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ON SOME PROBLEMS CONNECTED WITH THE TANGENCY
OF SETS IN GENERALIZED METRIC SPACES

TADEUSZ KONIK

(Communicated by Josef MIKES )

Abstract. In this paper, some problems of the tangency of sets of the classes

M̃p,k having the Darboux property in the generalized metric spaces (E, l) and
(E, L) are considered. Some sufficient conditions for the compatibility of the
tangency relations of sets of the above classes have been given in Section 2 of
this paper.

1. Introduction

Let E be an arbitrary non-empty set and let l be a non-negative real function
defined on the Cartesian product E0×E0 of the family E0 of all non-empty subsets
of the set E.

Let l0 be the function defined by the formula:

(1.1) l0(x, y) = l({x}, {y}) for x, y ∈ E.

By some conditions for the function l, the function l0 defined by (1.1) will be the
metric of the set E. For this reason the pair (E, l) can be treated as a certain
generalization of a metric space and we shall call it (see [11]) the generalized metric
space. Using (1.1) we may define in the space (E, l), similarly as in a metric space,
the notions: the sphere Sl(p, r) and the open ball Kl(p, r) with the centre at the
point p and the radius r.

Let Sl(p, r)u denotes (see [11]) the so-called u-neighbourhood of the sphere
Sl(p, r) in the space (E, l) defined by the formula:

(1.2) Sl(p, r)u =

{ ⋃
q∈Sl(p,r)

Kl(q, u) for u > 0,

Sl(p, r) for u = 0.

Let k be any positive real number, and let a, b be arbitrary non-negative real
functions defined in a certain right-hand side neighbourhood of 0 such that

(1.3) a(r)−−−→
r→0+

0 and b(r)−−−→
r→0+

0.
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We say that the pair (A,B) of the sets A,B ∈ E0 is (a, b)-clustered at the point
p of the space (E, l), if 0 is the cluster point of the set of all real numbers r > 0
such that the sets A ∩ Sl(p, r)a(r) and B ∩ Sl(p, r)b(r) are non-empty.

Let us denote (see [11])

Tl(a, b, k, p) = {(A,B) : A,B ∈ E0, the pair (A,B) is (a, b)-clustered

at the point p of the space (E, l) and
1
rk

l(A ∩ Sl(p, r)a(r), B ∩ Sl(p, r)b(r))−−−→
r→0+

0}.(1.4)

If (A,B) ∈ Tl(a, b, k, p), then we say that the set A ∈ E0 is (a, b)-tangent of
order k to the set B ∈ E0 at the point p of the space (E, l).

The set Tl(a, b, k, p) defined by (1.4) we call the (a, b)-tangency relation of order
k at the point p ∈ E (or shortly: the tangency relation) of sets in the generalized
metric space (E, l).

Two tangency relations of sets Tl1(a1, b1, k, p) and Tl2(a2, b2, k, p) are called com-
patible in the set E, if (A,B) ∈ Tl1(a1, b1, k, p) if and only if (A,B) ∈ Tl2(a2, b2, k, p)
for A,B ∈ E0.

Let ρ be any metric of the set E.
We say that the set A ∈ E0 has the Darboux property at the point p of the

metric space (E, ρ), what we write: A ∈ Dp(E, ρ) (see [4]), if there exists a number
τ > 0 such that the set A ∩ Sρ(p, r) is non-empty for r ∈ (0, τ).

We shall denote by dρA the diameter of the set A, and by ρ(A,B) the distance
of sets A,B in the metric space (E, ρ), i.e.

(1.5) dρA = sup{ρ(x, y) : x, y ∈ A} and ρ(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B}
for A,B ∈ E0.

By Fρ we will denote the class of all functions l fulfilling the conditions:
10 l : E0 × E0 −→ 〈0,∞),
20 ρ(A,B) ≤ l(A,B) ≤ dρ(A ∪B) for A,B ∈ E0.

From the condition 20 it follows that

ρ(x, y) = ρ({x}, {y}) ≤ l({x}, {y}) ≤ dρ({x} ∪ {y}) = ρ(x, y),

whence we get the equality

(1.6) l({x}, {y}) = ρ(x, y) for x, y ∈ E.

