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Abstract

In this paper, the problem of simultaneous diagonalization of m-tuples of n-order square
complex matrices, is analyzed and some necessary and some necessary and sufficient
conditions for this property to be fulfilled are presented. This study has an interest in its
applications in different areas as for example in engineering and physical sciences. For
example, they appear founding when we must give the instanton solution of Yang-Mills field
presented in an octonion form, and it can be represented by triples of traceless matrices.
In the case where the m-tuple does not simultaneously diagonalize, the possibility of to find
near of the given m-tuple, an m-tuple that diagonalize simultaneously is studied.

1. Introduction

Let M be the manifold of m-tuples of n-order square complex matrices T = (X1, . . . ,Xm) representing polynomial matrices PT (x) =
X1 + xX2 + . . .+ xm−1Xm that appear in a natural way modeling tools in several research areas of applied mathematics, sciences and
engineering, and in a special manner in systems theory ([1]-[3]). Studying control problems by means the polynomial matrix approach, the
solution of these problems are reformulated in terms of polynomial matrix equations, where solutions are based on structural properties of the
involved matrices, where the simultaneous diagonalization of each and every one of the matrices is a great advantage for solving the problem.
The simultaneously diagonalization is related to sets of commuting matrices and it can be found some results (see [4], [5], for example).
Among families of m-tuples of matrices, have some interest the families of traceless triples because the Lie algebra is related to gauge
fields because they appear in the Lagrangian describing the dynamics of the field, then they are associated to 1-forms that take values on a
certain Lie algebra. It is also of interest to note that triples of traceless matrices have some relevance for supergravity theories ([6]). Another
application is found when we must give the instanton solution of Yang-Mills field can be presented in an octonion form, and it can be
represented by triples of traceless matrices ([7]).
In the space of n-square complex matrices, it is well known that the subset of diagonalizable matrices is generic in the sense that this
subset is an open and dense set, then any no diagonalizable matrix can be diagonalized by a small perturbation of its entries. This property
cannot be generalized to the case of simultaneous diagonalization of an m-tuple of n-order complex square matrices. We are interested in
analyzing the collection of m-tuples of matrices that simultaneously diagonalize and the collection that simultaneously diagonalize under
small perturbations, some properties in this sense appear in [8].
The simultaneous diagonalization of two real symmetric matrices has long been of interest and largely studied [9]. In this paper, we generalize
to the problem of deciding whether the elements of M can be simultaneously diagonalized, and in the case where the m-tuple does not
simultaneously diagonalize, we study the possibility of to find near of the given m-tuple, an m-tuple that diagonalize simultaneously.

2. Simultaneous similarity of m-tuples of n-order matrices

Definition 2.1. Let T = (X1, . . . ,Xm),T ′ = (Y1, . . . ,Ym) ∈M be two m-tuples of matrices. Then, T is simultaneous similar to T ′ if and only
if there exists P ∈ Gl(n;R) such that

(Y1, . . . ,Ym) = (PX1P−1, . . . ,PXmP−1). (2.1)
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For simplicity, we will write PT P′ = T ′.
We are interested on the simultaneous diagonalizable m-tuples.

Definition 2.2. The m-tuples of matrices T = (X1, . . . ,Xm) ∈M is simultaneously diagonalizable if and only if there exist an equivalent
m-tuple formed by diagonal matrices.

From definition we have

Corollary 2.3. Let T = (X1, . . . ,Xm) be an m-tuple of square matrices. The m-tuple is simultaneous diagonalizable if and only if there exist
diagonal matrices Di, i = 1, . . . ,m and a invertible matrix P (the same matrix P for all i) such that

(X t
i ⊗ In− In⊗Di)vecP = 0, ∀1≤ i≤ m.

Remark 2.4. Let A = (ai j) and B, the Kronecker product is defined as A⊗B = (ai jB).

Proof. From Di = PXiP−1 for all i = 1, . . . ,m we have PXi−DiP = 0, for all i = 1, . . . ,m
Then, computing the Kronecker product and applying the vectorizing operator we deduce the result.

Clearly, necessary conditions for simultaneous diagonalizable m-tuples are the following

Proposition 2.5. Let T = (X1, . . . ,Xm) be a simultaneous diagonalizable m-tuple. Then all matrices Xi must be diagonalizable.

