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Abstract 

Robust parameter design is an effective tool to determine the optimal operating conditions of a system. 

Because of its practicability and usefulness, the widespread applications of robust design techniques 

provide major quality improvements. The usual assumptions of robust parameter design are that normally 

distributed experimental data and no contamination due to outliers. Optimizing an objective function 

under the normality assumption for a skewed data in dual-response modeling may result in misleading fit 

and operating conditions located far from the optimal values. This creates a chain of degradation in the 

production phase, e.g., poor quality products. This paper focuses on skewed experimental data. The 

proposed approach is constructed on the confidence interval of the process mean which makes the system 

median unbiased for the mean using the skewness information of the data.  The response modeling of the 

midpoint of the interval is proposed as a location performance response. The main advantages of the 

proposed approach are that it gives a robust solution due to the skewed structure of the experimental data 

distribution and does not need any transformation which causes any loss of information in estimation of 

the mean response. The procedure and the validity of the proposed approach are illustrated on a popular 

example, the printing process study. 

Keywords: Confidence interval, Dual response surface, Non-normal data, Robust parameter design.  

1. Introduction 

Robust parameter design (RPD) was introduced by 

Taguchi [1] to make the system as robust as possible to 

undesirable fluctuations in the system’s performance. 

RPD, along with Taguchi’s philosophy, has received 

considerable attention for more than thirty years in 

different industrial fields. However, his experimental 

methodology and analysis techniques have been 

exposed to a lot of criticism from the statistical 

community – e.g., Box [2], Vining and Myers [3]. 

Consequently, new methodologies have been proposed 

based on these criticisms. Vining and Myers [3] 

conducted one of the earliest research attempts to 

develop an alternative tool for off-line quality, and 

discussed a procedure constructed by combining 

response surface methodology (RSM) and the some 

effective properties of Taguchi’s method. RSM, first 

presented by Box and Wilson [4], is an effective 

procedure for modeling a possible process relationship 

between a quality characteristic and design factors to 

determine the optimal operating conditions.  

Vining and Myers [3] introduced the dual response 

surface (DRS) which is configured by separately fitting 

mean and variance response surfaces. Thereby, DRS 

achieve the primary goal of RPD by optimizing primary 

response subject to a pre-defined value of secondary 

response. This novel approach to RSM has become 

sound and is widely quoted in the current literature. 

Further improvements for DRS problem were carried 

out by Del Castillo and Montgomery [5]'s study which 

proposed using standard nonlinear programming 

techniques based on inequality constraints. Lin and Tu 

[6] focused on the process bias along with the 

variability and proposed minimizing the mean squared 

error (MSE) criterion for the DRS problem. A slightly 

different version of the MSE criterion, based on 

considering how far the mean can be located from its 

target, is discussed by Copeland and Nelson [7]. Further 

work in the area of DRS has been conducted by Köksoy 

and Doganaksoy [8]. They proposed an alternative 

formulation based on joint optimization of the mean and 

standard deviation responses under no constraints or 

minimally constrained. Following these articles, several 

approaches have been proposed for the DRS problem by 

[9-12]. 

A robust design approach aims to determine the optimal 

levels of the design factors by optimizing the estimated 

model from the experimental data. However, since 

experimental data are limited, the distribution and 

model parameters cannot be estimated precisely, so they 

can involve estimation error due to insufficient 

experimental data or unknown random effects. Elsayed 

and Chen [13] showed that the error existing in the 

estimated parameters causes the problem such as the 

estimated model varies from the true model, thus 
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optimal operating conditions may be located quite far 

from the true values. Especially, in robust parameter 

design which aims to optimize an objective function 

obtained by point estimate, ignoring these uncertainties 

may result in misleading fit and large variance in the 

system performance; see, Tan and Ng [14]. Recently, 

several approaches based on confidence regions are 

developed to reduce the effect of these uncertainties in 

model parameters on robust design. Ouyang et al. [15] 

adopted the worst and best mean squared error in their 

approach by using the midpoint and radius of the 

interval as the model performances from the perspective 

of frequentist approach. On the other hand, Bayesian 

approaches have been quite discussed in the literature; 

see, Miro-Quesada et al. [16]. 