Let f be an increasing subadditive and continuous function defined in a certain
right-hand side neighbourhood of 0 such that f(0) = 0.

We shall put from the definition:

(1.7) L(A,B) = f(l(A,B)) for A, B ∈ E0.

The class of all the functions L defined by the formula (1.7) we will denote by Ff,ρ.
From this and from the conditions 10 and 20 it follows that every function L ∈ Ff,ρ

fulfils the conditions:
30 L : E0 × E0 −→ 〈0,∞),

40 f(ρ(A,B)) ≤ L(A,B) ≤ f(dρ(A ∪B)) for A,B ∈ E0.
Because

f(ρ(x, y)) = f(ρ({x}, {y})) ≤ L({x}, {y}) ≤ f(dρ({x} ∪ {y})) = f(ρ(x, y)),
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then from here it follows that

(1.8) L({x}, {y}) = f(ρ(x, y)) for l ∈ Ff,ρ and x, y ∈ E.

Let us denote

(1.9) ρ′(x, y) = f(ρ(x, y)) for x, y ∈ E.

It is easy to prove, using the properties of the function f, that the function ρ′

defined by the formula (1.8) is the metric of the set E. From here it follows that
every function L ∈ Ff,ρ generates on the set E the metric ρ′ defined by (1.8).

If f = id where id denotes the identity function defined in a right-hand side
neighbourhood of 0, then from here and from the definitions of the functions l and
L it follows that

(1.10) L(A,B) = l(A,B) for A,B ∈ E0.

By A′ we shall denote the set of all cluster points of the set A ∈ E0, and let

(1.11) ρ(x,A) = inf{ρ(x, y) : y ∈ A} for x ∈ E.

Let us put from the definition (see [3]):

M̃p,k = {A ∈ E0 : p ∈ A′ and there exists µ > 0 such that
for an arbitrary ε > 0 there exists δ > 0 such that

for every pair of points (x, y) ∈ [A, p; µ, k]

if ρ(p, x) < δ and
ρ(x,A)
ρk(p, x)

< δ, then
ρ(x, y)
ρk(p, x)

< ε},(1.12)

where

(1.13) [A, p;µ, k] = {(x, y) : x ∈ E, y ∈ A and µρ(x,A) < ρk(p, x) = ρk(p, y)}.
In the paper [7] (see also [8, 9]) I proved, among others, the following theorems

concerning the compatibility of the tangency relations of sets :

Theorem 1.1. If the functions a, b fulfil the condition

(1.14)
a(r)
rk

−−−→
r→0+

0 and
b(r)
rk

−−−→
r→0+

0,

then for arbitrary functions L1, L2 ∈ Ff,ρ the tangency relations TL1(a, b, k, p) and
TL2(a, b, k, p) are compatible in the classes of sets M̃p,k ∩Dp(E, ρ′).

Theorem 1.2. If the functions ai, bi (i = 1, 2) fulfil the condition

(1.15)
ai(r)
rk

−−−→
r→0+

0 and
bi(r)
rk

−−−→
r→0+

0,

then for any function L ∈ Ff,ρ the tangency relations TL(a1, b1, k, p) and TL(a2, b2, k, p)
are compatible in the classes of sets M̃p,k ∩Dp(E, ρ′).

From these theorems it follows:

Corollary 1.1. If the functions ai, bi (i = 1, 2) fulfil the condition (1.15), then
for arbitrary functions L1, L2 ∈ Ff,ρ the tangency relations TL1(a1, b1, k, p) and
TL2(a2, b2, k, p) are compatible in the classes of sets M̃p,k ∩Dp(E, ρ′).
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We shall denote by dρ′A the diameter of the set A, and by ρ′(A,B) the distance
of sets A,B in the metric space (E, ρ′). Hence and from Theorem 1.1 it follows the
following:

Corollary 1.2. If the sets A,B ∈ M̃p,k ∩ Dp(E, ρ′), the functions a, b fulfil the
condition (1.14), then for any function L ∈ Ff,ρ

(1.16) (A,B) ∈ Tρ′(a, b, k, p) ⇔ (A, B) ∈ TL(a, b, k, p) ⇔ (A,B) ∈ Tdρ′ (a, b, k, p).

