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Abstract

We suggest a bound for the joint spectral radius of a finite set of operators in a Hilbert space.
In appropriate situations that bound enables us to avoid complicated calculations and gives
a new explicit stability test for the discrete time switched systems. The illustrative example
is given. Our results are new even in the finite dimensional case.

1. Introduction and statement of the main result

Let H be a complex separable Hilbert space with a scalar product (., .), the norm ‖.‖=
√

(., .) and unit operator I. By B(H ) we denote
the set of all bounded linear operators in H . For an A ∈B(H ), σ(A) is the spectrum, rs(A) is the spectral radius; A∗ is adjoint to A, and
‖A‖= suph∈H ,h 6=0 ‖Ah‖/‖h‖.
Let M = {A1, ...,Aν} be a finite set of operators A j ∈B(H ) ( j = 1, ...,ν). Our main object is the joint spectral radius ρ(M ) of M defined
by

ρ(M ) := lim
k→∞

sup{‖Aik · · ·Ai1‖
1/k : Ai ∈M },

cf. [1, 2]. The joint spectral radius arises naturally in a range of topics including the theory of difference equations [3], control and stability
of discrete time switched systems [4, 5, 6, 7, 8, 9, 10, 11], wavelets [12], ergodic theory [13], etc.
The literature on the theory of the joint spectral radius is rather rich, cf. [14], [15], [16], [17, 18] and references therein. Mainly, the finite
dimensional operators were considered and the numerical methods were developed.
In the present paper, under some restrictions, we suggest a bound for ρ(M ). In appropriate situations that bound enables us to avoid
complicated calculations and gives an explicit stability test for the discrete time switched systems. The example characterizing the sharpness
of our results is given. To the best of our knowledge, our results are new even in the finite dimensional case.
Let A ∈B(H ) with rs(A)< 1. Then the discrete Lyapunov equation

X−A∗XA = I (1.1)

has a positive definite self-adjoint solution X(A) [19]. It can be represented by

X(A) =
∞

∑
j=0

(A∗) jA j (1.2)

and

X(A) =
1

2π

∫ 2π

0
(Ie−iω −A∗)−1(Ieiω −A)−1dω, (1.3)

cf. [20, Section 7.1]. We will say that M is Schur-Kohn stable, if ρ(M )< 1. Now we are in a position to formulate our main result.
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Theorem 1.1. Let there be an A ∈B(H ) with rs(A)< 1, such that

‖X(A)‖(2‖A−Ak‖‖A‖+‖A−Ak‖2)< 1 (Ak ∈M ; k = 1, ...,ν). (1.4)

Then M is Schur-Kohn stable. Moreover,

ρ(M )≤

√
1− 1
‖X(A)‖

(1− max
j=1,...,ν

‖X(A)‖(2‖A−A j‖‖A‖+‖A−A j‖2).

The proof of this theorem is presented in the next section. In Theorem 1.1, one can take A = Am for an Am ∈M . Below we consider some
concrete classes of operators. Note that from (1.2) and (1.3) it follows that

‖X(A)‖ ≤
∞

∑
j=1
‖A j‖2 (1.5)

and

‖X(A)‖ ≤ 1
2π

∫ 2π

0
‖(Ieiω −A)−1‖2dω. (1.6)

If A is normal: AA∗ = A∗A, then ‖A‖= rs(A) and (1.5) implies

‖X(A)‖ ≤
∞

∑
j=0

r2 j
s (A) =

1
1− r2

s (A)
. (1.7)

2. Proof of Theorem 1.1

In this section for the simplicity we put X(A) = X .

Lemma 2.1. Let A, Ã ∈B(H ), rs(A)< 1 and X be a solution of (1.1). If

‖X‖(2‖A− Ã‖‖A‖+‖A− Ã‖2)< 1,

then

(XÃx, Ãx)≤ (1− c0

‖X‖
)(Xx,x) (x ∈H ),

where

c0 := 1−‖X‖(2‖A− Ã‖‖A‖+‖A− Ã‖2).

Proof. Put Y = Ã−A. Then

X− Ã∗XÃ = X− (Y +A)∗X(Y +A) = X−A∗XA−Y ∗XA−A∗XY −Y ∗XY = I−Y ∗XA−A∗XY −Y ∗XY.

By (2.1)

‖I−Y ∗XA−A∗XY −Y XY‖ ≥ 1−‖Y ∗XA−A∗XY −Y ∗XY‖,≥ 1−‖X‖(2‖A− Ã‖+‖A− Ã‖2) = c0.

Thus,

X− Ã∗XÃ≥ c0I.