The probability distribution of an experimental data 

plays also an important role in robust design. The 

traditional assumption behind the response surface 

modeling is that the data are normally distributed and 

contain no contamination. However, these assumptions 

may not always reflect the reality, especially in real-

world industrial problems. In many engineering 

problems, responses have Poisson (count data), 

exponential/gamma (time-to-failure data), or Bernoulli 

(defective/non-defective data) distributions. Therefore, 

since the fitted process mean and variance responses are 

very sensitive to the data distribution, using traditional 

normal theory for a non-normal response modeling 

often overshadows the reliability of quality 

improvement techniques. There are some options to 

study with non-normal responses to robust design. 

Bisgaard and Fuller [17] and Box and Fung [18] 

propose data transformation. However, several 

disadvantages of such transformations are highlighted in 

the literature, such that they often do not fully normalize 

the data and transformed metrics of quality can be 

difficult to interpret. An another option is using 

generalized linear models (GLMs), where normality and 

constancy of variance are not required; see, Nelder and 

Lee [19], and Myers et al. [20]. However, GLMs do 

have certain limitations, such as lack of discriminatory 

power, restrictions in the response distribution, and 

sometimes have poor interpretability. On the other hand, 

when any departures from the normality and 

contamination are the case, the usage of robust 

estimators in the mean and variance response modeling 

has become a popular preference in recent years. Boylan 

and Cho [21] discussed the effectiveness of the robust 

estimators which are more efficient and resistant in the 

presence of outliers. On the other hand, Zeybek and 

Köksoy [22] studied the effects of gamma noise factors 

on the distribution of the experimental data and 

presented a probability density function which has a 

skewed nature. 

This paper focuses on skewed experimental data. To 

make an improvement of the robustness performance of 

the estimations of the responses, the proposed approach 

is constructed on a confidence interval of the process 

mean which makes the system median unbiased for the 

mean using skewness information of the experimental 

data. In addition, the midpoint of the upper and lower 

endpoints is used as a measure of location performance. 

Additionally, the proposed approach does not need any 

transformation, and it therefore does not allow any loss 

of information in estimation of responses. 

The remainder of this manuscript is divided into three 

sections as follows: In the next section, the proposed 

approach is presented. The validity of the proposed 

approach is illustrated on the basis of a popular example 

printing process study, before the paper finally ends 

with a conclusion. 

2. Materials and Methods 

Consider a quality characteristic 𝑦 depends on 𝑘 

controllable factors, 𝑥1, 𝑥2,…, 𝑥𝑘. Suppose that the 

interested design has 𝑛-design points, each replicated 

𝑟 times, where 𝑦𝑖𝑗 represents the 𝑗𝑡ℎ response at the 𝑖𝑡ℎ  

design point, 𝑗 = 1, … , 𝑟 and 𝑖 = 1, … , 𝑛. Note that,  

𝑦̅𝑖 =
1

𝑟
∑ 𝑦𝑖𝑗

𝑟

𝑗=1

                            (𝟏) 

and 

𝑠𝑖
2 =

1

𝑟 − 1
∑(𝑦𝑖𝑗 − 𝑦̅𝑖)

2
𝑟

𝑗=1

                  (𝟐) 

are sample means and variances of each design point.  

Suppose that 𝑦 follows a skewed distribution. Since 𝑦 is 

not normally distributed, as noted by Johnson [23], the 

robustness of the sample mean (and associated tests and 

confidence intervals) to the non-normality of the 

population has been raised suspicion. This affects the 

dual-response modeling results in misleading fit and 

operating conditions located far from the optimal 

values.  

This paper presents an alternative approach to cope with 

non-normal responses and error from the fitted model in 

terms of constructing confidence intervals for the 

system mean. In this context, (1 − 𝛼)% confidence 

interval for the mean, which is proposed by Johnson 

[23] for the non-normal data, is constructed in the 

following form for the 𝑖𝑡ℎ  design point,  

(𝑦̅𝑖 +
𝜇̂3,𝑖

6𝑛 𝑠𝑖
2) ∓ 𝑡𝛼

2
𝑠𝑖/√𝑛                     (𝟑) 

where 𝜇̂3,𝑖 is the third central moment estimated by the 

sample quantities, and is used to define the skewness of 

the designed data. This confidence interval corrects the 

difference between the median and the mean due to a 

skewed population and makes the median unbiased for 

the mean.  

