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Abstract

In this paper, the existence and uniqueness problem of the initial and boundary value
problems of the linear fractional Caputo-Fabrizio differential equation of order σ ∈ (1,2]
have been investigated. By using the Laplace transform of the fractional derivative, the
fractional differential equations turn into the classical differential equation of integer order.
Also, the existence and uniqueness of nonlinear boundary value problem of the fractional
Caputo-Fabrizio differential equation has been proved. An application to mass spring
damper system for this new fractional derivative has also been presented in details.

1. Introduction

The fractional differential calculus has gained much interest by the many researcher in the last decades and it has strong mathematical
background and many papers are attributed to the development of it. Among them, we can cite some e.g, [1, 2, 3]. Fractional calculus has
been also used for modelling physical phenomena including control systems, mechanics, viscoelasticity [4, 5, 6]. Up to now, several definition
of fractional derivative has been proposed. Some frequently used definition of fractional derivative can be given as the Riemann-Lioville,
Caputo, Grünwald–Letnikov [7, 8] and conformable fractional derivative [9, 10, 11, 12, 13]. Among them, the Riemann-Lioville definition
requires nonlocal initial condition, so it does not reflect physical experiment while the Caputo definition allows to use the classical initial
condition. In the recent years, a new definition of fractional order derivative has been defined by Caputo and Fabrizio [14] with a regular
kernel. This new definition can be able to describe better heterogeneousness and systems with different scales with memory effects.
The other good property of this new definition is that the real power turn into the integer by the Laplace transformation, thus the exact
solution can be easily found for some cases. Some properties of this definition have been studied in [15]. Several papers are devoted to
development of this new fractional derivative [16, 17]. Some applications based on this new fractional derivative can be found in the papers
[18, 19, 20, 21, 22, 23]. In this paper, the previous results will be extended and the existence and uniqueness solution will be given for high
order fraction derivative. As an application, a mass-spring-damper system will be analyzed basen on this new derivative. In [15], the results
are presented when the fractional order α ∈ (0,1). The aim of this paper enriches these results for the case when the fractional order of
α +1 ∈ (1,2). In [19], a mass spring damper motion has been studied, but the solution available only for numerical approximation using
Laplace transform algorithm. More importantly, they consider the fractional order 2α ∈ (1,2) when α ∈ (0,1). However, this is not true
when α ∈ (0,1/2). Additionally, the Caputo-Fabrizio fractional operator does not have semigroup property. For this reason, the different
cases of the fractional order also have been examined and the exact solution for each case is given for the mass spring damper equation using
only the Laplace transformation.
The rest of the paper is organized as follows. In Section 2, preliminaries and previous related works have been introduced. The existence and
uniqueness results for linear problems have been presented in Section 3. Some simple but important initial and boundary value problems
of the fraction Caputo-Fabrizio differential equation are given in Section 4. In Section 5, the existence and uniqueness of the nonlinear
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boundary value problem of the fraction Caputo-Fabrizio differential equation have been demonstrated. Finally, an application to a mass
spring damper system is given in the last section.

2. Preliminaries and Previous Results

We present some definitions and previous results of the new fractional Caputo–Fabrizio derivative that are needed in this work.

Definition 2.1. Let α ∈ (0,1) and f ∈ H1(a,b),a < b. The Caputo fractional derivative of the function f defined as

Dα
C f (x) =

1
Γ(1−α)

∫ x

a
(x− t)α f ′(t)dt.

Definition 2.2. [14] Given a < b and f ∈ H1(a,b), the fractional Caputo-Fabrizio derivative of the function of order α ∈ (0,1) is defined
for t ≥ 0

CF Dα f (x) =
1

1−α

∫ x

a
exp
(
−

α

1−α
(x− t)

)
f ′(t)dt. (2.1)

Definition 2.3. [15] The Caputo-Fabrizio fractional integral of oder α ∈ (0,1) is defined as

CFI ( f )(x) = (1−α) f (x)+α

∫ x

0
f (s)ds.