Obviously, the reciprocal is false

Example 2.6. Clearly, matrices X1 =
(

1 1
0 2
)

and X2 =
(

1 0
1 2
)

are diagonalizable, but none of the matrices Pi = Q−1
i with Q1 =

(
a b
0 b

)
and

Q2 =
(

b a
b 0

)
with ab 6= 0, diagonalizing X1 can diagonalize X2.

Proposition 2.7. Let T = (X1, . . . ,Xm) be a simultaneous diagonalizable m-tuple. Then XiX j = X jXi.

Proof. Let T = (X1, . . . ,Xm) be a simultaneously diagonalizable m-tuple, then there exist P∈Gl(n;C) such that PXiP−1 =Di for i= 1, . . . ,m.
So, taking into account that DiD j = D jDi, for all i, j = 1, . . . ,m, we have P−1DiPP−1D jP = P−1D jPP−1DiP, that is to say XiX j = X jXi,
for all i, j = 1, . . . ,m.

Theorem 2.8. Let T = (X1, . . . ,Xm) be a m-tuple of commuting n-order square matrices and suppose that the matrix X j for some j is
diagonalizable with simple eigenvalues (λk 6= λ` for all k 6= `, k, `= 1, . . .n). Then T is a m-tuple of simultaneously diagonalizable matrices

Proof. For simplicity we consider X1 the diagonalizable matrix.
Let {v1, . . . ,vn} be a basis of eigenvectors corresponding to eigenvalues {λ1, . . . ,λn} of X j.
Let us consider XiX1v j for all i = 1, . . . ,m and j = 1, . . . ,n.

XiX1v j = Xiλ jv j = λ jXiv j
X jXiv j = λ jXiv j

So, if Xiv j 6= 0 it is an eigenvector of X1 of eigenvalue λ j , but condition λk 6= λ` implies that dimKer(X1−λ jI) = 1, then, Xiv j = µiv j , that
is to say v j is an eigenvector for Xi of eigenvalue µi. If Xiv j = 0 v j is an eigenvector of Xi of eigenvalue equal zero. That is to say {v1, . . . ,vn}
is a basis of eigenvectors for each Xi, i = 1, . . . ,m and T is m-tuple of simultaneous diagonalizable matrices with P =

(
vt

1 . . . vt
n
)−1.

Remark 2.9. The other matrices not necessary have simple eigenvalues.

Theorem 2.10. Let T = (X1, . . . ,Xm) be an m-tuple of commuting and diagonalizable n-order square matrices. Then, they diagonalize
simultaneously.

Proof. Let P1 be an invertible matrix such that D1 = P1X1P−1 =

D1
1

. . .
D1

r1

 with D1
i = λ 1

i I ∈Mni(C), 1≤ i≤ r and n1 + . . .+nr = n.

Let us consider v11 , . . . ,vn1 , . . . ,v1r , . . . ,vnr the vector columns of P−1, then

X jX`vi` = X jλ`vi` = λ`X jvi`
X jX`vi` = X`X jvi`

Consequently X jvi` is an eigenvector of X` of eigenvalue λ` or X jvi` = 0, in any case we have that X jvi` ∈ [v1` , . . . ,vn` ] = F̀ , consequently,
the subspace F̀ is X j invariant for all 1≤ `≤ r and 1≤ j ≤ m.

So, P1X jP−1
1 =


Y j

1
. . .

Y j
r

, for 2≤ j ≤ m.

If all matrices Y j
k are diagonal the proof is concluded, otherwise and taking into account that all matrices Xi diagonalize all submatrices Y j

k
diagonalize.

Consider P2 =

P1
2

. . .
Pr

1

 where P j
2 diagonalizes Y 2

j for 1≤ j ≤ r.
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Obviously P2 diagonalizes D1: P1
2

. . .
Pr

2

D1
1

. . .
D1

r

P1
2

. . .
Pr

2

−1

=

P1
2 D1

1(P
1
2 )
−1

. . .
Pr

2 D1
r (P

r
2 )
−1

=P1
2 λ 1

1 I(P1
2 )
−1

. . .
Pr

2 λ 1
r I(Pr

2 )
−1

=

D1
1

. . .
D1

r


Then P2P1 diagonalizes X1 and X2, now partitioning the matrices P j

2Y 2
j (P

j
2 )
−1 into blocks corresponding to the same eigenvalue (it is possible

that different blocks Y 2
j have common eigenvalues but we partition according to each block).

