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Abstract. In this paper, we firstly give the necessary and sufficient condi-
tions for null, pseudo null and partially null curves in Minkowski space-time
to be normal curves. We prove that the null, pseudo null and partially null
normal curves have a common property that their orthogonal projection onto

non-degenerate hyperplane of E4
1 or onto lightlike 2-plane of E4

1 is the corre-
sponding rectifying curve. Finally, we give some examples of such curves in
E4

1 .

1. Introduction.

In the Euclidean space E3 there exist three classes of curves, so-called rectifying,
normal and osculating curves satisfying Cesaro’s fixed point condition ([8]) mean-
ing that rectifying, normal and osculating planes of such curves always contain a
particular point. If all normal or osculating planes of a curve in E3 pass through
a particular point, then the curve is spherical or planar, respectively. It is also
known that if all rectifying planes of a non-planar curve in E3 pass through a par-
ticular point, then the ratio of its torsion and curvature is a non-constant linear
function ([3]). Some characterizations of rectifying curves in Minkowski 3-space E3

1

are given in [6]. In particular, there exists a simple relationship between rectify-
ing curves and Darboux vectors (centrodes), which play some important roles in
mechanics, kinematics as well as in differential geometry in defining the curves of
constant precession ([4]).

Normal curves in Minkowski space-time E4
1 are defined in [5] as the space curves

whose position vector (with respect to some chosen origin) always lies in its normal
space T⊥, which represents the orthogonal complement of the tangent vector field of
the curve. Spacelike and timelike normal curves in E4

1, whose Frenet frame contains
only non-null vector fields, are characterized in [5]. Such curves always lie in some
hyperquadric in E4

1.
In this paper, we firstly give the necessary and sufficient conditions for null,

pseudo null and partially null curves in Minkowski space-time to be normal curves.
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It is a quite interesting problem to investigate if there exist some geometrical re-
lations between null, pseudo null and partially null normal curves and rectifying
curves in Minkowski space-time. In this paper we prove that the null, pseudo null
and partially null normal curves have a common property that their orthogonal
projection onto non-degenerate hyperplane of E4

1 or onto lightlike 2-plane of E4
1 is

the corresponding rectifying curve. Finally, we give some examples of such null,
pseudo null and partially null normal curves in E4

1 .

2. Preliminaries.

The Minkowski space-time E4
1 is the Euclidean 4-space E4 equipped with indef-

inite flat metric given by

g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

where (x1, x2, x3, x4) is a rectangular coordinate system of E4
1 . Recall that a vector

v ∈ E4
1\{0} can be spacelike if g(v, v) > 0 , timelike if g(v, v) < 0 and null (lightlike)

if g(v, v) = 0. In particular, the vector v = 0 is a spacelike. The norm of a vector

v is given by ||v|| =
√
|g(v, v)|. Two vectors v and w are said to be orthogonal, if

g(v, w) = 0. An arbitrary curve α(s) in E4
1 , can locally be spacelike, timelike or

null (lightlike), if all its velocity vectors α′(s) are respectively spacelike, timelike or
null ([7]). Spacelike curve in E3

1 or E4
1 is called respectively pseudo null or partially

null curve, if its principal normal or first binormal vector is null ([2]).
A null curve α is parameterized by pseudo-arc s if g(α′′(s), α′′(s)) = 1 ([1]). A

non-null curve α has unit speed, if g(α′(s), α′(s)) = ±1.
Recall that the pseudosphere, pseudohyperbolic space and nullcone are the hy-

perquadrics in E4
1 respectively defined by ([7])

S3
1(r) =

{
X ∈ E4

1 : g(X,X) = r2, r ∈ R+
0

}
,

H3
0 (r) =

{
X ∈ E4

1 : g(X,X) = −r2, r ∈ R+
0

}
,

C3(O) =
{
X ∈ E4

1 : g(X,X) = 0, X ̸= 0
}
.