Hence,

(Xx,x)− (XÃx, Ãx)≥ c0(x,x)≥ c0(
X
‖X‖

x,x) =
c0

‖X‖
(Xx,x),

as claimed.

Proof of Theorem 1.1: Define the norms

|x|X =
√

(Xx,x) (x ∈H ) and |A|X = sup
x∈H

|Ax|X
|x|X

.

Due to Lemma 2.1 and (1.4) we have

|A j|2X ≤ 1−
c j

‖X‖
, (2.1)

where

c j := 1−‖X‖(2‖A−A j‖‖A‖+‖A−A j‖2).
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Put

a0 := max
j

√
1−

c j

‖X‖
=

√
1− 1
‖X‖

(1−max
j
‖X‖(2‖A−A j‖‖A‖+‖A−A j‖2)

Then by (2.1)

max
j
|A j|X ≤ a0. (2.2)

Since X is positive definite, it is boundedly invertible. For any T ∈B(H ) one has

‖T x‖2

‖x‖2 =
(X−1XT x,T x)
(X−1Xx,x)

≤ (X−1XT x,T x)
( 1
‖X‖Xx,x)

≤ ‖X‖‖X−1‖ (XT x,T x)
(Xx,x)

(x ∈H ).

So

‖T‖2 ≤ ‖X‖‖X−1‖|T |2X

Hence, according to (2.2),

‖Aik · · ·Ai1‖ ≤ (‖X‖‖X−1‖)1/2|Aik · · ·Ai1 |X ≤ (‖X‖‖X−1‖)1/2ak
0

and therefore,

ρ(M )≤ limk→∞(‖X‖‖X−1‖)1/2ka0 = a0,

as claimed. �

3. Concrete classes of operators

In this section we suggest estimates for X(A) under various assumptions. From (1.6) it follows

‖X(A)‖ ≤ sup
|z|=1
‖(Iz−A)−1‖2. (3.1)

Let there be monotonically increasing non-negative continuous function F(x) (x≥ 0), such that F(0) = 0, F(∞) = ∞ and

‖(λ I−A)−1‖ ≤ F(1/dist(A,λ )) (λ 6∈ σ(A)),

where dist(A,λ ) = infs∈σ(A) |s−λ |. If rs(A)< 1 and |z|= 1, then obviously, dist(A,z)≥ 1− rs(A) and therefore, ‖(Iz−A)−1‖ ≤ F(1/(1−
rs(A))). Now (3.1) implies

‖X(A)‖ ≤ F2
(

1
1− rs(A)

)
. (3.2)

3.1. Operators in finite dimensional spaces

Let Cn (n < ∞) be the complex n-dimensional Euclidean space with a scalar product (., .), the Euclidean norm ‖.‖ =
√

(., .) and unit
matrix I, Cn×n is the set of all n× n matrices. λk(A),k = 1, ...,n, are the eigenvalues of A ∈ Cn×n, counted with their multiplicities;
N2(A) = (trace AA∗)1/2 is the Hilbert-Schmidt (Frobenius) norm of A. The quantity (the departure from normality of A)

g(A) = [N2
2 (A)−

n

∑
k=1
|λk(A)|2 ]1/2,

plays an essential role hereafter. The following relations are checked in [21, Section 3.1]:

g2(A)≤ N2
2 (A)−|trace A2| and g2(A)≤ N2(A−A∗)

2
= 2N2

2 (AI),

where AI = (A−A∗)/2i. If A is a normal matrix, then g(A) = 0.
Due to Example 3.3 from [21],

‖Am‖ ≤
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2
(m = 1,2, ...).

Now (1.5) implies

‖X(A)‖ ≤ ξn(A) :=
∞

∑
j=1

(
n−1

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)2

(A ∈ Cn×n). (3.3)

Note that if A is normal, then g(A) = 0 and (3.3) gives us the sharp inequality (1.7).
Theorem 1.1 and (3.3) yield the following corollary.
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Corollary 3.1. Let M be a finite set of n×n-matrices. Let there be an n×n-matrix A with rs(A)< 1, such that

ξn(A) max
B∈M

(2‖A−B‖‖A‖+‖A−B‖2)< 1.

Then M is Schur-Kohn stable. Moreover,

ρ(M )≤

√
1− 1

ξn(A)
(1−ξn(A) max

B∈M
(2‖A−B‖‖A‖+‖A−B‖2).

Let us point the more compact but less sharper estimate for X(A). To this end put

ηn(A) :=
n−1

∑
k=0

gk(A)√
k!(1− rs(A))k+1

.

By Theorem 3.2 from [21]

‖(A−λ I)−1‖ ≤
n−1

∑
k=0

gk(A)
(dist(A,λ ))k+1

√
k!

