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Abstract: In this study, it is considered the problem of comparing the performances of the Maximum Likelihood (ML) and
Bayes estimators under symmetric and asymmetric loss function for the unknown parameters of Weibull distribution. ML
estimators are computed by using the Newton Raphson method. Bayesian estimations under Squared, Linex and General
Entropy loss functions by using Jeffrey’s extension prior are introduced with Tierney Kadane approximation for Weibull
distribution. For different sample sizes, estimators are compared to obtain the best estimator in terms of mean squared errors
using a Monte Carlo simulation study.
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Weibull Dagilhim i¢in Tierney Kadane’in Yaklasim ile Simetrik ve Asimetrik Kayip
Fonksiyonlar1 Altinda En Cok Olabilirlik ve Bayes Tahmin Edicilerinin Karsilastirilmasi

Oz: Bu galismada, Weibull dagilimmin bilinmeyen parametreleri icin simetrik ve asimetrik kayip fonksiyonlar1 altmda Bayes
tahmin edicileri ve en ¢ok olabilirlik tahmin edicilerinin karsilastirilmasi problemi diigiintilmiistiir. En ¢ok olabililirlik tahmin
edicileri Newton Raphson methodu ile hesaplanmistir. Weibull dagilimi i¢in Tierney Kadane’in yaklagimi ile Karesel, Linex
ve Genel entropy kayip fonksiyonlart altinda Bayes tahmin edicileri Jeffrey’in genisletilmis 6nseli kullanilarak elde
edilmigtir.Farkli 6rnek boyutlari igin Monte Carlo Simulasyon ¢aligmast ile en iyi tahmin ediciyi elde etmek i¢in tahmin ediciler
hata kareler ortalamalar1 bakimindan karsilagtirilmistir.

Anahtar Kelimeler: Tierney Kadane’in yaklagimi, Bayes tahmini, Weibull dagilimi, En ¢ok olabilirlik tahmin edicisi, Kayip
fonksiyonlart.

1.Introduction

Weibull distribution has become a popular tool for modeling life data and improving growth in the field of
reliability. The Weibull distribution is generally used in reliability. The Weibull distribution can be used to model
a variety of life behaviors. A Weibull distribution is the values of the shape parameter B, and the scale parameter
a, affects the characteristics life of the distribution, the failure rate, the reliability function [1]. There are many
studies about parameters for Weibull Distribution. Some of articles Nadarajah et.al. [2], Zhang et.al. [3], Guure
et.al [4], Rasheed et.al [5], Pandey and Rao [6], Rasheed and F.Naji [7], Arshad and Abdalghani [8], Meena et.al
[9] and Arshad and Misra [10]. The main advantage of Weibull analysis provides accurate failure analysis and
failure forecasts with extremely small samples. ML estimation has been the most generally used method for
estimating the parameters of the Weibull distribution. Bayes estimator for exponential distribution with an
extension of Jeffreys’ prior information was considered [11]. 'The cumulative distribution function (CDF),
probability density function (pdf), reliability function and hazard function of an X random variable having

W (a,pB)are as follows.
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F(X)=1—e_(;j a>0,38>0,x>0 W

f(x)=/7’oc"’x”‘1e7(;J a>0,5>0,x>0 o
X B

R(X) = e_bJ o

h(x) = fa ’x"* ”

,where
e for #<1 h(t) is decreasing,
o for A>1 h(t) is increasing,
o for f=1 h(t) is constant.

As in almost all branches of science, one of the main objectives of statistics is to have information about the
working population. In other words, knowing the unknown (parameters) of the population. That is, to make
estimates about the parameters of the population. If so, it may be desirable to have the best estimator. There are
many methods used in the literature.In this article, it is considered ML and Bayes estimators.

The aim of the study is to compare the ML and Bayes estimators under three loss functions by means of
Tierney Kadane approximation using Jeffrey’ s extension prior. The plan of the manuscript is as follows. In section
2, ML estimates of the parameters of Weibull distribution are reviewed. In section 3, Bayes estimators under
Squared, Linex and General Entropy loss functions by using Tierney-Kadane approximation are obtained. In
section 4, the simulation study is given. Finally, in section 5, the conclusion part is presented.