Now we consider P2P1X j(P2P1)
−1, if all matrices are diagonal the proof is concluded, otherwise we repeat the processus with P2P1X3(P2P1)

−1

taking into account the new partition in scalar matrices. The process ends at most when reaches to the last matrix.

After these results it is easy to obtain the following geometrical result.

Theorem 2.11. Let T = (X1, . . . ,Xm) be an m-tuple of n-order square matrices and suppose that all matrices Xi are diagonalizable, then a
necessary and sufficient condition for simultaneous diagonalization is there exist a basis {v1, . . . ,vn} of v ∈ Cn such that

v j ∈ ∩m
i=1Ker(Xi−λ

j
i )I, where λ

i
j ∈ SpecXi = {λ i

1, . . . ,λ
i
n}

Corollary 2.12.
P =

(
vt

1 . . . vt
n
)−1

verifies that PXiP−1 = Di

Example 2.13. Let T = (X1,X2,X3) be a triple with

X1 =

5.5 2 −3.5
3 3 −3

4.5 2 −2.5

 , X2 =

 3 −2 2
1.5 4 −1.5
0 −2 5

 , X3 =

15.5 10 −13.5
3 7 −3

10.5 10 −8.5


SpecX1 = {1,2,3}, SpecX2 = {3,4,5}, SpecX3 = {2,5,7}

v1 = (0.6667,0.3333,0.6667) ∈ Ker(X1−3I)∩Ker(X2−4I)∩Ker(X3−7I)
v2 = (−0.2294,−0.6882,−0.6882) ∈ Ker(X1− I)∩Ker(X2−3I)∩Ker(X3−5I)
v3 = (0.7071,0,0.7071) ∈ Ker(X1−2I)∩Ker(X2−5I)∩Ker(X3−2I)
Then there exist

P =

 4.5005 3.0003 −4.5005
2.1796 0.0000 −2.1796
−2.1220 −2.8289 3.5362

=

0.6667 −0.2294 0.7071
0.3333 −0.6882 0.0000
0.6667 −0.6882 0.7071

−1

such that

PX1P−1 =

3
1

2

 , PX2P−1 =

4
3

5

 , PX3P−1 =

7
5

2


(Calculations made with MatlabR2012b).

In this case, all possible matrices P diagonalizing Xi for some i = 1, . . . ,m, (that they are such that P = Q−1 where Q is a matrix whose
columns are the eigenvectors corresponding to each of the eigenvalues of Xi for some i = 1, . . .n), are matrices that diagonalizes all matrices
simultaneously obtaining Di or permutations of this matrices. In fact, we have the following proposition.

Proposition 2.14. If the set of matrices {X1, . . . ,Xm} are simultaneously diagonalizable and for some i, Xi has simple eigenvalues, all
matrices P diagonalizing Xi diagonalize X j for all j = 1 = . . . ,m.

Remark 2.15. If no matrix has simple eigenvalues then the result fails

Example 2.16. Let T = (X1,X2,X3) be a triple with

X1 =


3 1 −2 −1 0
5 −1 −6 1 2
0 1 1 −1 0
5 −3 −6 3 2
1 −1 −2 0 3

 , X2 =


7 3 −4 −3 0

13 −3 −16 3 6
0 3 3 −3 0

13 −9 −16 9 6
5 −3 −8 0 9

 , X3 =


6 4 −4 −4 0
16 −6 −20 4 8
0 4 2 −4 0
16 −12 −20 10 8
8 −4 −12 0 10



This triple diagonalize simultaneously, because there exists Q ∈ Gl(n;C) with Q =


1 1 0 1 1
1 −1 1 0 1
1 1 0 1 0
1 −1 1 −1 1
1 0 1 1 −1

,

such that P = Q−1 =


−2 1 3 0 −1
2 −2 −2 1 1
3 −2 −4 1 2
0 1 0 −1 0
1 0 −1 0 0


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Di = PXiP−1

D1 =


1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 3

 , D2 =


3 0 0 0 0
0 3 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 7

 , D3 =


2 0 0 0 0
0 2 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 6



But, in this case not all matrices diagonalizing one of this matrices diagonalize all set of matrices of m-tuple of smultaneously diagonalizable

matrices, because taking P =


−2 1 3 0 −1
2 −2 −2 1 1
3 −2 −4 1 2
−1 1 1 −1 0
1 0 −1 0 0



Then P−1X1P =


1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 −1
0 0 0 0 3

, P−1X2P =


3 0 0 0 0
0 3 0 0 0
0 0 6 0 0
0 0 0 6 −1
0 0 0 0 7

, P−1X3P =


2 0 0 0 0
0 2 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 6


We observe that the matrix P only diagonalise X3

3. Approximately simultaneously diagonalizable m-tuples of matrices

It is well known that near of a squre matrix there is a diagonalizable matrix having simple eigenvalues. We ask if this result can be extended
to the case of m-tuples of square matrices. We will try to obtain an answer using geometrical tools.

