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A NEW SUBCLASS OF UNIFORMLY SPIRALLIKE FUNCTIONS
WITH FIXED COEFFICIENTS

GEETHA BALACHANDAR

Abstract. In this paper a new subclass of uniformly spirallike functions is
defined and several properties like coeffi cient estimate, closure theorems, dis-
tortion theorems, radii of starlikeness and convexity are studied.

1. Introduction and definitions

Let S denote the class of functions of the form f(z) = z+
∑∞
n=2 anz

n which are
analytic and univalent in the open unit disc U = {z ∈ C : |z| ≤ 1}. Also let S∗ and
C denote the subclasses of S that are respectively, starlike and convex. Motivated
by certain geometric conditions, Goodman [2, 3] introduced an interesting subclass
of starlike functions called uniformly starlike functions denoted by UST and an
analogous subclass of convex functions called uniformly convex functions, denoted
by UCV. From [6, 8] we have

f ∈ UCV ⇔ Re

{
1 +

zf”(z)

f ′(z)

}
≥
∣∣∣∣zf”(z)f ′(z)

∣∣∣∣, z ∈ U.
In [8], Ronning introduced a new class Sp of starlike functions which has more
manageable properties. The classes UCV and Sp were further extended by Kanas
and Wisniowska in [4, 5] as k − UCV (α) and k − ST (α). The classes of uniformly
spirallike and uniformly convex spirallike were introduced by Ravichandran et al
[7]. This was further generalized in [11] as UCSP (α, β). In [12], Herb Silverman
introduced the subclass T of functions of the form

f(z) = z −
∞∑
n=2

anz
n, (1.1)
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which are analytic and univalent in the unit disc U . Motivated by [13], new sub-
classes with negative coeffi cients UCSPT (α, β) and SPpT (α, β) were introduced
and studied in [10]. A function f(z) defined by (1.1) is in UCSPT (α, β) if

Re

{
e−iα

(
1 +

zf”(z)

f ′(z)

)}
≥
∣∣∣∣zf”(z)f ′(z)

∣∣∣∣+ β, (1.2)

|α| < π
2 , 0 ≤ β < 1. For the class UCSPT (α, β), [10] proved the following lemma.

Lemma 1.1. A function f(z) = z −
∑∞
n=2 anz

n is in UCSPT (α, β) if and only if
∞∑
n=2

(2n− cosα− β)nan ≤ cosα− β. (1.3)

Using (1.1), the functions f(z) ∈ UCSPT (α, β) will satisfy

a2 ≤
(cosα− β)

2(4− cosα− β) . (1.4)

The subclass UCSPTc(α, β) is the class of functions in UCSPT (α, β) of the form

f(z) = z − c(cosα− β)z2
2(4− cosα− β) −

∞∑
n=3

anz
n, (1.5)

(an ≥ 0), where 0 ≤ c ≤ 1 was studied in [1]. When c = 1 we get
UCSPT1(α, β) = UCSPT (α, β).

As an extension of UCSPTc(α, β) a new class of functions k − UCSPTc(α, β) is
defined and studied in this paper. Let k −UCSPTc(α, β) be the class of functions
of the form

f(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

∞∑
n=3

anz
n, (1.6)

(an ≥ 0), where 0 ≤ c ≤ 1 and 0 < k ≤ 1.

2. Coefficient Estimate

Theorem 2.1. The function f(z) defined by (1.5) belongs to k − UCSPTc(α, β) if
and only if

∞∑
n=3

((k + 1)n− cosα− β)nan ≤ (1− c)(cosα− β). (2.1)

The result is sharp.

Proof. Taking

a2 =
c(cosα− β)

2(2(k + 1)− cosα− β) , 0 ≤ c ≤ 1, (2.2)

in (1.3) we get the required result. Also the result is sharp for the function

f(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

(1− c)(cosα− β)zn
n((k + 1)n− cosα− β) , (n ≥ 3). (2.3)
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�
Corollary 2.1.1. If f(z) defined by (1.5) is in the class k − UCSPTc(α, β) then,

an ≤
(1− c)(cosα− β)

n((k + 1)n− cosα− β) , (n ≥ 3). (2.4)

The result is sharp for the function f(z) given in (2.3).

3. Closure Theorems

Theorem 3.1. The class k − UCSPTc(α, β) is closed under convex linear combi-
nation.

