Addendum to: Differential Geometry of Rectifying Submanifolds

Bang-Yen Chen

(Communicated by Kazım İlarslan)

ABSTRACT

We point out that the proof of Theorem 4.2 of [B.-Y. Chen, Differential geometry of rectifying submanifolds, Int. Electron. J. Math. 9 (2016), no. 2, 1–8] holds only for rectifying submanifolds with codimension ≥ 2 . For rectifying submanifolds of codimension one, we classify rectifying hypersurfaces in a Euclidean space.

Keywords: Rectifying submanifold; position vector field. *AMS Subject Classification (2010):* Primary: 53A07; Secondary: 53C40.

1. Introduction

Let *M* be a Riemannian manifold isometrically immersed in the Euclidean *m*-space \mathbb{E}^m . Denote by *h* and *A* the second fundamental form and the shape operator of *M* in \mathbb{E}^m , respectively. For a point $p \in M$, the *first normal subspace*, Im h_p , of *M* at *p* is the subspace defined by

$$\operatorname{Im} h_{p} = \operatorname{Span}\{h(X, Y) : X, Y \in T_{p}M\},\$$

where T_pM denotes the tangent space of M^n at p. We recall the following definitions from [2].

Definition 1.1. For a submanifold M of \mathbb{E}^m and a point $p \in M$, the orthogonal complement of $\text{Im } \sigma_p$ in $T_p \mathbb{E}^m$ is called the *rectifying space of* M at p.

Definition 1.2. A submanifold M of \mathbb{E}^m is called a *rectifying submanifold* if the position vector field \mathbf{x} of M, relative to the origin $o \in \mathbb{E}^m$, always lies in its rectifying space. In other words, M is a rectifying submanifold if and only if $\langle \mathbf{x}(p), \operatorname{Im} h_p \rangle = 0$ holds at every $p \in M$.

Definition 1.3. A non-trivial vector field *Z* on a Riemannian manifold *M* is called *concurrent* if it satisfies $\nabla_X Z = X$ for any vector $X \in TM$, where ∇ is the Levi-Civita connection of *M*.

For a submanifold of \mathbb{E}^m , there exists a natural orthogonal decomposition of the position vector field **x** of *M* at each point; namely,

$$\mathbf{x} = \mathbf{x}^T + \mathbf{x}^N,\tag{1.1}$$

where x^T and x^N denote the tangential and normal components of x, respectively.

Definition 1.4. A rectifying submanifold *M* of \mathbb{E}^m is called *proper* if it satisfies $\mathbf{x} \neq \mathbf{x}^T$ and $\mathbf{x} \neq \mathbf{x}^N$ almost everywhere.

The following result was proved in [2].

Theorem 1.1. If the position vector field \mathbf{x} of a submanifold M in \mathbb{E}^m satisfies $\mathbf{x}^N \neq 0$, then M is a proper rectifying submanifold if and only if \mathbf{x}^T is a concurrent vector field on M.

Received: 01-02-2017, Accepted: 20-03-2017

^{*} Corresponding author

2. A remark on Theorem 4.2 of [2]

First we want to point out that one requires the condition $m \ge 2 + \dim M$ in the proof of Theorem 4.2 of [2]. However, this condition was missing in the statement of theorem in [2]. Hence Theorem 4.2 of [2] shall be restated as the following.

Theorem 2.1. Let *M* is a proper rectifying submanifold of \mathbb{E}^m . If $m \ge 2 + \dim M$, then with respect to some suitable local coordinate systems $\{s, u_2, \ldots, u_n\}$ on *M* the immersion *x* of *M* in \mathbb{E}^m takes the form:

$$x(s, u_2, \dots, u_n) = \sqrt{s^2 + c^2} Y(s, u_2, \dots, u_n), \quad \langle Y, Y \rangle = 1, \ c > 0,$$
(2.1)

such that the metric tensor g_Y of the spherical submanifold defined by Y satisfies

$$g_Y = \frac{c^2}{(s^2 + c^2)^2} ds^2 + \frac{s^2}{s^2 + c^2} \sum_{i,j=2}^n g_{ij}(u_2, \dots, u_n) du_i du_j.$$
 (2.2)

Conversely, the immersion given by (2.1)-(2.2) defines a proper rectifying submanifold.

3. Classification of rectifying hypersurfaces

Now, we classify rectifying hypersurfaces.

Theorem 3.1. A proper hypersurface M of \mathbb{E}^{n+1} is a rectifying hypersurface if and only if M is an open portion of a hyperplane L of \mathbb{E}^{n+1} with $o \notin L$, where o denotes the origin of \mathbb{E}^{n+1} .

Proof. Let M be a rectifying proper hypersurface of \mathbb{E}^{n+1} . Then we have $\nabla_Z \mathbf{x}^T = Z$ for any $Z \in TM$. Combining this with (4.3) in [2] gives $A_{\mathbf{x}^N} = 0$ identically. Hence M a is totally geodesic hypersurface in \mathbb{E}^{n+1} . Consequently, M is an open portion of a hyperplane L of \mathbb{E}^{n+1} (cf. [1, page 54]).

If the origin o of \mathbb{E}^{n+1} lies in L, then the position vector field \mathbf{x} of M is tangent to M at each point on M. Hence M is non-proper. Consequently, we must have $o \notin L$.

Conversely, suppose that *M* is an open portion of a hyperplane *L* such that $o \notin L$. Then it is clearly that *M* is a proper hypersurface. Let $\tilde{\nabla}$ denote the Levi-Civita connection of \mathbb{E}^{n+1} . Then we have

$$Z = \tilde{\nabla}_Z \mathbf{x} = \tilde{\nabla}_Z \mathbf{x}^T + \tilde{\nabla}_Z \mathbf{x}^N.$$
(3.1)

Since *M* is totally geodesic in \mathbb{E}^{n+1} , it follows from (3.1), the formula of Gauss and the formula Weingarten that $\nabla_Z \mathbf{x}^T = Z$. Therefore \mathbf{x}^T is a concurrent vector field. Consequently, Theorem 1.1 implies that *M* is a rectifying hypersurface.

The pseudo-Riemannian version of Theorem 3.1 holds as well.

Theorem 3.2. A pseudo-Riemannian proper hypersurface M_t with index t in a pseudo-Euclidean space \mathbb{E}_s^{n+1} with index s is a rectifying hypersurface if and only if M_t is an open portion of a pseudo-Euclidean hyperplance L_t of \mathbb{E}_s^{n+1} with $o \notin L_t$, where o denotes the origin of \mathbb{E}_s^{n+1} .

Proof. This can be proved in the same way as Theorem 3.1.

References

[1] Chen, B.-Y., Pseudo-Riemannian manifolds, δ -invariants and applications. World Scientific, 2011.

[2] Chen, B.-Y., Differential geometry of rectifying submanifolds. Int. Electron. J. Geom., 9 (2016), no. 2, 1-8.

Affiliations

BANG-YEN CHEN **ADDRESS:** Michigan State University, Department of Mathematics, 619 Red Cedar Road, East Lansing, Michigan 48824-1027, U.S.A. **E-MAIL:** bychen@math.msu.edu