According to the theory of interval analysis – see; 

Boukezzoula et al. [24], and Ouyang et al. [15] – the 

midpoint of an interval can be used as a measure of the 
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location performance. Then, considering Equations (3), 

a new location performance, 𝑦̅𝑖
∗, can be defined as 

follows, 

𝑦̅𝑖
∗ = 𝑦̅𝑖 +

𝜇̂3,𝑖

6𝑛 𝑠𝑖
2                               (𝟒) 

The proposed fitted mean response surface is 

constructed using Equation (4). Thus, the mean and 

standard deviation response surfaces are as follows, 

 

𝜇̂(𝑥) = 𝛾0 + ∑ 𝛾𝑖

𝑘

𝑖=1

𝑥𝑖 + ∑ 𝛾𝑖𝑖

𝑘

𝑖=1

𝑥𝑖
2 + ∑ ∑ 𝛾𝑖𝑡𝑥𝑖𝑥𝑡

𝑘

𝑖<𝑡
 

(𝟓) 

and  

𝜎̂(𝑥) = 𝛿̂0 + ∑ 𝛿̂𝑖

𝑘

𝑖=1

𝑥𝑖 + ∑ 𝛿̂𝑖𝑖

𝑘

𝑖=1

𝑥𝑖
2 + ∑ ∑ 𝛿̂𝑖𝑡𝑥𝑖𝑥𝑡

𝑘

𝑖<𝑡
 

 (𝟔) 

where 𝛾 = (𝐗′𝐗)−1𝐗′𝐰𝛍 and 𝛿̂ = (𝐗′𝐗)−1𝐗′𝐰𝜎 . The 

vectors of the sample mean and standard deviation  

𝐰𝛍 = (𝑦̅1
∗, 𝑦̅2

∗, … , 𝑦̅𝑛
∗)′ and 𝐰𝜎 = (𝑠1, 𝑠2, … , 𝑠𝑛)′ are 

obtained from Equations (4) and (2), respectively. And 

𝐗 denotes the design matrix. 

Finally, the following proposed optimization approaches 

are constructed by adapting to the three fundamental 

situations of RPD — target-is-best (NTB), larger-the-

better (LTB) and smaller-the-better (STB). The 

optimization phase is conducted based on the MSE 

criterion which gives a fairly general method to solve 

the DRS problem; see, Lin and Tu [6] and Köksoy [25]. 

By adopting Köksoy [25] and Ding et al. [26]’s 

optimization schemes, the optimization phases based on 

the MSE response functions are conducted as follows: 

For the NTB case,  

               Min    𝑀𝑆𝐸 = (𝜇̂(𝑥) − 𝜏)2 + 𝜎̂2(𝑥) 

  s.t.        𝒙∗ ∈ 𝑅 

For the LTB case, 

Min   − (𝜇̂(𝑥))
2

+ 𝜎̂2(𝑥) 

s.t.        𝒙∗ ∈ 𝑅 

For the STB case, 

Min    (𝜇̂(𝑥))
2

+ 𝜎̂2(𝑥) 

s.t.        𝒙∗ ∈ 𝑅 

Here, 𝜏 is the target for process mean. The experimental 

region can be defined as  −1 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, … , 𝑘 for 

cuboidal designs and  𝐱′𝐱 ≤ 𝜌2 for spherical designs, 

where 𝜌 is the design radius.  

3. Results and Discussion 

In this section, the proposed procedure is illustrated by a 

well-known printing process study example. This 

experiment was originally presented as an exercise in 

Box and Draper [27], and has been analyzed by many 

authors such that Vining and Myers [3], Copeland and 

Nelson [7], DelCastillo and Montgomery [5], Köksoy 

and Doganaksoy [8]. As indicated in Table 1, 33 

factorial design with three replicates is performed to 

examine the effect of speed (𝑥1), pressure (𝑥2), and 

distance (𝑥3) on the ability of a printing machine (𝑦) to 

apply colored inks to package labels. The aim of the 

experiment is to improve the quality of the printing 

process. 

