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Abstract

In this paper, we investigate the hyperbolic Fibonacci sequence and the hyperbolic Fibonacci
numbers. Furthermore, we give recurrence relations, the golden ratio and Binet’s formula
for the hyperbolic Fibonacci sequence and Lorentzian inner product, cross product and
mixed product for the hyperbolic Fibonacci vectors.

1. Introduction

For the Fibonacci sequence

1 , 1 , 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . ,Fn, . . .

defined by the recurrence relation

Fn = Fn−1 +Fn−2 , (n≥ 3),

with F1 = F2 = 1, it is well known that the n-th term of the Fibonacci sequence (Fn) [1]-[3]. Some recent generalizations have produced a
variety of new and extended results,[4]-[8].
Hyperbolic numbers have applications in different areas of mathematics and theoretical physics. In particular, they are related to the
Lorentz-Minkowski (Space-time) geometry in the plane as well as complex numbers are to Euclidean one [9] . The work on the function
theory for hyperbolic numbers can be found in [10]-[15]. The set of hyperbolic numbers H can be described in the form as

H= {z = x+hy | h /∈ R , h2 = 1 , x,y ∈ R}. (1.1)

Addition, substraction and multiplication of any two hyperbolic numbers z1 and z2 are defined by

z1± z2 =(x1 +hy1)± (x2 +hy2) = (x1± x2)+h(y1± y2),

z1× z2 =(x1 +hy1)× (x2 +hy2) = x1 x2 + y1 y2 +h(x1 y2 + y1 x2).
(1.2)

On the other hand, the division of two hyperbolic numbers are given by

z1

z2
=

x1 +hy1

x2 +hy2

(x1 +hy1)(x2−hy2)

(x2 +hy2)(x2−hy2)
=

x1 x2 + y1 y2

x2
2− y2

2
+h

(x1 y2 + y1 x2)

x2
2− y2

2
.

(1.3)
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If x2
2− y2

2 6= 0, then the division z1
z2

is possible. Therefore, the hyperbolic number system is a non-division algebra.
The hyperbolic conjugation of z = x+hy is defined by

z = z† = x−hy , z = z .

For any z1, z2 hyperbolic numbers, can be written as follows:

z1 + z2 = z1 + z2,
z1× z2 = z1× z2,∥∥−→z ∥∥2

= z× z = x2− y2.

where z is time-like if
∥∥−→z ∥∥2

> 0 , light-like if
∥∥−→z ∥∥2

= 0 and space-like if
∥∥−→z ∥∥2

< 0 . The ring of hyperbolic numbers has zero-divisors.
Moreover, these zero-divisors are also idempotent elements {e,e†} for hyperbolic numbers, given by

e =
1+h

2
, e† =

1−h
2

.

where ee† = 0 , e2 = e , (e†)2 = e† , e+ e† = 1 and e− e† = k . Then, each hyperbolic number z can be written as follows:

z = x+hy = (x+ y)e+(x− y)e† = z1 e+ z2 e†.

These numbers are also called double, split, perplex, Lorentz and duplex numbers [12].

2. Hyperbolic Fibonacci sequence

The hyperbolic Fibonacci sequence defined by

F̃n = Fn +hFn+1 , (h2 = 1) (2.1)

with F̃1 = 1+h , F̃2 = 1+2h where h2 = 1 . That is, the hyperbolic Fibonacci sequence F̃n is

h , 1+h , 1+2h, 2+3h, 3+5h, . . . ,(1+h)Fn +hFn−1, . . . (2.2)

Using the equations (2.1) and (2.2) , it was obtained

F̃n+1 = (1+h)Fn+1 +hFn
F̃n+2 = (1+2h)Fn+1 +(1+h)Fn
F̃n+3 = (2+3h)Fn+1 +(1+2h)Fn
...
F̃n+r = (Fn +hFn+1)Fr+1 +(Fn−1 +hFn)Fr
...