The Caputo-Fabrizio fractional of order σ = α +n for α ∈ (0,1) and n ∈ N defined as
CF Dα+n f (x) :=CF Dα (CF Dn f (x)).

Theorem 2.4. [14] Let the function f (x) satisfy f (k)(a) = 0, k = 1,2, . . . ,n, then the equality
CF Dα (CF Dn f (x)) =CF Dn(CF Dα f (x)) (2.2)

holds.

Definition 2.5. For σ = α +1 with α ∈ (0,1), the Caupto-Fabrizio fractional derivative of order σ defined as

CF Dσ f (x) =
1

1−α

∫ x

a
exp
(
−

α

1−α
(x− t)

)
f ′′(t)dt. (2.3)

Note that the equality CF Dα (CF D1 f (x)) =CFD1(CF Dα f (x)) is defined unambiguously when f ′(0) = 0. (see [14])

Definition 2.6. For a function f (x), the Laplace transformation F(s) of f is given by

F(s) = L
[

f (x)
]
=
∫

∞

0
exp(−sx) f (x)dx.

Lemma 2.7. [14] The Laplace transform of the Caputo-Fabrizio fractional of order σ = α +n for α ∈ (0,1) and n ∈ N is given by

L
{CF

Dσ ( f )(x)
}
(s) =

sn+1L { f (x)}(s)− sn f (0)− sn−1 f ′(0)−·· ·− f (n)(0)
s+α(1− s)

.

3. Existence and Uniqueness of the Solution

We show the existence and uniqueness of the solution of the fractional differential equations involving the Caputo- Fabrizio fractional
derivative in this section. We also derive the solution for some fractional differential equation that are important for physical applications.

Theorem 3.1. [15] For α ∈ (0,1) and h ∈ L1(0,∞), the following first order fractional differential equation
CF Dα (u)(x) = h(x), x≥ 0

u(0) = u0

has the unique solution

u(x) = u0 +(1−α)(h(x)−h(0))+α

∫ x

0
h(s)ds.

Theorem 3.2. [15] For α ∈ (0,1) and h ∈ L1(0,∞), the following first order fractional differential equation
CF Dα (u)(x) = λu(x)+h(x), λ 6= 0, x≥ 0

u(0) = u0

has the unique solution, when λ (1−α) = 1

u(x) =−
1−α

λα
u′(x)−

α

λ
u(x)

and when λ (1−α) 6= 1

u(x) =
λα

1−λ (1−α)

∫ x

0
u(s)ds+u0 +

1−α

1−λ (1−α)
(h(x)−h(0))+

α

1−λ (1−α)

∫ x

0
h(s)ds.
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Theorem 3.3. [15] If α ∈ (0,1), then the function u solves the fractional differential equation

CF Dα (u)(x) = 0, x≥ 0

if and only if u is a constant function.

We study here the boundary value problem of a class of the Caputo-Fabrizio fractional differential equations of order σ ∈ (1,2) on [0,1]

Theorem 3.4. For σ = α +1, α ∈ (0,1), and g : [0,∞)→ R with g ∈ L1(0,∞), the following boundary value problem of the fractional
Caputo-Fabrizio differential equation

CF Dσ (u)(x) = g(x), x≥ 0 (3.1)

u(0) = u0, u(1) = u1 (3.2)

has the unique solution given by

u(x) = u0 +(u1−u0)x+(1−α)(1− x)
∫ x

0
g(t)dt +α(1− x)

∫ x

0
tg(t)dt

− (1−α)x
∫ 1

x
g(t)dt−αx

∫ 1

x
(1− t)g(t)dt.

Proof. Applying the Laplace operator to the equation (3.1), we get

L
{CF

Dσ (u)(x)
}
(s) = L

{
g(x)

}
(s)

Appealing the Lemma 2.7, we are led to

s2U(s)− su(0)−u′(0)
s+α(1− s)

= G(s)

where U(s) = L
{
(u)(x)

}
(s) and G(s) = L

{
g(x)

}
(s).