2.Preliminary

F(x): Distribution function

f(x): Probability density function

L(0): The likelihood function depending on 6

£(0): The log-likelihood function depending on 6

7(0): The prior distribution function depending on 6
n(6/): The posterior distribution function depending on 6
L(.,.):Loss function

a@: Maximum likelihood estimation of o parameter

3.Material and Method

The ML Method the basic principle of the likelihood method is the selection of the sampling value
corresponding to the values with the highest probability of obtaining the sampling values (or probability densities)
as an estimate for the unknown parameter by looking at the sample values. The ML method is a method used to
find predictors. The Bayesian approach is fundamentally different from other methods. In this approach, it is
assumed in addition that 0 is itself a random variable (though unobservable) with a known distribution. This prior
distribution (specified according to the problem) is modified in light of the data to determine a posterior distribution
(the conditional distribution of 8 given the data), which summarizes what can be said about 0 on the basis of the
assumptions made and the data [12]. In addition to the primary distribution, a posterior distribution is used that
reflects the sample information. The Bayesian estimation is considered to be the expected value of the posterior
distribution under the lost function of interest.

4.Proposed Method
4.1.Tierney Kadane’s approximation
Tierney and Kadane [13] is one of the methods to find the approximate value of the mathematical explanations

as the ratio of two integrals given in Equations (19), (22) and (25). Although the Lindley approach plays an
important role in the prediction of Bayes, this approach can only be used to obtain derivatives 1 and 2. For this
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reason, Tierney and Kadane proposed a new approach in 1986 (Tierney-Kadane approach) which makes it possible
to take the 3rd derivative of the log-likelihood function. In this approach, there is a faster convergence than Lindley
approximation [14]. This approximation can be written as follows for a case with two parameters. u(«, B) is any

function of aand 3, €(a, ,B‘x) is defined in Eq., (10), p (&, B) is logarithm joint prior distribution and defined

as follows. For details see Tierney and Kadene [13].

p(a.p)=In(z(a,B))=-cIn(a)-cIn(B) )
(. B) =%{p(a,ﬂ)+€(a,ﬁ)} ©)
I*(a,ﬂ)=%Iogu(a,ﬂ)+l(a.ﬁ) - ™

Then Tierney Kadane’s Bayes estimator of u(e, £) is defined as follows.
[e"“Pd(a, B)
 [e"“Pd(a, p) . ®)

(42 et )]

(o?r,/?r) and (&I,Bl) maximize | («, ) and | (e, B, respectively. =" and < are minus the inverse

. (@) = E (ule )]

Hessians of I (a, 8) and I (a, ) at (d|*'[}|‘) and (dl,ﬁl), respectively. < is defined as follows;

A loa® o leadp]
s a aof ©)
-0°l10adp  —0°110p?

4.2.Maximum likelihood estimation

Let X,, X,,..., X, be independent random variables having W distribution with « , # parameters. Then
the log-likelihood function is given by

£(a.Blx) =In(L(a.B]x))
:nln(m—nﬂln(a)—[i[gjﬁ}(ﬂ—u@mxij

i=1

(10)

Differentiating the log-likelihood function ((a, ) X) partially with respect to o ,[3 parameters and then

equating to zero, following non-linear equations is obtained and these equations can be solved with the Newton-
Raphson method [15].

(e plx) %(i(&wo (11)

= | o

Ooa o L pr} J
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4.3.Bayesian estimation symmetric and asymmetric loss functions
Let X =(X,X,,...,X,) is a random sample taken from Weibull (a,B) distribution. For Bayesian

estimation of the parameters, it is needed for prior distributions for these parameters. In this study, as a prior
distribution, Jeffrey’s extension priors are used and these are as follows [16].

71'1(0!) oc (ij (13)

7,(B) = [ljc (14)
Prior and posterior distributions of ¢, [ parameters are

n(a,p)« [éj [%] o [é] (15)
f ((a,ﬂ); {()

f(x) |
ﬂ”anﬂe[[?i]’”] LG ( 1 j

i=1 ap

7(a Blx)=

(16)

Hﬂnawe[(" ]JHXN( AP

respectively.
The Squared error loss function is a symmetric function and introduced by [17] and [18]. Let any function of

aand S is U(a, B) = U . The squared loss function is as follows:

L(Uss—u)=(uss—u)’
The value which is minimize the expected value of squared loss function is
Uss (a.8)=E[u(a,B)|x] (18)

In this case, Bayes estimator of U (a, ,b’) under squared error loss function which is a symmetric loss function
is obtained as follows.