(2.3)

For the hyperbolic Fibonacci sequence, it was obtained the following properties:

F̃2
n+1 + F̃2

n = 2 F̃2n+1 +F2n+2 ,

F̃2
n+1− F̃2

n−1 = 2 F̃2n +F2n+1 ,

F̃n+r = F̃nFr+1 + F̃n−1Fr (n≥ 3)
F̃n−1 F̃n+1− F̃2

n = h(−1)n ,

F̃n−r F̃n+r− F̃2
n = h(−1)n−r+1 F2

r ,

F̃2
n +hF2

n+1 = F̃2n+1 ,

F̃n F̃m + F̃n+1 F̃m+1 = 2 F̃n+m+1 +Fn+m+2 ,

F̃n F̃m+1− F̃n+1 F̃m = h(−1)m Fn−m ,
F̃n+r+(−1)r F̃n−r

F̃n
= Lr = Fr+1 +(−1)rFr−1 .

Theorem 2.1. If F̃n is the hyperbolic Fibonacci number, then

lim
n→∞

F̃n+1

F̃n
= α2

α2−1

where α = (1+
√

5)
/

2 = 1.618033.. is the golden ratio.

Proof. We have for the Fibonacci number Fn,

lim
n→∞

Fn+1

Fn
= α

where α = (1+
√

5)
/

2 = 1.618033.. is the golden ratio [3].
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Then, using this limit value for the hyperbolic Fibonacci number F̃n, we obtain

lim
n→∞

F̃n+1

F̃n
= lim

n→∞

Fn+1+hFn+2
Fn+hFn+1

= lim
n→∞

(Fn+1+hFn+2)(Fn−hFn+1)

F2
n −Fn+1

2

lim
n→∞

Fn+1 (Fn−Fn+2)+h(Fn Fn+2−F2
n+1)

(F2
n −F2

n+1)

lim
n→∞

−F2
n+1

F2
n −F2

n+1
+h lim

n→∞

(−1)n+1

F2
n −F2

n+1

= −α2

1−α2 +0

= α2

α2−1

where the identities Fn+2 = Fn +Fn+1 and Fn+1 Fn−1−Fn
2 = (−1)n are used.

Theorem 2.2. The Binet formula 1 for the hyperbolic Fibonacci sequence is as follows;

F̃n =
1

α−β
( ᾱ α

n− β̄ β
n) .

Proof. If we use definition of the hyperbolic Fibonacci sequence and substitute first equation in footnote, then we get

F̃n = Fn +hFn+1

= (αn−β n

α−β
)+h(αn+1−β n+1

α−β
)

=
αn (1+hα)−β n (1+hβ )

α−β

= α αn −β β n

α−β

where α = 1+hα and β = 1+hβ .

3. Hyperbolic Fibonacci vectors

Let −→z1 = (x1,x2,x3) and −→z2 = (y1,y2,y3) be vectors in R3. The Lorentzian inner product of z1 and z2 is defined as [16]

z1.z2 = 〈−→z1 ,
−→z2 〉L = x1 y1 + x2 y2− x3 y3.

This space denote by L2,1 or Lorentz 3− space L3.
A hyperbolic Fibonacci vector is defined by

−→
F̃n = (F̃n , F̃n+1, F̃n+2)

Also, from equations (2.1) and (2.3) it can be expressed as

−→
F̃ n =

−→
F n +h

−→
F n+1

where
−→
F n = (Fn , Fn+1, Fn+2) and

−→
F n+1 = (Fn+1 , Fn+2, Fn+3) are the hyperbolic Fibonacci vectors.

The product of the hyperbolic Fibonacci vector
−→
F̃n and the scalar λ ∈ R is given by

λ

−→
F̃n = λ

−→
F n +hλ

−→
F n+1

and
−→
F̃n and

−→
F̃m are equal if and only if

Fn = Fm
Fn+1 = Fm+1
Fn+2 = Fm+2.