Equivalently, we can rewrite the last equation as

U(s) =
1
s

u(0)+
1
s2 u′(0)+

1−α

s
G(s)+

α

s2G(s).

The inverse Laplace operator is applied to above equation to arrive at

u(x) = u(0)+ xu′(0)+(1−α)
∫ x

0
g(t)dt +α

∫ x

0
(x− t)g(t)dt. (3.3)

Taking into account the boundary conditions (3.2), we have the desired result

u(x) = u0 +(u1−u0)x+(1−α)(1− x)
∫ x

0
g(t)dt +α(1− x)

∫ x

0
tg(t)dt

− (1−α)x
∫ 1

x
g(t)dt−αx

∫ 1

x
(1− t)g(t)dt.

For the uniqueness, as usual, we suppose that there are two solutions of the problem, say v1 and v2. Then we must have

CF Dσ (v1)(x)−CF Dσ (v2)(x) =CF Dσ (v1− v2)(x) =CF Dα (Dv1−Dv2)(x) = 0

Thus, by Theorem 3.3 we get

Dv1(x) = Dv2(x).

This implies that v1(x) = v2(x)+ c for some constant c. But the condition v1(0) = v2(0) leads to c = 0. That is v1(x) = v2(x) for all
x≥ 0.

Remark 3.5. In Theorem 3.4, if we let h(x) := g(x)−g(0), then h(0) = 0 so that the initial value problem

CF Dσ (u)(x) = h(x), x≥ 0

u(0) = A, u′(0) = B

has the unique solution of much simpler form given by

u(x) = A+Bx+(1−α)
∫ x

0
h(t)dt +α

∫ x

0
(x− t)h(t)dt.

We further study the linear differential equation of fractional order in the sense of Caputo-Fabrizio fractional derivative, then we will work on
nonlinear boundary value problems of the fractional Caputo-Fabrizio differential equations. We first give the results for the linear cases.

Theorem 3.6. If σ ∈ (1,2) and g ∈ L1(0,∞)∩C1[0,∞), then the following linear boundary value problem of the fractional Caputo-Fabrizio
differential equation has the unique solution for all η ∈ R.

CF Dσ (u)(x) = ηu(x)+g(x), η 6= 0, x≥ 0 (3.4)

u(0) = u0, u(1) = u1 (3.5)
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Proof. The case when η = 0 is already was proved in Theorem 3.4. So, assume that η 6= 0. we see that from Theorem 3.4, the solution to
(3.4) and (3.5) can be written as

u(x) = u0 +(u1−u0)x+(1−α)(1− x)
∫ x

0

(
ηu(t)+g(t)

)
dt +α(1− x)

∫ x

0
t
(

ηu(t)+g(t)
)

dt

− (1−α)x
∫ 1

x

(
ηu(t)+g(t)

)
dt−αx

∫ 1

x
(1− t)

(
ηu(t)+g(t)

)
dt.

A little algebraic manipulation reveals that

u(x)+ηx
∫ 1

0
(1−αt)u(t)dt−η

∫ x

0

(
1−α + xα− tα

)
u(t)dt

= u0 +(u1−u0)x+(1−α)(1− x)
∫ x

0
g(t)dt +α(1− x)

∫ x

0
tg(t)dt −(1−α)x

∫ 1

x
g(t)dt−αx

∫ 1

x
(1− t)g(t)dt (3.6)

Differentiating the equation (3.6) twice, we have that

u′′(x)− (1−α)ηu′(x) = (1−α)g′(x)+αg(x). (3.7)

Now we have two cases to analyze. First, we assume that (1−α)η = 0⇔ α = 1 since η 6= 0. In this case, the equation (3.7) becomes

u′′(x) = g(x).

This is just a second order ordinary differential equation with solution given by

u(x) =−u0x+u0 +u1x+(x−1)
∫ 0

1

(∫ s

1
g(y)dy

)
ds+

∫ x

1

(∫ s

1
g(y)dy

)
ds.