When the distribution of this data is examined, it is 

obvious that the printing process data has a right-

skewed shape; see, Figure 1. Moreover, normality tests 

results (Shapiro Wilk test, W = 0.891, 𝑝-value < 0.000 

and Anderson-Darling test, AD = 2.319, 𝑝-value < 

0.005) are verified that this experimental data do not 

follow a normal distribution. Note that the p-value, 

(i.e., 𝑝-value > 0.25), for the Anderson-Darling test 

(null hypothesis that the data follows a gamma 

distribution) indicates that the printing process data does 

not deviate significantly from a gamma distribution. In 

fact, this result actually supports Oyeyemi [28]’s 

arguments about the true distribution of the printing 

process data. 

  

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 1. Plots of the printing process data; (a) 

symmetry plot, (b) probability plot for normal 

distribution, (c) histogram, (d) probability plot for 

gamma distribution. 

Based on this result about the distribution of the data, 

the proposed approach will be examined through the 

printing process data.  

For the illustrative purposes, 𝛼 = 0.05 is chosen and the 

estimates of the lower (L.E.) and upper (U.E.) 

confidence limits for each design point is obtained using 

Equation (3), see Table 1. And, the proposed location 

performance, 𝑦̅∗, is determined for each design point 

using Equation (4). 

Finally, the fitted mean and standard deviation response 

surfaces for the printing process data are modeled as 

follows, 

𝜇̂(𝑥) = 326.8 + 177𝑥1 + 109.4𝑥2 + 132𝑥3 

               +32𝑥1
2 − 21.8𝑥2

2 − 28.3𝑥3
2 + 66.2𝑥1𝑥2 

               +75.5𝑥1𝑥3 + 43.9𝑥2𝑥3                                    (𝟕) 

 

𝜎̂(𝑥) = 34.9 + 11.5𝑥1 + 15.3𝑥2 + 29.2𝑥3 + 4.2𝑥1
2 

−1.3𝑥2
2 + 16.8𝑥3

2 + 7.7𝑥1𝑥2 + 5.1𝑥1𝑥3 

+14.1𝑥2𝑥3                                                         (𝟖) 

According the information obtained from previous 

studies, the requirements of this printing example are as 

𝜏 = 500 and the desired standard deviation is less than 

60. In the optimization phase, the spherical (𝜌2 = 1) 

region is considered for the NTB case. Table 2 

compares the results obtained by the proposed modeling 

and the existing approaches. 

Table 1. The printing process study data. 

𝒊 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚̅ 𝒔 
95% confidence interval 

   𝑳. 𝑬.                       𝑼. 𝑬. 
 