GBS (a,ﬂ):E[u a,,B X]

(17

(19)

Tu(a,ﬁ/x)e[ (”/X)*””]dadﬂ

ﬁe{f(a,/f/x)w(a,ﬂ)}dadﬂ

((0{, ﬂ‘x) is log-likelihood function, p(a,ﬂ
loss function is an asymmetric function and introduced by Varian [19]. Zellner [20] is studied about Bayes
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estimation under linex loss function. Let any function of a and £ is U (0( B ) and “a” arbitrary constant. The
Linex loss function is defined as follows.
L,(A) o exp(aA)-aa-1; a =0, (20)

A= G (a.B)-u(a, B)- Then, posterior mean of Linex loss function is given as;
E, {Lz [G—uﬂ o« exp[aa) E,[exp(-au)]- a(a— E, (u)) -1 (21)

u =G(a,ﬂ) and u=u(a,p),us. which minimize this posterior mean is Bayes estimator of U and is
obtained as follows,

™ (a,8)= —iln E [exp(—au (a,ﬂ))M

0 o

”exp(—au(a,ﬂ))e[l(

a.p

f)w(av/f)}
dadp 22)

] p(avﬂ)}dadﬂ

i

General Entropy loss function is an asymmetric function and suggested by Calabria and Pulcinia [21]. Dey
and Liao [22] are studied with Bayes estimation under the General Entropy loss function. Let any function of o,

pisu (a, y/j ) and “k” arbitrary constant. General Entropy loss function is defined as follows.

Ls(a,u)m[g —kln[ﬂj—l (23)
u u

Then, posterior mean of General Entropy loss function is given as;

EH{LQEG,u):mE k—kE[In(aj—ln(u)}—l (24)

A

G :G(a,ﬂ) and U=u (a,,b’) . Then, Usece which minimize this posterior mean is Bayes estimator of U

[l [

and is obtained as follows.

vue (a.0)= [E{[u )] e}

X [+pla k
)p( /})}dadﬂ

) II[“ (@.8)]" ofehe (25)
TTE[((W? f]*‘ﬂ(‘lﬁ)}

dadp

It is very difficult to solve the equations (19), (22) and (25) in closed-form. Because of this reason, the Bayes
Estimators of U (e, ) can be obtained using Tierney-Kadane’s approximation.
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4.4, Mathematical equations

The partial derivatives related to | (&, ), | («, 8) , = and T are defined as follows;

|(a, ﬁ):{nln( -npin(a [i[ﬁjﬂ} B- 1(Zlnxj chn(a)- cln(ﬂ)]

i=1 a
B
2 X;
w |e|la J o L2
aZ i=1
ol
da? n
x Y (x x
LS (aj '”(ajﬂ+(aj
a i a a
ol
6aﬂ_ n
on_ i(xi)ﬂm(xijz LC
o2 3 B 24 a ,5'2
0B’ n

Bayes estimators for a, B parameters using Eq. (9) are found as follows.
i.lfu(e,f)=«a

21 2 21 -1
g _| “ON10at o1/ adp
-0 leadp 02 16

R *\Y2
oo | oot i) )]
| (a, B) :%Ioga+l(a,ﬂ)

The partial derivatives related to I, are given as,

al — 2 ol al
ol 1
2= 27t
oa na n
n ( )'Bln( ),3 ( H’
o Z‘ a a
ol 3
oap n
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n n (x Y x Y c
- S In] & il
A 1 B {zl[a] n(ocj ]+ﬂ2

B g . (35)
i.Ifu(e, B)=4
21* 2 20% -1
st -0°l, 1 ox —0°l, 1 0aop -
S L W L) AL W) &
P \Y2
~ [ detZ, A A oA . 1 37
< _[ detEJ exp| (13, B, )1 (. 41)) | 1. (@B =0 e ) (37)
The partial derivatives related to I; are given as,
" (ﬁ)ﬁm(ﬁ)lg (ﬁ)/f
n B 2 _E_ __a [04 _«a
n X: X: c
- | In| =+ — [24 i=1 (04 o
o ST o
6ﬂ2 - nﬂz n 78aﬂ n
5.Appendix

In this section, ML and approximate Bayes Estimators by Tierney-Kadane’ approximation are obtained under
Squared error loss function, Linex loss function and General Entropy loss function for unknown parameters of W
distribution and results are compared in terms of mean squared error by using Monte Carlo simulation method.

Mean squared error (MSE) is defined as follows;Let @ is the true parameter value and & (i =1, 2,...,10000)

is the estimation value in " replication. Then the MSE for Tierney-Kadane approximations can be written as,
2

10000 /" 5
E=—— (6’0)—9) (39)
10000 =

Simulation steps are as follows:Stepl: It is generated data from W distribution with
a=115, f=131.7 for the sample size n=20, 30, 50, 100.Step 2: ML estimates for parameters are
computed by a solution of non-linear Egs. (11-12) by using the Newton-Raphson method.Step 3: Tierney-Kadane
Bayes estimates are computed for parameters under Squared error, Linex a=+ 0.8, £1.5and General entropy

k=+0.8, +1.5 loss functions using Jeffrey’s extension prior (c=0.2).Step 4: Means squared errors are computed
over 10000 replications by using Eq. (39).