The second case when (1−α)η 6= 0, we have

u(x) = u0 +
∫ x

0
e(1−α)ηt

∫ t

0
e(1−α)ηs

(
(1−α)g′(s)+αg(s)

)
dsdt

+
u1−u0−

∫ 1
0 e(1−α)ηt ∫ t

0 e(1−α)ηs
(
(1−α)g′(s)+αg(s)

)
dsdt∫ 1

0 e(1−α)ηtdt

∫ x

0
e(1−α)ηtdt.

4. Solutions of the initial and boundary value problem of the linear Caputo-Fabrizio fractional
differential equations

In this section, some initial and boundary value problems of the fractional differential equation in the sense of the Caputo-Fabrizio derivative
have been presented.

Example 4.1. If σ = α +1 with α = 1
2 and c1,c2 ∈ R, then the following initial value problem of fractional differential equation

u′′(x)+ cCF
1 Dσ (u)(x) = cCF

2 Dα u(x)+1− exp(−x) (4.1)

u(0) = 0, u′(0) = 0 (4.2)

has a unique solution of the form

u(x) =
exp(− 3(2c1+1)x

2 )sinh
(√

9x(2c1+1)2

4 +2c2

)
√

9x(2c1+1)2

4 +2c2

.

In fact, by the Laplace transformation, the equation can be written as

s2U(s)− su(0)−u′(0)+ c1
s2U(s)− su(0)−u′(0)

(s+1)/2
− c2

s
(s+1)/2

=
s

s+1

U(s)
(

s3 +(2c1 +1)s2−2c2s
)
= s

U(s) =
s

s3 +(2c1 +1)s2−2c2s

where U(s) = {L u(t)}(s). Now, the inverse Laplace transformation gives us that

u(x) =
exp(− 3(2c1+1)x

2 )sinh
(√

9x(2c1+1)2

4 +2c2

)
√

9x(2c1+1)2

4 +2c2
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Example 4.2. Consider the initial value problem

CF Dσ u(x)+u(x) = 0

u(0) = 1, u′(0) = 0

where σ = α +1 with α ∈ (0,1)

Applying the Laplace transformation leads to have

U(s)(s2 + s+α(1− s)) = s.

Now, the inverse Laplace transformation gives the exact solution as follows

u(x) = exp(x(α/2−1/2))(cosh(x(α2/4−3α/2+1/4)1/2)+(sinh(x(α2/4

−3α/2+1/4)1/2)(α/2−1/2))/(α2/4−3α/2+1/4)1/2)

Example 4.3. Consider the system of fractional algebraic-differential equations

CF D1/2u(x)− xv(x)+u(x)− (1+ x)v(t) = 0

v(x) = sinx

u(0) = 1, v(0) = 0

Applying the Laplace transformation, one gets

sU(s)−1
(s+1)/2

+V (s)+ sV ′(s)+U(s)−V (s)+V ′(s) = 0

V (s) =
1

s2 +1
, V ′(s) =−

2s
(s2 +1)2

U(s) =
s(s+1)
(1+ s2)2 +

1
s+1

Now, the inverse Laplace transform gives the exact solution

u(x) =
x+1

2
sinx+

x
2

cosx+ exp(−x)

Example 4.4. Consider the boundary value problem

CF D3/2u(x) = λu(x)

u(0) = 0, u(1) = 1

This is the equation given in the problem (3.4) and (3.5) with σ = 1+1/2 and u0 = 0,u1 = 1. Thus, the exact solution given by

u(x) =
1∫ 1

0 e(λ/2)tdt

∫ x

0
e(λ/2)tdt =

eλx/2−1

eλ/2−1

5. Nonlinear boundary value problems

We prove the existence and uniquness of the nonlinear boundary value problems of the Caputo-Fabrizio differential equations by the help of
the Banach contraction principle.
Let C(I) be the Banach space of continuous functions on I = [0,1] with maximum norm

‖x‖= max
s∈[0,1]

|x(s)|, x ∈C(I).

We now state the existence and uniquness of the solution in the next theorem.