Proof. Let f(z) defined by (1.5) be in k − UCSPTc(α, β). Now define g(z) by

g(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

∞∑
n=3

bnz
n, (bn ≥ 0). (3.1)

If f(z) and g(z) belong to k − UCSPTc(α, β) then it is enough to prove that the
function H(z) defined by

H(z) = λf(z) + (1− λ)g(z), (0 ≤ λ ≤ 1) (3.2)

is also in k − UCSPTc(α, β).

H(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

∞∑
n=3

(λan + (1− λ)bn)zn. (3.3)

Using theorem (2.1) we get
∞∑
n=3

((k + 1)n− cosα− β)n(λan + (1− λ)bn) ≤ (1− c)(cosα− β). (3.4)

Hence H(z) is in k−UCSPTc(α, β). Thus k−UCSPTc(α, β) is closed under convex
linear combination. �
Theorem 3.2. Let the functions

fj(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

∞∑
n=3

an,jz
n, (an,j ≥ 0), (3.5)

be in the class k = UCSPTc(α, β) for every j = 1,2,...m. Then the function F (z)
defined by

F (z) =

m∑
j=1

djfj(z), (dj ≥ 0), (3.6)

is also in the same class k − UCSPTc(α, β) where
m∑
j=1

dj = 1. (3.7)
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Proof. Using (3.5) and (3.7) in (3.6) we have

F (z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

∞∑
n=3

 m∑
j=1

djan, j

 zn. (3.8)

Each fj(z) ∈ k − UCSPTc(α, β) for j = 1,2,...m, theorem (2.1) gives

∞∑
n=3

((k + 1)n− cosα− β)nan,j ≤ (1− c)(cosα− β), (3.9)

for j =1,2,..m. Hence we get

∞∑
n=3

n((k + 1)n− cosα− β)

 m∑
j=1

djan,j

 =

m∑
j=1

dj

[ ∞∑
n=3

n((k + 1)n− cosα− β)an,j

]
≤ (1− c)(cosα− β).

This implies F (z) ∈ k − UCSPTc(α, β), by theorem(2.1). �

Theorem 3.3. Let

f2(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) (3.10)

and

fn(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

(1− c)(cosα− β)zn
n((k + 1)n− cosα− β) , (3.11)

for n = 3,4,.... Then f(z) is in k−UCSPTc(α, β) if and only if it can be expressed
in the form

f(z) =

∞∑
n=2

λnfn(z) (3.12)

where λn ≥ 0and
∑∞
n=2 λn = 1.

Proof. First assume that f(z) can be expressed in the form(3.12). Then we have

f(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

∞∑
n=3

(1− c)(cosα− β)
n((k + 1)n− cosα− β)λnz

n. (3.13)

But
∞∑
n=3

(1− c)(cosα− β)
n((k + 1)n− cosα− β)λnn((k + 1)n− cosα− β) = (1− c)(cosα− β)(1− λ2)

≤ (1− c)(cosα− β).
(3.14)
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Hence from (2.1) it follows that f(z) ∈ k−UCSPTc(α, β). Conversely, we assume
that f(z) defined by (1.6) is in the class k − UCSPTc(α, β). Then by using (2.4),
we get

an ≤
(1− c)(cosα− β)

n((k + 1)n− cosα− β) , (n = 3, 4, ...).

Taking λn =
n((k+1)n−cosα−β)an

(1−c)(cosα−β) , (n = 3, 4, ...) and λ2 = 1 −
∑∞
n=3 λn, we have

(3.12). Hence the proof of theorem (3.3) is complete. �

Corollary 3.3.1. The extreme points of the class k−UCSPTc(α, β) are the func-
tions
fn(z), (n ≥ 2) given by theorem (3.3) .

4. Distortion Theorems

In order to obtain the distortion bounds for the function f(z) ∈ k−UCSPTc(α, β),
we need the following lemmas.

