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ABSTRACT

We point out that the proof of Theorem 4.2 of [B.-Y. Chen, Differential geometry of rectifying
submanifolds, Int. Electron. J. Math. 9 (2016), no. 2, 1–8] holds only for rectifying submanifolds
with codimension ≥ 2. For rectifying submanifolds of codimension one, we classify rectifying
hypersurfaces in a Euclidean space.
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1. Introduction

Let M be a Riemannian manifold isometrically immersed in the Euclidean m-space Em. Denote by h and
A the second fundamental form and the shape operator of M in Em, respectively. For a point p ∈M , the first
normal subspace, Imhp, of M at p is the subspace defined by

Imhp = Span{h(X,Y ) : X,Y ∈ TpM},

where TpM denotes the tangent space of Mn at p.
We recall the following definitions from [2].

Definition 1.1. For a submanifold M of Em and a point p ∈M , the orthogonal complement of Imσp in TpEm is
called the rectifying space of M at p.

Definition 1.2. A submanifold M of Em is called a rectifying submanifold if the position vector field x of M ,
relative to the origin o ∈ Em, always lies in its rectifying space. In other words, M is a rectifying submanifold
if and only if 〈x(p), Imhp〉 = 0 holds at every p ∈M .

Definition 1.3. A non-trivial vector field Z on a Riemannian manifold M is called concurrent if it satisfies
∇XZ = X for any vector X ∈ TM , where ∇ is the Levi-Civita connection of M .

For a submanifold of Em, there exists a natural orthogonal decomposition of the position vector field x of M
at each point; namely,

x = xT + xN , (1.1)

where xT and xN denote the tangential and normal components of x, respectively.

Definition 1.4. A rectifying submanifold M of Em is called proper if it satisfies x 6= xT and x 6= xN almost
everywhere.

The following result was proved in [2].

Theorem 1.1. If the position vector field x of a submanifold M in Em satisfies xN 6= 0, then M is a proper rectifying
submanifold if and only if xT is a concurrent vector field on M .
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2. A remark on Theorem 4.2 of [2]

First we want to point out that one requires the condition m ≥ 2 + dimM in the proof of Theorem 4.2 of
[2]. However, this condition was missing in the statement of theorem in [2]. Hence Theorem 4.2 of [2] shall be
restated as the following.

Theorem 2.1. Let M is a proper rectifying submanifold of Em. If m ≥ 2 + dimM , then with respect to some suitable
local coordinate systems {s, u2, . . . , un} on M the immersion x of M in Em takes the form:

x(s, u2, . . . , un) =
√
s2 + c2 Y (s, u2, . . . , un), 〈Y, Y 〉 = 1, c > 0, (2.1)

such that the metric tensor gY of the spherical submanifold defined by Y satisfies

gY =
c2

(s2 + c2)2
ds2 +

s2

s2 + c2

n∑
i,j=2

gij(u2, . . . , un)duiduj . (2.2)

Conversely, the immersion given by (2.1)-(2.2) defines a proper rectifying submanifold.

3. Classification of rectifying hypersurfaces

Now, we classify rectifying hypersurfaces.

Theorem 3.1. A proper hypersurface M of En+1 is a rectifying hypersurface if and only if M is an open portion of a
hyperplane L of En+1 with o /∈ L, where o denotes the origin of En+1.

Proof. Let M be a rectifying proper hypersurface of En+1. Then we have ∇Zx
T = Z for any Z ∈ TM .

Combining this with (4.3) in [2] gives AxN = 0 identically. Hence M a is totally geodesic hypersurface in En+1.
Consequently, M is an open portion of a hyperplane L of En+1 (cf. [1, page 54]).

If the origin o of En+1 lies in L, then the position vector field x of M is tangent to M at each point on M .
Hence M is non-proper. Consequently, we must have o /∈ L.

Conversely, suppose that M is an open portion of a hyperplane L such that o /∈ L. Then it is clearly that M is
a proper hypersurface. Let ∇̃ denote the Levi-Civita connection of En+1. Then we have

Z = ∇̃Zx = ∇̃Zx
T + ∇̃Zx

N . (3.1)

Since M is totally geodesic in En+1, it follows from (3.1), the formula of Gauss and the formula Weingarten that
∇Zx

T = Z. Therefore xT is a concurrent vector field. Consequently, Theorem 1.1 implies that M is a rectifying
hypersurface.

The pseudo-Riemannian version of Theorem 3.1 holds as well.

Theorem 3.2. A pseudo-Riemannian proper hypersurfaceMt with index t in a pseudo-Euclidean space En+1
s with index

s is a rectifying hypersurface if and only ifMt is an open portion of a pseudo-Euclidean hyerplance Lt of En+1
s with o /∈ Lt,

where o denotes the origin of En+1
s .

Proof. This can be proved in the same way as Theorem 3.1.
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