If f = id then from this corollary and from the equality (1.9) immediately it follows:

Remark 1.1. For any function l ∈ Fρ

(1.17) (A,B) ∈ Tρ(a, b, k, p) ⇔ (A,B) ∈ Tl(a, b, k, p) ⇔ (A,B) ∈ Tdρ
(a, b, k, p),

when A,B ∈ M̃p,k ∩Dp(E, ρ) and the functions a, b fulfil the condition (1.14).

In connection with these considerations the question arises: by which assump-
tions the tangency relations: Tl(a, b, k, p) and TL(a, b, k, p) are compatible in the
classes of sets M̃p,k?

The answer to this question will be given in Section 2 of this paper.

2. On the compatibility of the tangency relations of sets

Let ρ be any metric of the set E, and let Sρ(p, r)u (see the formula (1.2)) denotes
a u-neighbourhood of the sphere Sρ(p, r) in the metric space (E, ρ).

Lemma 2.1. If the metric ρ′ is defined by (1.9), then

(2.1) Sρ(p, r)u = Sρ′(p, f(r))f(u).

Proof. From the properties of the function f and from the formula (1.9) we get

Sρ(p, r) = {x ∈ E : ρ(p, x) = r} = {x ∈ E : f(ρ(p, x)) = f(r)}
= {x ∈ E : ρ′(p, x) = f(r)} = Sρ′(p, f(r)),

that is to say

(2.2) Sρ(p, r) = Sρ′(p, f(r)).

Similarly

Kρ(q, u) = {x ∈ E : ρ(q, x) < u} = {x ∈ E : f(ρ(q, x)) < f(u)}
= {x ∈ E : ρ′(q, x) < f(u)} = Kρ′(q, f(u)),

i.e.

(2.3) Kρ(q, u) = Kρ′(q, f(u)).

From the equalities (2.2), (2.3) and from the formula (1.2) it follows the thesis (2.1)
of this lemma.

Similarly we prove that

(2.4) Sρ′(p, r)u = Sρ(p, f−1(r))f−1(u).

where f−1 is the inverse function to the function f.
Let ρ′ be the metric of the set E defined by the formula (1.9). Now we shall

prove:

Lemma 2.2. If A ∈ Dp(E, ρ′), then A ∈ Dp(E, ρ) for any set A ∈ E0.
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Proof. We assume that A ∈ Dp(E, ρ′) for A ∈ E0. Hence it follows that there
exists a number τ ′ > 0 such that

(2.5) A ∩ Sρ′(p, r′) 6= ∅ for r′ ∈ (0, τ ′).

We shall put

(2.6) τ = f−1(τ ′) and r = f−1(r′).

Let r be any number belonging to the interval (0, τ). Hence and from the equalities
(2.6) it follows that r′ = f(r) ∈ (0, τ ′).
From this and from (2.2), (2.5) we get

A ∩ Sρ(p, r) = A ∩ Sρ′(p, f(r)) = A ∩ Sρ′(p, r′) 6= ∅
for r ∈ (0, τ), what means that A ∈ Dp(E, ρ) when the set A ∈ E0.

In the paper [5] I proved (see Lemma 1.1) the following implication:

(2.7) A ∈ Dp(E, ρ) ⇒ A ∈ Dp(E, ρ′) for A ∈ E0,

when ρ′ is the metric of the set E defined by the formula (1.9).
From here and from Lemma 2.2 of this paper it follows:

Corollary 2.1. If ρ′ is the metric of the set E defined by the formula (1.9), then
A ∈ Dp(E, ρ) if and only if A ∈ Dp(E, ρ′) for any set A ∈ E0.

Using the above results we shall prove some theorems concerning the tangency
of sets in the generalized metric spaces (E, l) and (E, L).

Theorem 2.1. If the sets A,B ∈ Dp(E, ρ) and the functins a, b, f fulfil the coditions:

(2.8) a(f(r)) ≤ f(a(r)) and b(f(r)) ≤ f(b(r)) for r > 0,

(2.9) f(r1r2) ≤ f(r1)f(r2) for r1, r2 > 0,

then

(2.10) (A,B) ∈ Tdρ(a, b, k, p) ⇒ (A, B) ∈ Tdρ′ (a, b, k, p).