Lemma 4.1. Let the function f3(z) be defined by

f3(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

(1− c)(cosα− β)z3
3(3(k + 1)− cosα− β) . (4.1)

Then, for 0 ≤ r < 1 and 0 ≤ c ≤ 1,

|f3(reiθ)| ≥ r −
c(cosα− β)r2

2(2(k + 1)− cosα− β) −
(1− c)(cosα− β)r3
3(3(k + 1)− cosα− β) , (4.2)

with equality for θ = 0. For either 0 ≤ c < c0 and 0 ≤ r ≤ r0 or c0 ≤ c ≤ 1,

|f3(reiθ)| ≤ r +
c(cosα− β)r2

2(2(k + 1)− cosα− β) −
(1− c)(cosα− β)r3
3(3(k + 1)− cosα− β) , (4.3)

with equality for θ = π. Further, for 0 ≤ c < c0 and r0 ≤ r < 1,

|f3(reiθ)| ≤ r
[
[1+

9c2(cosα− β)(3(k + 1)− cosα− β)
16(1− c)(2(k + 1)− cosα− β)2 ]

+r2(cosα− β)[ 2(1− c)
3(3(k + 1)− cosα− β)

− c2(cosα− β)
8(2(k + 1)− cosα− β)2 ]

+
r4(1− c)(cosα− β)2
(3(k + 1)− cosα− β) [

(1− c)
9(3(k + 1)− cosα− β)

+
c2(cosα− β)

16(2(k + 1)− cosα− β)2 ]
]1/2

,
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with equality for θ = cos−1
[
c(cosα−β)(1−c)r2−3c(3(k+1)−cosα−β)

8(1−c)(2(k+1)−cosα−β)r

]
, where

c0 =
1

2(cosα− β)

[
(12 cosα+ 10β − 25(k + 1))

+
√
(12 cosα+ 10β − 25(k + 1))2 + 32(cosα− β)(2(k + 1)− cosα− β)

]
(4.4)

and

r0 =
1

c(1− c)(cosα− β)

[
− 4(1− c)(2(k + 1)− cosα− β)

+
√
16(1− c)2(2(k + 1)− cosα− β)2 + 3c2(1− c)(3(k + 1)− cosα− β)(cosα− β)

]
.

(4.5)

Proof. We employ the techniques used by Silverman and Silvia[13]. Since

∂|f3(reiθ)|2
∂θ

=
(cosα− β)r3 sin θ

(2(k + 1)− cosα− β)

[
c+

8(1− c)(2(k + 1)− cosα− β)r cos θ
3(3(k + 1)− cosα− β)

− c(1− c)r2(cosα− β)
3(3(k + 1)− cosα− β)

]
, (4.6)

we see that ∂|f3(re
iθ)|2

∂θ = 0, for θ1=0, θ2=π and

θ3 = cos
−1
[
(cosα− β)c(1− c)r2 − 3c(3(k + 1)− cosα− β)

8(1− c)(2(k + 1)− cosα− β)r

]
, (4.7)

since θ3 is a valid root only when −1 ≤ cos θ3 ≤ 1. Hence there is a third root
if and only if r0 ≤ r < 1 and 0 ≤ c ≤ c0. Thus the results of the theorem
follow by comparing the extremal values |f3(reiθk)|, (k = 1, 2, 3) on the appropriate
intervals. �

Lemma 4.2. Let the function fn(z) be defined by (3.11) and n ≥ 4. Then

|fn(reiθ)| ≤ |fn(−r)|. (4.8)

Proof. Since fn(z) = z− c(cosα−β)z2
2(2(k+1)−cosα−β)−

(1−c)(cosα−β)zn
n((k+1)n−cosα−β) and

rn

n is a decreasing
function of n, we have

|fn(reiθ)| ≤ r +
c(cosα− β)r2

2(2(k + 1)− cosα− β) +
(1− c)(cosα− β)rn

n((k + 1)n− cosα− β)

≤ r + c(cosα− β)r2
2(2(k + 1)− cosα− β) +

(1− c)(cosα− β)r4
4(4(k + 1)− cosα− β) = −f4(−r),

which gives (4.8) . �
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Theorem 4.3. Let the function f(z) defined by (1.6) belong to the class k −
UCSPTc(α, β). Then for 0 ≤ r < 1,

|f(reiθ)| ≥ r − c(cosα− β)r2
2(2(k + 1)− cosα− β) −

(1− c)(cosα− β)r3
3(3(k + 1)− cosα− β) ,

with equality for f3(z) at z=r and

|f(reiθ)| ≤ max
{
maxθ|f3(reiθ)|,−f4(−r)

}
,

where maxθ|f3(reiθ)| is given by lemma 4.1.

The proof is obtained by comparing the bounds of lemma 4.1 and lemma 4.2.

Corollary 4.3.1. Let the function f(z) be defined by (1.1) be in the class k −
UCSPT (α, β). Then for |z| = r < 1, we have

r − (cosα− β)r2
2(2(k + 1)− cosα− β) ≤ |f(z)| ≤ r +

(cosα− β)r2
2(2(k + 1)− cosα− β) .