1Binet formula is the explicit formula to obtain the n-th Fibonacci and Lucas numbers. It is well known that for the Fibonacci and Lucas numbers, Binet formulas are

Fn =
αn−β n

α−β

and

Ln = α
n +β

n

respectively, where α +β = 1 , α−β =
√

5 , αβ =−1 and α = (1+
√

5)
/

2 , β = (1−
√

5)
/

2 ,[7],[8].
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Some examples of the hyperbolic Fibonacci vectors can be given easily as;
−→
F̃1 = (F̃1 , F̃2, F̃3)

= (F1 , F2, F3)+h(F2 , F3, F4)
= (1+h, 1+2h, 2+3h)

−→
F̃2 = (F̃2 , F̃3, F̃4)

= (F2 , F3, F4)+h(F3 , F4, F5)
= (1+2h, 2+3h, 3+5h)

Theorem 3.1. Let
−→
F̃n and

−→
F̃m be two hyperbolic Fibonacci vectors. The Lorentzian inner product of

−→
F̃n and

−→
F̃m is given by〈−→

F̃n,
−→
F̃m

〉
L
= (Fn+m+1−Fn+m+4)+h(3Fn+m+2 +2Fn+m+3−Fn+1 Fm+1 ). (3.1)

Proof. The Lorentzian inner product of
−→
F̃ n = (F̃n , F̃n+1, F̃n+2) and

−→
F̃ m = (F̃m , F̃m+1, F̃m+2) defined by〈−→

F̃n,
−→
F̃m

〉
L

= F̃nF̃m + F̃n+1F̃m+1− F̃n+2F̃m+2

=
〈−→

F n,
−→
F m

〉
+
〈−→

F n+1,
−→
F m+1

〉
+h [

〈−→
F n ,
−→
F m+1

〉
+
〈−→

F n+1 ,
−→
F m

〉
]

where
−→
Fn = (Fn , Fn+1, Fn+2) is the hyperbolic Fibonacci vector. Also, the equations (1.1), (1.2) and (1.3), we obtain〈−→

F n,
−→
F m

〉
= Fn Fm +Fn+1 Fm+1−Fn+2 Fm+2 (3.2)

〈−→
F n+1,

−→
F m+1

〉
= Fn+1 Fm+1 +Fn+2 Fm+2−Fn+3 Fm+3 (3.3)

〈−→
F n,
−→
F m+1

〉
= Fn Fm+1 +Fn+1 Fm+2−Fn+2 Fm+3 (3.4)

and 〈−→
F n+1,

−→
F m

〉
= Fn+1 Fm +Fn+2 Fm+1−Fn+3 Fm+2 (3.5)

Then from equation (3.2), (3.3), (3.4) and (3.5), we have the equation (3.1).

Special Case-1: For the Lorentzian inner product of the hyperbolic Fibonacci vectors
−→
F̃n and

−→
F̃ n+1, we get〈−→

F̃ n,
−→
F̃ n+1

〉
L

= F̃nF̃n+1 + F̃n+1F̃n+2− F̃n+2F̃n+3

=
〈−→

F n,
−→
F n+1

〉
+
〈−→

F n+1,
−→
F n+2

〉
+h [

〈−→
F n,
−→
F n+2

〉
+
〈−→

F n+1,
−→
F n+1

〉
]

= (F2n+2−F2n+5)+h(2F2n+3 +F2n+5−Fn+2 Fn+3)

and 〈−→
F̃ n,
−→
F̃ n

〉
L

= F̃2
n + F̃2

n+1− F̃2
n+2

=
〈−→

F n ,
−→
F n

〉
+
〈−→

F n+1 ,
−→
F n+1

〉
+h

〈−→
F n ,

−→
F n+1

〉
= (F2n+1−F2n+4)+2h(F2n+2−Fn+2 Fn+3).

Then for the Lorentzian inner product of the hyperbolic vector 2, we have, using identities of the Fibonacci numbers

F2
n +F2

n+1 = F2n+1
F2

n+3− F2
n+1 = F2n+2

Fn Fm +Fn+1 Fm+1 = Fn+m+1

(see, [11]), we have∥∥∥∥−→F̃n

∥∥∥∥2
=

〈−→
F̃n,
−→
F̃n

〉
L
= F̃2

n + F̃2
n+1− F̃2

n+2

= (F2n+1−F2n+2)+2h(F2n+2−2Fn+2 Fn+3) .

2Lorentzian inner product of hyperbolic number as follows: 〈−→z ,−→z
〉

L = x1
2 + x2

2− x3
2 , [11].
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The Lorentzian cross product [16],[17] of the vectors −→z1 and −→z2 in L3 is

−→z1 ×L
−→z2 =

∣∣∣∣∣∣
−i − j k
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣
= −i(x2y3− x3y2)+ j (x1y3− x3y1)+ k (x1y2− x2y1) .