(A ∈ Cn×n,λ 6∈ σ(A)).

Making use of (3.2) we can assert that

‖X(A)‖ ≤ η
2
n (A) (A ∈ Cn×n).

So in Corollary 3.1 one can replace ξn(A) by η2
n (A).

3.2. Hilbert-Schmidt operators

Denote by SN2 the ideal of Hilbert-Schmidt operators in H with the finite norm N2(A) = (trace AA∗)1/2. In the infinite dimensional case
we put

g(A) = [N2
2 (A)−

∞

∑
k=1
|λk(A)|2 ]1/2,

where λk(A),k = 1,2, ..., are the eigenvalues of A ∈ SN2, counted with their multiplicities and enumerated in the non-increasing order of
their absolute values.
Since

∞

∑
k=1
|λk(A)|2 ≥ |

∞

∑
k=1

λ
2
k (A)|= |trace A2|,

one can write

g2(A)≤ N2
2 (A)−|trace A2|.

If A is a normal Hilbert-Schmidt operator, then g(A) = 0, since

N2
2 (A) =

∞

∑
k=1
|λk(A)|2

in this case. Moreover,

g2(A)≤
N2

2 (A−A∗)
2

= 2N2
2 (AI),

cf. [21, Section 7.1]. Due to Corollary 7.4 from [21] for any A ∈ SN2 we have

‖Am‖ ≤
m

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2
(m = 1,2, ...).

Now (1.5) implies

‖X(A)‖ ≤ ξ∞(A) :=
∞

∑
j=1

(
m

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)2

(A ∈ SN2). (3.4)

If A is normal, then (3.4) gives us inequality (1.7).
Furthermore, by Theorem 7.1 from [21] for any A ∈ SN2 we have

‖Rλ (A)‖ ≤
∞

∑
k=0

gk(A)
(dist(A,λ ))k+1

√
k!

(λ 6∈ σ(A)).

Inequality (3.2) gives us the more compact but less sharper estimate

‖X(A)‖ ≤ η
2
∞(A) (A ∈ SN2),



98 Universal Journal of Mathematics and Applications

where

η∞(A) :=
∞

∑
j=0

g j(A)√
j!(1− rs(A)) j+1 .

Now we can directly apply Theorem 1.1.
By the Schwarz inequality

(
∞

∑
j=0

(cg) j(A)
c j√ j!(1− rs(A)) j )

2 ≤
∞

∑
k=0

c2k
∞

∑
j=0

g2 j(A)
c2 j j!(1− rs(A))2 j =

1
1− c2 exp [

g2(A)
c2(1− rs(A))2 ] (c ∈ (0,1)).

Thus,

‖X(A)‖ ≤ 1
(1− c2)(1− rs(A))2 exp [

g2(A)
c2(1− rs(A))2 ] (A ∈ SN2,c ∈ (0,1)).

In particular, taking c2 = 1/2, we get

‖X(A)‖ ≤ η̂(A) :=
2

(1− rs(A))2 exp [
2g2(A)

(1− rs(A))2 ].

Now Theorem 1.1 implies the following corollary.

Corollary 3.2. Let M be a finite set of bounded operators from H Let there be an A ∈ SN2 with rs(A)< 1, such that

η̂(A) max
B∈M

(2‖A−B‖‖A‖+‖A−B‖2)< 1.

Then M is Schur-Kohn stable. Moreover,

ρ(M )≤

√
1− 1

η̂(A)
(1− η̂(A) max

B∈M
(2‖A−B‖‖A‖+‖A−B‖2).

Similarly, making use of Theorems 7.2, 7.3 from [21] one can apply Theorem 1.1 to Shatten-von Neumann operators.

3.3. Non-compact non-normal operators

In this subsection we suggest a norm estimate for the solution of (1.1) under the condition

AI = (A−A∗)/(2i) ∈ SN2. (3.5)

To this end introduce the quantity

gI(A) :=
√

2

[
N2

2 (AI)−
∞

∑
k=1

(ℑ λk(A))
2

]1/2

.

Obviously, gI(A)≤
√

2N2(AI). Due to Example 10.2 from [21],

‖Am‖ ≤
m

∑
k=0

m!rm−k
s (A)gk

I (A)
(m− k)!(k!)3/2

(m = 1,2, ...).

Now (1.5) implies

‖X(A)‖ ≤ ξI(A) :=
∞

∑
j=0

(
m

∑
k=0

m!rm−k
s (A)gk(A)

(m− k)!(k!)3/2

)2

(AI ∈ SN2).