𝒚̅∗ 

1 -1 -1 -1 34 10 28 24.000 12.490 -7.229 54.830 23.801 

2 0 -1 -1 115 116 130 120.333 8.386 99.675 141.345 120.510 

3 1 -1 -1 192 186 263 213.667 42.829 108.160 320.964 214.562 

4 -1 0 -1 82 88 88 86.000 3.464 77.320 94.532 85.926 

5 0 0 -1 44 178 188 136.667 80.407 -64.782 334.736 134.977 

6 1 0 -1 322 350 350 340.667 16.166 300.160 380.482 340.321 

7 -1 1 -1 141 110 86 112.333 27.574 43.959 180.966 112.462 

8 0 1 -1 259 251 259 256.333 4.619 244.760 267.709 256.235 

9 1 1 -1 290 280 245 271.667 23.629 212.559 329.964 271.261 

10 -1 -1 0 81 81 81 81.000 0.000 * * 81.000 

11 0 -1 0 90 122 93 101.667 17.673 58.127 145.938 102.032 

12 1 -1 0 319 376 376 357.000 32.909 274.539 438.053 356.296 

13 -1 0 0 180 180 154 171.333 15.011 133.720 208.305 171.012 

14 0 0 0 372 372 372 372.000 0.000 * * 372.000 

15 1 0 0 541 568 396 501.667 92.500 270.074 729.679 499.877 

16 -1 1 0 288 192 312 264.000 63.498 105.107 420.608 262.857 

17 0 1 0 432 336 513 427.000 88.606 206.596 646.850 426.723 

18 1 1 0 713 725 754 730.667 21.079 678.591 783.327 730.959 

19 -1 -1 1 364 99 199 220.667 133.822 -110.620 554.298 221.839 

20 0 -1 1 232 221 266 239.667 23.459 181.767 298.328 240.047 

21 1 -1 1 408 415 443 422.000 18.520 376.323 468.344 422.333 

22 -1 0 1 182 233 182 199.000 29.445 126.479 272.781 199.630 

23 0 0 1 507 515 434 485.333 44.636 373.523 595.303 484.413 

24 1 0 1 846 535 640 673.667 158.210 282.406 1068.499 675.452 

25 -1 1 1 236 126 168 176.667 55.510 39.231 315.041 177.136 

26 0 1 1 660 440 403 501.000 138.935 158.574 848.898 503.736 
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27 1 1 1 878 991 1161 1010.000 142.454 657.134 1364.939 1011.037 

   Table 2. A comparative study under the spherical region for the NTB case  (𝜌2 = 1). 

 𝐱′ 𝝁̂ 𝝈̂ MSE 

Proposed approach (0.9832, 0.0073, −0.1822) 494.52 44.74 2031.46 

DelCastillo and Montgomery [5] (0.9839, 0.0265, −0.1760) 500.00 45.32 2053.75 

Copeland and Nelson [7] (0.9809, 0.0036, −0.1829) 499.00 45.20 2044.04 

Koksoy and Doganaksoy [8] (0.9835, 0.0073, −0.1822) 497.52 45.01 2032.05 

 

From Table 2, it is clear that, under the region (𝜌2 = 1), 

the optimal solution is obtained as  𝐱′ =
(0.9832, 0.0073, −0.1822) with a confidence level of 

95%. Here, the 95% probability relates to the reliability 

of the estimation procedure. And the corresponding 

mean (location) performance value is estimated as 

494.52 while the standard deviation is 𝜎̂(𝑥) = 44.74. It 

is obvious that the proposed approach yields the 

smallest estimated process standard deviation. And, an 

effective improvement can be achieved by the proposed 

approach when compared the MSE values, i.e., the 

proposed method has the smallest MSE value rather 

than DelCastillo and Montgomery [5], Copeland and 

Nelson [7], and Köksoy and Doganaksoy [8]. These 

results actually provide important information about the 

printing process example in the sense of correcting the 

difference between the mean and median due to the 

skewed structure of the experimental data.  

4. Conclusion 

The robust design alternatives for non-normal 

experimental data are necessary studies for quality 

improvement in different fields. The results obtained 

under mistaken assumptions about data distribution 

constitute unreliable and misleading sources of 

information for quality improvement practitioners.  

This paper takes into account the case where the 

experimental data has a skewed distribution and 

proposes an alternative to the existing approaches. To 

make an improvement of the robustness performance of 

the process design, the proposed approach is constructed 

on a confidence interval which makes the system 

median unbiased for the mean using the skewness 

information of the experimental data. The midpoint of 

the interval is used as a measure of the location 

performance of the process. And, in the optimization 

phase of a DRS problem, using this new location 

performance response surface is proposed instead of the 

regular mean response. The main advantage of the 

proposed approach is that it provides a robust solution 

due to the skewed structure of the experimental data 

distribution.  

The procedure and the validity of the proposed approach 

are illustrated on a popular example, the printing 

process study. This printing process data is a very 

popular example in the literature and has a skewed 

distribution.  The proposed modeling gives the smallest 

MSE value and provides the minimum variability for 

the printing process data, compared with DelCastillo 

and Montgomery [5], Copeland and Nelson [7], and 

Köksoy and Doganaksoy [8]. The main reason of this 

performance is that the proposed approach utilizes the 

information of the skewness of the data. This study 

therefore offers a useful reference for practitioners in 

terms of providing an engineering understanding of the 

non-normal processes. 
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