The result is sharp.

Corollary 4.3.2. Let the function f(z) be defined by (1.5) be in the class k −
UCSPTc(α, β). Then the disk |z| < 1 is mapped onto a domain that contains the
disk
|w| < 6(3(k+1)−cosα−β)(2(k+1)−cosα−β)−(cosα−β)(4(k+1)+5c(k+1)−(c+2)(cosα−β))

6(2(k+1)−cosα−β)(3(k+1)−cosα−β) .

The result is sharp with the extremal function

f3(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

(1− c)(cosα− β)z3
3(3(k + 1)− cosα− β) .

Proof. The result follows by letting r → 1 in theorem 4.3. �
Lemma 4.4. Let the function f3(z) be defined by (4.1) . Then for 0 ≤ r < 1 and
0 ≤ c ≤ 1,

|f ′3(reiθ)| ≥ 1−
c(cosα− β)r

(2(k + 1)− cosα− β) −
(1− c)(cosα− β)r2
(3(k + 1)− cosα− β) ,

with equality for θ = 0. For either 0 ≤ c < c1 and o ≤ r ≤ r1 or c1 ≤ c ≤ 1,

|f ′3(reiθ)| ≤ 1 +
c(cosα− β)r

(2(k + 1)− cosα− β) −
(1− c)(cosα− β)r2
(3(k + 1)− cosα− β) ,

with equality for θ = π. Further,0 ≤ c < c1 and r1 ≤ r < 1,

|f ′3(reiθ)| ≤
{[
1 +

c2(cosα− β)(3(k + 1)− cosα− β)
4(1− c)(2(k + 1)− cosα− β)2

]
+(cosα− β)

[
2(1− c)

(3(k + 1)− cosα− β) +
c2(cosα− β)

2(2(k + 1)− cosα− β)2

]
r2

+
(1− c)(cosα− β)2
3(k + 1)− cosα− β

[ (1− c)
(3(k + 1)− cosα− β) +

c2(cosα− β)
4(2(k + 1)− cosα− β)2

]
r4
}1/2

,
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with equality for

θ = cos−1
[
c(1− c)(cosα− β)r2 − c(3(k + 1)− cosα− β)

4(1− c)r(2(k + 1)− cosα− β)

]
,

where

c1 =
−(11(k + 1)− 6 cosα− 4β)

2(cosα− β)

+

√
(11(k + 1)− 6 cosα− 4β)2 + 16(2(k + 1)− cosα− β)(cosα− β)

2(cosα− β)
and

r1 =
1

c(1− c)(cosα− β)

{
− 2(1− c)(2(k + 1)− cosα− β)

+
√
4(1− c)2(2(k + 1)− cosα− β)2 + c2(1− c)(cosα− β)(3(k + 1)− cosα− β)

}
.

The proof of lemma(4.4) is given in the same way as lemma(4.1).

Theorem 4.5. Let the function f(z) defined by (1.6) be in the class k−UCSPTc(α, β).
Then for 0 ≤ r < 1,

|f ′(reiθ)| ≥ 1− c(cosα− β)r
(2(k + 1)− cosα− β) −

(1− c)(cosα− β)r2
(3(k + 1)− cosα− β) ,

with equality for f ′3(z) at z=r and∣∣f ′(reiθ)∣∣ ≤ max{maxθ ∣∣f ′3(reiθ)∣∣ , f ′4(−r)},
where maxθ

∣∣f ′3(reiθ)∣∣ is given by lemma (4.4).
Remark: For c = 1 in theorem 4.5 we obtain:

Corollary 4.5.1. Let the function f(z) defined by (1.1) be in the class k−UCSPT (α, β).
Then for |z| = r < 1, we have

1− (cosα− β)r
2(k + 1)− cosα− β ≤ |f

′(z)| ≤ 1 + (cosα− β)r
2(k + 1)− cosα− β ,

the result is sharp.

5. Radii of starlikeness and convexity

Theorem 5.1. Let the function f(z) defined by(1.6) be in the class k−UCSPTc(α, β).
Then f(z) is starlike of order ρ(0 ≤ ρ < 1) in the disc |z| < r1(α, β, c, k, ρ) where
r1(α, β, c, k, ρ) is the largest value for which

c(cosα− β)(2− ρ)r
2(2(k + 1)− cosα− β) +

(1− c)(cosα− β)(n− ρ)rn−1
n((k + 1)n− cosα− β) ≤ 1− ρ, (5.1)



2034 GEETHA BALACHANDAR

for n ≥ 3. The result is sharp with the extremal function

fn(z) = z − c(cosα− β)z2
2(2(k + 1)− cosα− β) −

(1− c)(cosα− β)zn
n((k + 1)n− cosα− β) , (5.2)

for some n.