6.Conclusion

In this study, approximate Bayes estimators under Squared error, Linex and General entropy loss functions
obtained by using the Tierney-Kadane’s method and ML’s for W distribution with parameters are compared. The
ML’s of the unknown parameters are computed by using the Newton Raphson method. The approximate Bayes
estimators are compared with the ML’s in terms of MSE by using the Monte Carlo simulation method. As seen
from Table 1 and Table 2, the performances of Bayes estimates for parameters and general entropy loss function
are generally better than others in terms of MSEs. In addition, MSEs of ML and approximate Bayes estimates
obtained under different loss functions are decreased when n is increased. Furthermore, MSEs of estimators are
close to each other for large n values.it is seen that the minimum MSE is reached even if the parameter values
change when looking at Figures 1 and 2.In general, the ML estimators and estimators are obtained under the
quadratic loss function are almost the same as MSE, and in some cases the linex loss function has the same MSE
with general entropy loss function, while general entropy loss function often has a smaller MSE.
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Figure 1. MSEs values for o=1.5 and $=1.7
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Figure 2. MSEs values for a=1 and f=1.3

Table 1. Mean estimates and MSEs for parameters of Weibull distribution (a,k +0.8)

ML | BS | BL |BGE ML | BS | BL |BGE
n o C IB a
' a=k=0.8 a=k=-0.8
Ayse | 0.022004 | 0.023935 | 0.007610 |0.007089 |0.021749 |0.023826 |0.007772 | 0.006984
1 02 |13 Xyve 1.000476 |1.033536 | 1.029985 |1.020257 | 1.002649 | 1.035844 | 1.043469 |1.032701
ﬁMSE 0.046422 | 0.045170 |0.008289 | 0.006964 | 0.046640 | 0.045415 | 0.008809 | 0.007107
30 Bue 1.364397 | 1.355320 |1.347874 |1.338887 | 1.363272 | 1.354210 |1.370014 | 1.350367
Qyvse | 0.028945 | 0.030532 | 0.004226 |0.004118 |0.028336 |0.030021 | 0.004380 | 0.004034
15 |02 |17 Xy 1.499102 | 1531427 | 1.520957 1516731 | 1.500584 | 1.533068 | 1.544775 | 1.530689
Puse 0.080435 | 0.078229 |0.008121 |0.007032 |0.077744 |0.075671 | 0.008789 | 0.006926
Pue 1.788931 |1.778696 | 1.754710 |1.748446 | 1.783719 | 1.773503 | 1.800806 | 1.769439
Qyse | 0.012859 | 0.013555 |0.004334 | 0.004115 |0.013030 |0.013757 |0.004447 | 0.004146
1 02 |13 Xyve 1.000961 |1.020859 |1.019286 |1.013165 | 1.001479 |1.021337 | 1.025957 |1.019487
ﬁMSE 0.024779 | 0.024334 | 0.004512 | 0.004090 | 0.025153 | 0.024688 | 0.004752 | 0.004157
50 Bue 1.337451 | 1.331815 |1.327961 | 1.322621 | 1.339448 | 1.333842 | 1.342863 | 1.331561
Qvse | 0.017565 | 0.018109 |0.002539 | 0.002490 |0.017126 |0.017705 |0.002557 | 0.002444
15 02 |17 Ay 1498704 | 1518280 |1.512414 |1.509669 | 1.499594 | 1.519100 |1.526108 | 1.517694
Buse 0.042597 | 0.041880 | 0.004467 |0.004129 |0.041346 |0.040578 | 0.004640 | 0.004015
Pue 1.746877 | 1.740578 | 1.727203 | 1.723297 | 1.750987 | 1.744673 | 1.760201 | 1.742276
Qyvse | 0.006377 | 0.006567 | 0.002105 | 0.002038 | 0.006410 |0.006578 |0.002117 | 0.002047
1 02 |13 Xyve 1.001266 |1.011215 |1.010638 |1.007478 | 1.000161 |1.010111 |1.012450 | 1.009195
Buse 0.011376 | 0.011256 |0.002109 | 0.002000 |0.011323 |0.011212 | 0.002142 | 0.002006
100 Bue 1.319785 | 1.316903 | 1.315156 | 1.312507 |1.318482 | 1.315603 | 1.319924 | 1.314472
@vse | 0.008430 | 0.008578 |0.001210 |0.001198 |0.008551 | 0.008667 |0.001242 | 0.001220
15 02 117 Xy 1.499987 | 1509782 |1.507014 | 1.505567 | 1.498607 | 1.508401 |1.511918 | 1.507702
Buse 0.019095 | 0.018908 | 0.002055 |0.001963 |0.019217 |0.019037 | 0.002139 | 0.001993
Pue 1.724503 | 1.721269 | 1.714866 |1.712890 | 1.723307 | 1.720076 |1.727521 | 1.718894
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Table 2.Mean estimates and MSEs for parameters of Weibull distribution (a,k +1.5)