3.1. Group Lie action

The equivalence relation defined in (2.1) can be seen as the action over M in the following manner
Let us consider the following map

α : Gl(n;C)×M −→M

(P,T ) −→ PT P−1 = (PX1P−1, . . . ,PXmP−1)

that verifies

i) If I ∈ Gl(n;C) is the identity element, then α(I,T ) = T for all T ∈M.
ii) If P1 and P2 are in Gl(n;C) , then α(P1,α(P2,T )) = α(P1P2,T ) for all T ∈M.

α(P1,α(P2,T )) = α(P1,P2T P−1
2 ) = P1P2T P−1

2 P−1
1 = (P1P2)T (P1P2)

−1 = α(P1P2,T )

So, the map α defines an action of Gl(n;C) over M.
Fixing T ∈M we can consider the map

αT : Gl(n;C) −→M
P −→ αT (P) = α(P,T )

We consider the following sets

ImαT = O(T ) = {(Y1, . . . ,Ym) = (PX1P−1, . . . ,PXmP−1),∀P ∈ Gl(n;C)}
Stab(T ) = {P ∈ Gl(n;C) | αT (P) = T}

Fixing P ∈ Gl(n;C) we can consider the map
αP : M −→M

T −→ αP(T ) = α(P,T )

Notice that αP is a bijection: if α(P,T1) = α(P,T2) then PT1P−1 = PT2P−1 and T1 = T2, so it is injective; for all T ∈M, there exists
T̄ = P−1T P such that α(P, T̄ ) = T , then it is surjective.

3.2. Approximately simultaneously diagonalizability

It is well known that close to any matrix there is a nearby that diagonalizes. Then the question is: given an m-tuple of square matrices, it is
possible to found an m-tuple diagonalizing simultaneously?
In the case where that it is possible we say that the m-tuple is approximately simultaneously diagonalizable (abbreviated ASD), more
concretely

Definition 3.1. [8] The m-tuple T = (X1, . . . ,Xn) is approximately simultaneously diagonalizable if and only if for any ε > 0, there exist a
m-tuple of matrices (Y1, . . . ,Ym) which are simultaneously diagonalizable and satisfy ‖Yi−Xi‖< ε for i = 1, . . . ,m.

O’Meara and Vinsonhaler in [8], analyze approximately simultaneously diagonalizable matrices for the case where the matrices of the
m-tuple commute.

Proposition 3.2. Let T = (X1, . . . ,Xn) be an m-tuple simultaneously diagonalizable. Then, each T ′ ∈O(T ) is an m-tuple simultaneously
diagonalizable.
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Proof. Taking into account that T = (X1, . . . ,Xn) is an m-tuple simultaneously diagonalizable there exist P ∈ Gl(n;C) such that PT P−1 =
(PX1P−1, . . . ,PXmP−1) = (D1, . . . ,Dm) = D with Di diagonal matrices for all i = 1, . . . ,m.
Let T ′ ∈ O(T ), then, there exist P′ ∈ Gl(n;C) such that T ′ = P′T (P′)−1 = (P′X1(P′)−1, . . . ,P′Xm(P′)−1).
So, T ′ = P′P−1DP(P′)−1 = (P′P−1D1P(P′)−1, . . . ,P′P−1DmP(P′)−1) = (P′′D1(P′′)−1, . . . ,P′′Dm(P′′)−1), with P′′ = P′P−1 ∈ Gl(n;C).

Consequently, and taking into account that if T ′ ∈ O(T ) is O(T ) = O(T ′), we can use miniversal deformations to study approximately
simultaneously diagonalizability.