If A is normal from this inequality we get (1.7).
Furthermore, by Theorem 9.1 from [21] under condition (4.1) we have,

‖Rλ (A)‖ ≤
∞

∑
k=0

gk
I (A)

(dist(A,λ ))k+1
√

k!

and

‖Rλ (A)‖ ≤
√

e
dist(A,λ )

exp [
g2

I (A)
2(dist(A,λ ))2 ] (λ 6∈ σ(A)).

Inequality (3.2) implies

‖X(A)‖ ≤ η
2
I (A) and ‖X(A)‖ ≤ η̂

2
I (A) (AI ∈ SN2),

where

ηI :=
∞

∑
j=0

g j
I (A)√

j!(1− rs(A)) j+1
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and

η̂I :=
√

e
1− rs(A)

exp [
g2

I (A)
2(1− rs(A))2 ].

Now we can directly apply Theorem 1.1.
Some other classes of operators can be considered, in particular, via norm estimates for operator functions from [21].

4. Example

The following example characterizes the sharpness of Theorem 1.1.
Let H = Cn, M = {A1,A2} with real positive matrices matrices A1 = diag (ak)

n
k=1,A2 = diag (bk)

n
k=1; (ak,bk ≥ 0) and rs(A1) < 1. So

am = maxk ak < 1. Take A = A1. Since A1 is Hermitian, according to (1.7) condition (1.4) takes the form

1
1− r2

s (A1)
(2rs(A1)‖A1−A2‖+‖A1−A2‖2)< 1. (4.1)

Besides, ‖A1−A2‖= maxk |ak−bk|.
Assume that rs(A2)≥ 1. Namely, bm ≥ 1. So M is Schur-Kohn unstable. Then |am−bm|= bm−am ≥ 1−am and

1
1−a2

m
(2am|am−bm|+ |am−bm|2)≥

1
1−a2

m
(2am(1−am)+(1−am)

2)≥ 1
1+am

(2am +1−am)≥ 1.

Therefore, condition (4.1) is not fulfilled. So condition (1.4) is necessary under consideration.
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[7] H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results, IEEE Transac. on Automatic Control, 54

(2), (2009) 308-322.
[8] R. Shorten, F. Wirth, O. Mason, K.Wul and C. King, Stability criteria for switched and hybrid systems, SIAM Rev., 49 (2007), 545-592.
[9] W. Xiang and J. Xiao, Convex sufficient conditions on asymptotic stability and l2 gain performance for uncertain discrete-time switched linear systems.

IET Control Theory Appl. 8 (3), (2014), 211-218.
[10] G. Zhai and X. Xu, A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching, Int. J. Appl. Math. Comput.

Sci., 20 (2), (2010), 249-259.
[11] L. Zhang, Y. Zhu, P. Shi, Q. Lu, Time-Dependent Switched Discrete-Time Linear Systems: Control and Filtering Springer International Publishing,

Switzerland, 2016.
[12] C. Heil and G. Strang, Continuity of the joint spectral radius: Applications to wavelets, in ”Linear Algebra for Signal Processing,” IMA Vol. Math. Appl.

69, Springer-Verlag, New York, (1995), 51-61.
[13] I. D. Morris, A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory, Adv. Math., 225 (2010), 3425-3445.
[14] V. Kozyakin, On accuracy of approximation of the spectral radius by the Gelfand formula, Linear Algebra Appl., 431 (2009), 2134-2141.
[15] V. Kozyakin, A relaxation scheme for computation of the joint spectral radius of matrix sets, J. Difference Equ. Appl., 17 (2), (2011) 185-201.
[16] V. D. Blondel and Y. Nesterov, Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices, SIAM J. Matrix Anal.

Appl., 31 (2009), 865-876.
[17] P.A. Parrilo and A. Jadbabaie, Approximation of the joint spectral radius using sum of squares, Linear Algebra Appl., 428 (2008), 2385-2402
[18] J. N. Tsitsiklis and V. D. Blondel, The Lyapunov exponent and joint spectral radius of pairs of matrices are hard when not impossible—to compute and

to approximate, Math. Control, Signals and Systems, 10 (1997), 31-40.
[19] T. Eisner, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications Vol. 209, Birkha̋user Verlag, Basel, 2010.
[20] M.I. Gil’. Difference Equations in Normed Spaces. Stability and Oscillations, North-Holland, Mathematics Studies 206, Elsevier, Amsterdam, 2007.
[21] M.I. Gil’, Operator Functions and Operator Equations, World Scientific, New Jersey, 2018.


	Introduction and statement of the main result
	Proof of Theorem 1.1
	Concrete classes of operators
	Operators in finite dimensional spaces
	Hilbert-Schmidt operators
	Non-compact non-normal operators

	Example
	Acknowledgement