Theorem 3.2. Let
−→
F̃n and

−→
F̃m be two hyperbolic Fibonacci vectors. The Lorentzian cross product of

−→
F̃n and

−→
F̃m is given by

−→
F̃n×L

−→
F̃m = h(−1)m Fn−m (i+ j+ k). (3.6)

Proof. The Lorentzian cross product of
−→
F̃n =

−→
F n +h

−→
F n+1 and

−→
F̃m =

−→
F m +h

−→
F m+1 defined by

−→
F̃n×

−→
F̃m = (

−→
F n×

−→
F m)+(

−→
F n+1×

−→
F m+1)+h (

−→
F n×

−→
F m+1 +

−→
F n+1×

−→
F m

where
−→
F̃ n is the hyperbolic Fibonacci vector and

−→
F n×

−→
F m is the Lorentzian cross product for the hyperbolic Fibonacci vectors

−→
F̃ n and

−→
F̃ m,

Now, we calculate the cross products
−→
F n×

−→
F m,
−→
F n+1×

−→
F m+1,

−→
F n×

−→
F m+1 and

−→
F n+1×

−→
F m: Using the property FmFn+1−Fm+1 Fn =

(−1)n Fm−n, we get

−→
F n×

−→
F m = (−1)m Fn−m (i+ j+ k) (3.7)

−→
F n+1×

−→
F m+1 = (−1)m+1 Fn−m (i+ j+ k) (3.8)

−→
F n×

−→
F m+1 = (−1)m+1 Fn−m−1 (i+ j+ k) (3.9)

and

−→
F n+1×

−→
F m = (−1)m Fn−m+1 (i+ j+ k). (3.10)

Then from the equations (3.7), (3.8), (3.9) and (3.10), we obtain the equation (3.6).

Theorem 3.3. Let
−→
F̃n,
−→
F̃m and

−→
F̃` be the hyperbolic Fibonacci vectors. The Lorentzian mixed product of these vectors is〈−→

F̃n×L
−→
F̃m ,

−→
F̃`

〉
= 0. (3.11)

Proof. Using the properties

−→
F̃n×

−→
F̃m = (

−→
F n×

−→
F m)+(

−→
F n+1×

−→
F m+1)+h (

−→
F n×

−→
F m+1 +

−→
F n+1×

−→
F m)

and

−→
F̃ ` =

−→
F `+h

−→
F `+1

we can write,〈−→
F̃ n×L

−→
F̃ m,
−→
F̃ `

〉
=
〈−→

F n×
−→
F m,
−→
F `

〉
+
〈−→

F n+1×
−→
F m+1,

−→
F `

〉
+h [

〈−→
F n×

−→
F m,
−→
F `+1

〉
+
〈−→

F n+1×
−→
F m+1,

−→
F `+1

〉
]

+h [
〈−→

F n×
−→
F m+1,

−→
F `

〉
+
〈−→

F n+1×
−→
F m,
−→
F `

〉
]

+
〈−→

F n×
−→
F m+1,

−→
F `+1

〉
+
〈−→

F n+1×
−→
F m,
−→
F `+1

〉
.

Then from equations (3.7), (3.8), (3.9)and (3.10) and by using the Lorentzian inner product definition of the hyperbolic number, we obtain〈
(i+ j+ k),

−→
F`

〉
= F̀ + F̀ +1− F̀ +2 = 0,

〈
(i+ j+ k),

−−→
F`+1

〉
= F̀ +1 + F̀ +2− F̀ +3 = 0.

Thus, we have the equation (3.11).
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4. Conclusion

The hyperbolic Fibonacci sequence defined by

F̃n = Fn +hFn+1 , (h2 = 1),

with F̃1 = 1+h , F̃2 = 1+2h where h2 = 1, .

In addition, limit for the hyperbolic Fibonacci sequence and Binet’s formula for the hyperbolic Fibonacci sequence is given. Furthermore,
vectors and the Lorentzian inner product, cross product and mixed product of these vectors are given.
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