Proof. We assume that (A,B) ∈ Tdρ(a, b, k, p) for A,B ∈ E0. From here it follows:

(2.11)
1
rk

dρ((A ∩ Sρ(p, r)a(r)) ∪ (B ∩ Sρ(p, r)b(r)))−−−→
r→0+

0.

Let us put r′ = f(r). Hence, from Lemma 2.1 and from the assumption (2.8) of
this theorem we get

Sρ′(p, r′)a(r′) = Sρ′(p, f(r))a(f(r)) ⊆ Sρ′(p, f(r))f(a(r)) = Sρ(p, r)a(r),

that is to say

(2.12) Sρ′(p, r′)a(r′) ⊆ Sρ(p, r)a(r).

Analogously

(2.13) Sρ′(p, r′)b(r′) ⊆ Sρ(p, r)b(r).

From (2.12) and (2.13) we have

dρ((A ∩ Sρ′(p, r)a(r′)) ∪ (B ∩ Sρ′(p, r)b(r′)))

≤ dρ((A ∩ Sρ(p, r)a(r)) ∪ (B ∩ Sρ(p, r)b(r))).
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Hence and from the properties of the function f it is evident

f(dρ((A ∩ Sρ′(p, r)a(r′)) ∪ (B ∩ Sρ′(p, r)b(r′))))

≤ f(dρ((A ∩ Sρ(p, r)a(r)) ∪ (B ∩ Sρ(p, r)b(r)))).(2.14)

Moreover for the continuous function f we get

f(dρA) = f(sup{ρ(x, y) : x, y ∈ A}) = sup{f(ρ(x, y)) : x, y ∈ A}
= sup{ρ′(x, y) : x, y ∈ A} = dρ′A,

i.e.

(2.15) f(dρA) = dρ′A for A ∈ E0.

Hence and from the inequality (2.14) it results that

1
(r′)k

dρ′((A ∩ Sρ′(p, r)a(r′)) ∪ (B ∩ Sρ′(p, r)b(r′)))

≤ 1
(r′)k

f(dρ((A ∩ Sρ(p, r)a(r)) ∪ (B ∩ Sρ(p, r)b(r))))

=
1

(f(r))k
f(dρ((A ∩ Sρ(p, r)a(r)) ∪ (B ∩ Sρ(p, r)b(r)))).(2.16)

From the condition (2.9) the inequalities follow:

(2.17)
f(r1)
f(r2)

≤ f(r1/r2) for r1, r2 > 0,

and

f(rk) ≤ (f(r))k for r > 0,

that is to say

(2.18)
1

(f(r))k
≤ 1

f(rk)
for r > 0.

From (2.18), (2.17) and from the inequality (2.16) we get

1
(r′)k

dρ′((A ∩ Sρ′(p, r)a(r′)) ∪ (B ∩ Sρ′(p, r)b(r′)))

≤ 1
f(rk)

f(dρ((A ∩ Sρ(p, r)a(r)) ∪ (B ∩ Sρ(p, r)b(r))))

≤ f(
1
rk

dρ((A ∩ Sρ(p, r)a(r)) ∪ (B ∩ Sρ(p, r)b(r)))).(2.19)

Hence, from (2.11) and from the properties of the function f it follows that

(2.20)
1

(r′)k
dρ′((A ∩ Sρ′(p, r)a(r′)) ∪ (B ∩ Sρ′(p, r)b(r′)))−−−→

r′→0+
0.

From the assumption that A,B ∈ Dp(E, ρ) and from Corollary 1.2 of this paper
it is evident that the pair of sets (A,B) is (a, b)-clustered at the point p of the space
(E, ρ′).

Hence and from the condition (2.20) it results that (A,B) ∈ Tdρ′ (a, b, k, p). This
ends the proof.
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Theorem 2.2. If the sets A,B ∈ Dp(E, ρ) and the functins a, b, f fulfil the in-
equalities (2.8) and

(2.21) f(r1r2) = f(r1)f(r2) for r1, r2 > 0,

then

(2.22) (A,B) ∈ Tρ′(a, b, k, p) ⇒ (A,B) ∈ Tρ(a, b, k, p).

Proof. We assume that (A,B) ∈ Tρ′(a, b, k, p) for A,B ∈ E0. From here it follows:

(2.23)
1

(r′)k
ρ′(A ∩ Sρ′(p, r′)a(r′), B ∩ Sρ′(p, r′)b(r′))−−−→

r′→0+
0.

