect to  g   and  .03 ,12 ,21  eeeee    Using the last equations we 

obtain  
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and 

      ., XYYXgYx    

Under the circumstances   g.,,,3 R   is a Sasakian manifold. If dual basis of 

orthonormal basis   321 ,, eee   is   








 ydxdz
dydx

2

1
,

2
,

2

321   . 

  Corollary 5.1  According to the metric  g   if    ))(),(),(( 321 ssss     is an 

unite speed Legendre curve in  ,3R  

 
    .1

.

3

.

yss     

   Proof. Velocity vector of     is 
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           
 

.,,)( 3

.

2

.

1

.

3

.

2

.

1

..

s
z

s
y

s
x

sssss


 






























  

According to the orthonormal basis   321 ,, eee   its shape is 

   
    .
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2
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1
1
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eysse
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e
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
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


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
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Because     is an Legendre curve in  ,3R    0)(
.









s   namely      01

.

3

.

 yss    

where  y   is a coordinate fonction. 

  Example 5.1 Given the curve     ssssss 2sincos2,cos2,sin2   .     is an 

unite speed Legendre curve according to the metric  g   in  3R   as Figure 2 shown 

 

Figure 2.  The Legendre curve   

 

Its velocity vector is  

.sincos)( 21

.

seses   

See that  .0)(
.









s    Immediately we can obtain the Frenet vector   BNT ,,   of     

curve as follows 
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The curvature     and the torsion     of the   s   are identical  .1   Namely  1  . 

According to this  



 constant,     Legendre curve is circular helix. If we choose  

,
2

1
r   equation of tubular surface around the Legendre curve     is  

 
  .20 ,)(sin)(cos

2

1
)(),(   sBsNssL   
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where  




















zyx
,,   is standart basis of   .3R   Tubular surface around the Legendre 

curve     is shown in following Figure 3 where   2,0  s  

 

Figure 3.  Tubular surface around  Legendre curve   
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Example 5.2  Given the curve      ssss cosln,tan,   .     is an unite speed 

Legendre curve according to the metric  g   in  3R   as Figure 4 shown. 

 

Figure 4.  The Legendre curve α. 
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 The curvature     and the torsion     of the   s   are identical  .1   Namely  1 .  

According to this  



 constant,     Legendre curve is circular helix.  Now than for  

,1r   equation of tubular surface around     Legendre curve is  
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Tubular surface around     Legendre curve is shown in Figure 5 where  

  0   and  .
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Figure 5.  Tubular surface around  Legendre curve α 
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