ML

| BS

| BL

| BGE

| BS

| BL

| BGE

a=k=15

20

13

0.031708

0.035951

0.038618

0.035970

0.032481

0.037079

0.044535

0.036985

0.999643

1.049293

1.027367

1.013366

1.002285

1.052084

1.080924

1.062769

0.082520

0.079692

0.051532

0.039886

0.077694

0.074972

0.053068

0.037289

1.398143

1.385038

1.348326

1.339240

1.395629

1.382525

1.433962

1.395356

15 0.2

1.7

0.042242

0.045765

0.021244

0.021252

0.043484

0.047233

0.025538

0.021656

1.499223

1.547709

1.514314

1.512944

1.500617

1.549138

1.585814

1.557600

0.138847

0.133927

0.044144

0.039669

0.143650

0.138642

0.060878

0.039865

1.832416

1.817573

1.742855

1.747999

1.835069

1.820249

1.906590

1.835203

13

0.022542

0.024529

0.027120

0.025402

0.021511

0.023501

0.027633

0.024488

1.001508

1.034497

1.021067

1.011375

1.001393

1.034568

1.053076

1.041488

0.046899

0.045606

0.028794

0.025092

0.045804

0.044595

0.031058

0.024463

1.366987

1.357906

1.335148

1.328881

1.362667

1.353607

1.385489

1.361996

30

15 0.2

1.7

0.028042

0.029417

0.014015

0.014109

0.028327

0.029834

0.015692

0.014197

1.496258

1.528779

1.507386

1.506154

1.498274

1.530752

1.554361

1.536279

0.077124

0.075157

0.026333

0.024567

0.079072

0.077009

0.032630

0.024385

1.779187

1.768993

1.722547

1.725018

1.782831

1.772606

1.824999

1.782292

50

13

Ayse

0.012965

0.013626

0.015186

0.014596

0.013297

0.014032

0.016086

0.014812

O e

1.000247

1.020112

1.012661

1.006556

1.001272

1.021225

1.032093

1.025302

ﬁMSE

0.025682

0.025224

0.016344

0.014963

0.024191

0.023777

0.016282

0.014135

Pue

1.338425

1.332813

1.320102

1.316247

1.334954

1.329338

1.347366

1.334284

15 0.2

1.7

Ayse

0.017214

0.017837

0.008670

0.008626

0.016956

0.017379

0.008946

0.008523

O e

1.501041

1.520582

1.508192

1.507317

1.495978

1.515490

1.529296

1.518751

ﬂMSE

0.043107

0.042340

0.015477

0.014722

0.042769

0.042030

0.017263

0.014501

ﬂME

1.750684

1.744389

1.717540

1.718807

1.748588

1.742281

1.771790

1.747976

100

13

Ayse

0.006467

0.006627

0.007423

0.007281

0.006479

0.006639

0.007546

0.007273

O ye

0.999718

1.009684

1.006190

1.003023

0.999741

1.009707

1.015036

1.011711

ﬂMSE

0.011125

0.011022

0.007212

0.006964

0.010893

0.010792

0.007310

0.006836

Bue

1.317081

1.314195

1.308198

1.306236

1.316845

1.313959

1.322612

1.316400

15 0.2

17

Ayse

0.008538

0.008688

0.004291

0.004268

0.008427

0.008561

0.004339

0.004206

O ye

1.500520

1.510306

1.504310

1.503789

1.499575

1.509369

1.516190

1.510981

ﬂMSE

0.019582

0.019384

0.007306

0.007112

0.019062

0.018878

0.007567

0.006923

Bue

1.725885

1.722650

1.709719

1.710240

1.723895

1.720668

1.734779

1.723475

ML:Maximum likelihood estimation
BS:Bayes estimation under squared error loss function
BGE:Bayes estimation under general entropy loss function
BL:Bayes estimation under linex loss function

%wse :MSEs for o parameter

Puse : MSEs for o parameter

o .
ME : Mean estimate for o parameter

B

ME : Mean estimate for 3 parameter
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