Proof. It suffi ces to show that∣∣zf ′(z)
f(z)

− 1
∣∣ ≤ 1− ρ, (o ≤ ρ < 1),

for |z| < r1(α, β, c, k, ρ). Note that

∣∣zf ′(z)
f(z)

− 1
∣∣ ≤ c(cosα−β)r

2(2(k+1)−cosα−β) +
∑∞
n=3(n− 1)anrn−1

1− c(cosα−β)r
2(2(k+1)−cosα−β) −

∑∞
n=3 anr

n−1

≤ 1− ρ,

for |z| ≤ r if and only if

c(cosα− β)(2− ρ)r
2(2(k + 1)− cosα− β) +

∞∑
n=3

(n− ρ)anrn−1 ≤ 1− ρ.

Since f(z) is in k − UCSPTc(α, β) from (2.1) we may take

an =
(1− c)(cosα− β)λn

n((k + 1)n− cosα− β) , (n ≥ 3),

where λn ≥ 0(n ≥ 3) and
∑∞
n=3 λn ≤ 1. For each fixed r, we choose the positive

integer n0 = n0(r) for which
(n−ρ)rn−1

n is maximal. Then it follows that

∞∑
n=3

(n− ρ)anrn−1 ≤
(1− c)(cosα− β)(n0 − ρ)rn0−1
n0((k + 1)n0 − cosα− β)

.

Hence f(z) is starlike of order ρ in |z| < r1(α, β, c, k, ρ) provided that

c(cosα− β)(2− ρ)r
2(2(k + 1)− cosα− β) +

(1− c)(cosα− β)(n0 − ρ)rn0−1
n0((k + 1)n0 − cosα− β)

≤ 1− ρ.

We find the value r0 = r0(α, β, c, k, ρ) and the corresponding integer n0(r0) so that

c(cosα− β)(2− ρ)r0
2(2(k + 1)− cosα− β) +

(1− c)(cosα− β)(n0 − ρ)rn0−10

n0((k + 1)n0 − cosα− β)
= 1− ρ.

Then this value r0 is the radius of starlikeness of order ρ for functions f(z) belonging
to the class k − UCSPTc(α, β). �

We prove the following theorem concerning the radius of convexity of order ρ for
functions in the class k − UCSPTc(α, β) .
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Theorem 5.2. Let the function f(z) be defined by (1.6) be in the class k −
UCSPTc(α, β). Then f(z) is convex of order ρ(0 ≤ ρ < 1) in the disc |z| <
r2(α, β, c, k, ρ), where r2(α, β, c, k, ρ) is the largest value for which

c(cosα− β)(2− ρ)r
(2(k + 1)− cosα− β) +

(1− c)(cosα− β)(n− ρ)rn−1
((k + 1)n− cosα− β) ≤ 1− ρ,

for n ≥ 3. The result is sharp for the function f(z) given by (5.2).

6. The class k − UCSPTcn,N (α, β)

We now fix finitely many coeffi cients instead of fixing just the second coeffi cients.
Let UCSPTcn,N (α, β) denote the class of functions in UCSPTc(α, β) of the form

f(z) = z −
N∑
n=2

cn(cosα− β)zn
n(2n− cosα− β) −

∞∑
n=N+1

anz
n,

where 0 ≤
∑N
n=2 cn = c ≤ 1. Note that k−UCSPTcn,2(α, β) = k−UCSPTc(α, β).

Theorem 6.1. The extreme points of the class k − UCSPTcn,N (α, β) are

z −
N∑
n=2

cn(cosα− β)zn
n((k + 1)n− cosα− β)

and

z −
N∑
n=2

cn(cosα− β)zn
n((k + 1)n− cosα− β) −

(1− c)(cosα− β)zn
n((k + 1)n− cosα− β) ,

for n=N+1,N+2,....

The characterization of the extreme points enables us to solve the standard
extremal problems in the same manner as was done in k − UCSPTc(α, β). The
details are omitted.
Acknowledgement This research was supported by the National Board for
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