Theorem 5.1. If σ = 1+α, α ∈ (0,1] and F : [0,1]×R→ R is a continuous function with the property that∣∣∣F(x,u1)−F(x,u2)
∣∣∣≤ q|u1−u2| u1,u2 ∈ R, q > 0,

then the boundary value problem

CF Dσ (u)(x) = F(x,u(x)), x≥ 0 (5.1)

u(0) = u0, u(1) = u1 (5.2)

has a unique solution in C(I) provided q < 1.
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Proof. Let the operator T : C(I)→C(I) be given by

(Tu)(x) = u0 +(u1−u0)x+(1−α)(1− x)
∫ x

0
F(t,u(t))dt +α(1− x)

∫ x

0
tF(t,u(t))dt

− (1−α)x
∫ 1

x
F(t,u(t))dt−αx

∫ 1

x
(1− t)F(t,u(t))dt

We see that the solution for the problem (5.1) and (5.2) is the fixed point of the map T . For u,v ∈C(I) and 0≤ t ≤ 1, we find that

∣∣∣(Tu)(x)− (T v)(x)
∣∣∣= ∣∣∣∣∣(1−α)(1− x)

∫ x

0

(
F(t,u(t))−F(t,v(t)

)
dt +α(1− x)

∫ x

0
t
(

F(t,u(t))−F(t,v(t)
)

dt

− (1−α)x
∫ 1

x

(
F(t,u(t))−F(t,v(t)

)
dt−αx

∫ 1

x
(1− t)

(
F(t,u(t))−F(t,v(t)

)
dt

∣∣∣∣∣
≤ (1−α)(1− x)xq‖u− v‖+α(1− x)

x2

2
q‖u− v‖+(1−α)x(1− x)q‖u− v‖+αx

(1− x)2

2
q‖u− v‖

= (1− x)x
4−3α

2
q‖u− v‖ ≤ max

x∈[0,1]
(1− x)x

4−3α

2
q‖u− v‖ ≤ 4−3α

8
q‖u− v‖ ≤ q‖u− v‖.

Since q < 1, the operator T is a contraction, and by the Banach contraction theorem T must have a unique fixed point that is the solution of
the problem (5.1) and (5.2).

6. An Application to a Mass-Spring-Damper System

In [19], a mass spring damper system equation has been modelled by the Caputo-Fabrizio fractional differential equation as follows

m
µ2(1−α)

CF D2α u(x)+
c

µ1−α

CF Dα u(x)+ ku(x) = F(x), α ∈ (0,1]. (6.1)

where µ is the dimension of second, m is the damping coefficient, c is the spring constant and F(x) is the force of the system. The parameter
µ is introduced because of the dimensionless quantity of the physical problem in the case of fractional derivative of the displacement. The
equation (6.1) has been provided with an initial displacement, u0, and velocity, v0 = 0 for the mass m. As in [19], two cases for the forcing
term will be considered. Additionally, the order of the fractional is also considered in two cases.

1 . Assume that the forcing term F(x) = A for some constant A. Moreover, suppose that α ∈ (0,1/2) so that 2α ∈ (0,1). Applying the
Laplace transform of (6.1) leads to get

sU(s)−u0

s+2α(1− s)
+ c

η2µα−1

k

( sU(s)−u0

s+α(1− s)

)
+η

2U(s) = A
η2

k
1
s

(6.2)

U(s) =
u0(s+α(1− s)+B(s+2α(1− s)))

s(s+α(1− s)+ s+2α(1− s)
(

B+η2(s+α(1− s))
) (6.3)

+
(η2/k)A(s+2α(1− s))(s+α(1− s))

s2
(

s+α(1− s)+ s+2α(1− s)
(

B+η2(s+α(1− s))
) (6.4)

where η2

k = µ2(1−α)

m and B = c η2

k µα−1

The inverse Laplace transform yields the exact solution

u(x) = (Aη
2/k)

( 2αx
(2αη2 +2B+1

− −2αη2 +2α−6B+4αB+1
(2αη2 +2B+1)2 exp(

x(α +2αB−2αη2 +4α2η2−2)
4αη2(α−1)