3.3. Miniversal deformations

Definition 3.3. A deformation of an element X0 ∈M is a family of elements of M indexed by λ ∈ Λ ϕ : Λ −→M where Λ ⊂ F` is a
neighborhood of 0, and where ϕ(0) = X0 and ϕ depends holomorphically (smoothly) on the parameters.

Definition 3.4. A deformation ϕ(λ ) = ϕ(λ1, . . . ,λ`) of X0 is versal if and only if for any deformation ϕ ′(µ1, . . . ,ϕk) ∈M of X0, ϕ ′(µ) is
induced by ϕ(λ ), i.e., there exists a neighborhood V of 0 in Fk, a map ψ : V −→ F` with ψ(0) = 0, and a map g : V −→ G with g(0) = I
such that ∀µ ∈V , ϕ ′(µ) = g(µ)ϕ(ψ(µ))g−1(µ) with ψ and g holomorphic (smooth).

It is obvious that if we have a versal deformation of an element automatically we have a versal deformation of any element that is equivalent
to it, since if X = α(g,X0) is an equivalent element of X0 and ϕ(λ ) is a versal deformation of X ′ then α(g−1,X(λ )) is a versal deformation
of X0.
A versal deformation having minimal number of parameters is called miniversal.
The following result was proved by Arnold [10], in the case where Gl(n;C) acts on Mn(C), and was generalized by Tannenbaum [11], in the
case where a Lie group acts on a complex manifold. It provides the relationship between a versal deformation of X0 and the local structure of
the orbit.

Theorem 3.5 ([11]). 1. A deformation ϕ(λ ) of (X0) is versal if and only if it is transversal to the orbit O(X0) at (X0).
2. Minimal number of parameters of a versal deformation is equal to the codimension of the orbit of X0 in M, `= codimO(X0).

Corollary 3.6. Then ϕ(λ ) = X0 +(TX0O(X0))
⊥ for some scalar product is a miniversal deformation.

Let dαX0 : TIG −→M be the differential of αX0 at the unit element I. It is easy to compute dαX0(P):

dαT (P) = ([X1,P], . . . , [Xm,P]) ∈M, P ∈ TIG .

If we define scalar products in M and TIG , we can consider the adjoint application of dαX0 . The Euclidean scalar products considered in this
paper are defined as follows:
For all Ti = (X i

1, . . . ,X
i
m) ∈M and for all Pi ∈ TIG

〈T1,T2〉1 = trace(X1
1 X2

1
∗
)+ . . .+ trace(Xm

1 Xm
1
∗),

〈P1,P2〉2 = trace(P1P∗2 ),

where X∗ denotes the conjugate transpose of a matrix X .
The adjoint linear mapping dα∗T : M−→ TIG is defined by the relation

〈dαX0(P),Z〉1 = 〈P,dα
∗
x0
(Z)〉2, P ∈ TIG , Z ∈M.

It is straightforward to find
dα
∗
X0
(W ) = ([X∗,A0]+ [Y ∗,B0]+ [Z∗,C0]) ∈ TIG , W = (X ,Y,Z) ∈M.

The mappings dαX0 and dα∗X0
provide a simple description of the tangent spaces TX0O(X0), TIS tab(X0) and their normal complements

(TX0O(X0))
⊥, (TIS (X0))

⊥.

Theorem 3.7. The tangent spaces to the orbit of the m-tuple of matrices T and the corresponding normal complementary subspace can be
found in the following form

1. TT O(X0) = ImdαT ⊂M.
2. (TT O(X0))

⊥ = Kerdα∗T ⊂M,

After this theorem, it is easy to compute these spaces.

Corollary 3.8. 1. TX0O(X0) = {([P,A0], [P,B0], [P,C0]) | P ∈ TIG }
2. (TX0(O(X0))

⊥ = {(X ,Y,Z) ∈M | [X∗,A0]+ [Y ∗,B0]+ [Z∗,C0] = 0}

Remark 3.9. Let X0 = (X0
1 , . . . ,X

0
m) be an n-tuple of matrices and we consider Xi = (0, . . . ,0,Xi,0, . . . ,0) an m-tuple of matrices such that

X0
i +Xi is a miniversal deformation of X0

i . Then Xi ∈ (TX0(O(X0))
⊥ and consequently X= ∑Xi ∈ TX0(O(X0))

⊥.

Consequently, we have the following proposition.