Using the conditions (2.12) and (2.13) we get

ρ(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r))

≤ ρ(A ∩ Sρ′(p, r′)a(r′), B ∩ Sρ′(p, r′)b(r′)).(2.24)

From (1.9) and from the fact that f is the continuous function it appears that

f(ρ(A,B)) = f(inf{ρ(x, y) : x ∈ A, y ∈ B}) = inf{f(ρ(x, y)) : x ∈ A, y ∈ B}
= inf{ρ′(x, y) : x ∈ A, y ∈ B} = ρ′(A,B),

i.e.

(2.25) f(ρ(A,B)) = ρ′(A,B) for A,B ∈ E0.

From this and from the inequality (2.24) we get

f(ρ(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r)))

≤ f(ρ(A ∩ Sρ′(p, r′)a(r′), B ∩ Sρ′(p, r′)b(r′)))

= ρ′(A ∩ Sρ′(p, r′)a(r′), B ∩ Sρ′(p, r′)b(r′)).

Therefore
1

(r′)k
f(ρ(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r)))

≤ 1
(r′)k

ρ′(A ∩ Sρ′(p, r′)a(r′), B ∩ Sρ′(p, r′)b(r′)).

Hence and from the condition (2.23) it results that

(2.26)
1

(f(r))k
f(ρ(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r)))−−−→

r→0+
0,

where f(r) = r′ for r > 0.
From the assumption (2.21) we get the equalities:

(2.27)
1

(f(r))k
=

1
f(rk)

for r > 0,

and

(2.28)
f(r1)
f(r2)

= f(r1/r2) for r1, r2 > 0.

Using the conditions (2.26) - (2.28) we have

f(
1
rk

ρ(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r)))−−−→
r→0+

0.
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Hence and from the properties of the function f it follows that

(2.29)
1
rk

ρ(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r))−−−→
r→0+

0.

From the assumption that A,B ∈ Dp(E, ρ) it is evident that the pair of sets
(A,B) is (a, b)-clustered at the point p of the space (E, ρ).

Hence and from the condition (2.29) it results that (A, B) ∈ Tρ(a, b, k, p). This
ends the proof.

If the functions a, b, f fulfil the conditions (1.14), (2.8) and (2.21), the sets
A,B ∈ M̃p,k ∩ Dp(E, ρ), then from Theorems 1.1, 2.1 and 2.2 it results the fol-
lowing diagram:

(A,B) ∈ Tρ(a, b, k, p) ⇔ (A,B) ∈ Tl(a, b, k, p) ⇔ (A,B) ∈ Tdρ(a, b, k, p)
⇑ ⇓(2.30)

(A,B) ∈ Tρ′(a, b, k, p) ⇔ (A,B) ∈ TL(a, b, k, p) ⇔ (A,B) ∈ Tdρ′ (a, b, k, p).

From this diagram it follows:

Corollary 2.2. If the functions a, b, f fulfil the conditions (1.14), (2.8) and (2.21),
then the tangency relations Tl(a, b, k, p) and TL(a, b, k, p) are compatible in the
classes of sets M̃p,k ∩Dp(E, ρ) i.e.

(2.31) (A,B) ∈ Tl(a, b, k, p) ⇔ (A,B) ∈ TL(a, b, k, p)

for A,B ∈ M̃p,k ∩Dp(E, ρ).

From (2.30) and from Theorems 1.1, 1.2 (see Corollary 1.1) we get also:

Corollary 2.3. If the functions ai, bi, f (i = 1, 2) fulfil the conditions (1.15), (2.21)
and

(2.32) ai(f(r)) ≤ f(ai(r)) and bi(f(r)) ≤ f(bi(r)) for r > 0,

then the tangency relations Tl(a1, b1, k, p) and TL(a2, b2, k, p) are compatible i.e.

(2.33) (A,B) ∈ Tl(a1, b1, k, p) ⇔ (A,B) ∈ TL(a2, b2, k, p)

for A,B ∈ M̃p,k ∩Dp(E, ρ).

References

[1] S. Golkab and Z. Moszner, Sur le contact des courbes dans les espaces metriques généraux,
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