(cosh((x(4α
2B2 +8α

2Bη
2 +4α

2B+4α
2n4−12α

2
η

2 +α
2−8αB+8αη

2−4α +4)1/2)/(4αη
2(α−1)))+

(sinh((x(4α
2B2 +8α

2Bη
2 +4α

2B+4α
2n4−12α

2
η

2 +α
2−8αB+8αη

2−4α +4)1/2)/(4αη
2(α−1)))

(8α
2B2 +4α

2Bη
2 +8α

2B+4α
2n4−14α

2
η

2 +2α
2−12αB2 +4αBη

2−12αB+6αη
2−3α +8B2−4B+4))

÷ ((−2αη
2 +2α−6B+4αB+1)(4α

2B2 +8α
2Bη

2 +4α
2B+4α

2n4−12α
2
η

2 +α
2−8αB+8αη

2−4α +4)(1/2)))

(−2αη
2 +2α−6B+4αB+1))/(2αη

2 +2B+1)2)
)

+(2B+1)/(2αn2 +2B+1)− (exp((x(α +2αB−2αη
2 +4α

2
η

2−2))/(4αη
2(α−1)))(2B+1)

(cosh((x(4α
2B2 +8α

2Bη
2 +4α

2B+4α
2
η

4−12α
2
η

2 +α
2−8αB+8αη

2−4α +4)1/2)/(4αη
2(α−1)))+

(sinh((x(4α
2B2 +8α

2Bη
2 +4α

2B+4α
2
η

4−12α
2
η

2 +α
2−8αB+8αη

2−4α +4)1/2)/(4αη
2(α−1)))

(α−2B+4αB+4αB2−2αη
2−4B2))/((2B+1)

(4α
2B2 +8α

2Bη
2 +4α

2B+4α
2
η

4−12α
2
η

2 +α
2−8αB+8αη

2−4α +4)1/2)))/(2αη
2 +2B+1)
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2 . Assume that the forcing term F(x) = A for some constant A. Moreover, suppose that α ∈ (1/2,1) so that 2α ∈ (1,2). Applying the
Laplace transform of (6.1) leads to get

s2U(s)−u0

s+α(1− s)
+ c

η2µα−1

k

( sU(s)−u0

s+α(1− s)

)
+η

2U(s) = A
η2

k
1
s

U(s) =
u0(s+α(1− s)+B(s+2α(1− s)))

s(s+α(1− s)+ s+2α(1− s)
(

B+η2(s+α(1− s))
)

+
(η2/k)A(s+2α(1− s))(s+α(1− s))

s2
(

s+α(1− s)+ s+2α(1− s)
(

B+η2(s+α(1− s))
)

where η2

k = µ2(1−α)

m and B = c η2

k µα−1

The inverse Laplace transform yields

u(x) = u0

(
(exp(−x(B/2− (αη

2)/2+η
2/2))sinh(x((α2

η
4)/4− (αBη

2)/2− (αη
4)/2−αη

2 +B2/4+(Bη
2)/2+η

4/4)1/2)

(B+1))/((α2
η

4)/4− (αBη
2)/2− (αη

4)/2−αη
2 +B2/4+(Bη

2)/2+η
4/4)1/2

)
+(Aη

2/k)
(

1/η
2− (exp(−x(B/2− (αη

2)/2+η
2/2))(cosh(x((α2

η
4)/4− (αBη

2)/2− (αη
4)/2−αη

2 +B2/4+(Bη
2)/2

+η
4/4)1/2)+(sinh(x((α2

η
4)/4− (αBη

2)/2− (αη
4)/2−αη

2 +B2/4+(Bη
2)/2+η

4/4)1/2)(B/2+(αη
2)/2−η

2/2))

÷ ((α2
η

4)/4− (αBη
2)/2− (αη

4)/2−αη
2 +B2/4+(Bη

2)/2+η
4/4)1/2))/η

2
)
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