Proposition 3.10. Let X0 = (X0
1 , . . . ,X

0
m) be an n-tuple of matrices. Then, for all ε > 0 there exist X= (X1, . . . ,Xm) such that X0

i +Xi is
diagonalizable, for all i = 1, . . . ,m.

Remark 3.11. Given any n-tuple of matrices, we can find in a neighborhood, an n-tuple of matrices in which all matrices are diagonalizable
but not necessarily all matrices in the n-tuple diagonalize simultaneously.
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Example 3.12. Consider the following pair of matrices
((

2 0
1 2

)
,

(
3 1,
0 3

))
that they are no diagonalizable, and the following family of

perturbations of the pair:
((

2+ ε1 0
1 2+ ε2

)
,

(
3+ ε3 1,

0 3+ ε4

))
for all εi with ε1 6= ε2 and ε3 6= ε4.

Clearly, both matrices are diagonalizable.
For simultaneously diagonalization it is necessary that both matrices commute, but(

2+ ε1 0
1 2+ ε2

)(
3+ ε3 1,

0 3+ ε4

)
6=
(

3+ ε3 1,
0 3+ ε4

)(
2+ ε1 0

1 2+ ε2

)
for all ε1, ε2, so both matrices diagonalize but not diagonalize simultaneously.

Now, we consider the following perturbation
((

2 ε1
1 2

)
,

(
3 1,
ε2 3

))
for all εi with ε1 · ε2 6= 0. Clearly, both matrices are diagonalizable.

Analyzing commutativity (
2 ε1
1 2

)(
3 1,
ε2 3

)
=

(
3 1,
ε2 3

)(
2 ε1
1 2

)
equivalently ε1ε2 = 1

So, taking ε1 = ε2 = 1, both matrices diagonalice simultanoeulsy, (it suffices to consider P−1 =

(
1 1
1 −1

)
)

The near pair of matrices in this family diagonalizing simultaneously is with (ε1,ε2) minimizing distance of the variety V = {(ε1,ε2) |
ε1ε2 = 1}

In general, a lower bound at the distance of the a n-tuple of matrices to a one n-tuple diagonalizing simultaneously is given tn the following
proposition

Proposition 3.13. Let T = (X1, . . . ,Xm) be a n-tuple of matrices and T (λ ) = (X1(λ ), . . . ,Xm(λ )) with λ ∈C` a family of n-tuples such that
in a neigborhood of 0 ∈ C` is a miniversal deformation of the given n-tuple. A lower bound at the distance of the a n-tuple of matrices to a
one n-tuple diagonalizing simultaneously is

inf{dist(0,λ ),0,λ ∈ C` | Xi(λ )X j(λ ) = X j(λ )Xi(λ )∀1≤ i, j ≤ m}

Example 3.14. Let T =
((

0 0
1 0
)
,
(

0 1
0 0
)
,
(

0 0
0 1
))

be a triple of matrices no diagonalizing. Let us consider the family of triples T (ε) =((
ε1 ε3

1+ε2 ε4

)
,
(

ε5 1
ε6 ε7

)
,
(

ε8 0
0 1+ε9

))
in such a way that for some ε with ‖ε‖> 0 is a miniversal (no orthogonal) deformation.

The subset of the commuting triples in the family is

V =

T ∈ {T ∈ T (ε) |

ϕ1(ε) = ε3 · ε6− ε2−1 = 0,
ϕ2(ε) = ε1− ε4− ε3 · ε5 + ε3 · ε7 = 0,

ϕ3(ε) = ε4 · ε6− ε1 · ε6 + ε5 · (ε2 +1)− ε7 · (ε2 +1) = 0,
ϕ4(ε) = ε9− ε8 +1 = 0.


We can compute the minimal distance by means the Lagrange’s undetermined multipliers method, from the function:

f (ε,λ ) =
9

∑
i=1

ε
2
i +

4

∑
i=1

λiϕi(ε)

The minimal distance is
√

3/2, a triple minimizing this distance is a triple of commuting matrices with ε2 =−1, ε8 = 1/2 =−ε9 and εi = 0
for i = 1,3,4,5,6,7 but no diagonalize simultaneously.

Taking the solution ε3 = ε6 =
√

2, ε2 = 1, ε8 =
1
2
=−ε9, and εi = 0 for i = 1,4,5,7 with distance

√
11/2 we have a triple of commuting

matrices and they diagonalize simultaneously with P−1 =

(
1 1

21/4 −21/4

)
.
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