Let {T,N,B1, B2} be the moving Frenet frame along a curve α in E4
1 , consisting of

the tangent, the principal normal, the first binormal and the second binormal vector
field respectively. Depending on the causal character of α, the Frenet equations have
the following forms.

Case I. If α is a null curve, the Frenet equations are given by ([1,10])

(2.1)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0
κ2 0 −κ1 0
0 −κ2 0 κ3

−κ3 0 0 0




T
N
B1

B2

 ,

where the first curvature κ1(s) = 0, if α(s) is straight line, or κ1(s) = 1 in all other
cases. Therefore, such curve has two curvatures κ2(s) and κ3(s) and the following
equations hold:

g(T, T ) = g(B1, B1) = 0, g(N,N) = g(B2, B2) = 1,

g(T,N) = g(T,B2) = g(N,B1) = g(N,B2) = g(B1, B2) = 0, g(T,B1) = 1.
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Case II. If α is pseudo null curve, the Frenet formulas are ([2,10])

(2.2)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0
0 0 κ2 0
0 κ3 0 −κ2

−κ1 0 −κ3 0




T
N
B1

B2

 ,

where the first curvature κ1(s) = 0, if α is straight line, or κ1(s) = 1 in all other
cases. Such curve has two curvatures κ2(s) and κ3(s) and the following conditions
are satisfied:

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0, g(N,B2) = 1.

Case III. If α is partially null curve, the Frenet formulas read ([2,10])

(2.3)


T ′

N ′

B′
1

B′
2

 =


0 κ1 0 0

−κ1 0 κ2 0
0 0 κ3 0
0 −κ2 0 −κ3




T
N
B1

B2

 ,

where the third curvature κ3(s) = 0 for each s. Such curve has two curvatures
κ1(s) and κ2(s) and lies fully in a lightlike hyperplane of E4

1 . In particular, the
following equations hold:

g(T, T ) = g(N,N) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, g(B1, B2) = 1.

Recall that a rectifying curve in E3
1 is defined in [6] as a space curve whose the

position vector (with respect to some chosen origin) always lies in its rectifying
plane

N⊥ = {W ∈ E3
1 | g(W,N) = 0}.

In particular, the normal curve in E4
1 is defined in [5] as a curve whose the

position vector (with respect to some chosen origin) always lies in its normal space
given by

T⊥ = {W ∈ E4
1 | g(W,T ) = 0}.

Consequently, the position vector of null, pseudo null and partially null normal
curve in E4

1 , satisfies respectively the equations

(2.4) α(s) = a(s)T (s) + b(s)N(s) + c(s)B2(s),

(2.5) α(s) = a(s)N(s) + b(s)B1(s) + c(s)B2(s),

(2.6) α(s) = a(s)N(s) + b(s)B1(s),

for some differentiable functions a(s), b(s) and c(s).
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3. Null, pseudo null and partially null normal curves in E4
1

In this section, we firstly give the necessary and sufficient conditions for null,
pseudo null and partially null curves in E4

1 to be normal curves. One of the sufficient
conditions is that such curves (with the first and the second curvature different from
zero) always lie in some hyperquardic of the ambient space. It can be easily verified
that every null straight line in E4

1 is a normal curve. For the null normal curves in
E4

1 with non-zero first curvature we have the following theorem.

Theorem 3.1. Let α(s) be a null curve in E4
1 parameterized by pseudo-arc s and

with curvatures k1(s) = 1, k2(s) ̸= 0, k3(s) ̸= 0. Then α is a normal curve if and
only if one of the following statements hold:

(i) α lies in pseudosphere S3
1(r), r ∈ R+

0 ;

(ii) the third curvature κ3(s) is non-zero constant;

(iii) the second binormal component of the position vector α is non-zero constant,
i.e. g(α,B2) = c0, c0 ∈ R0.

Proof. First assume that α is a normal curve. By taking the derivative of the
relation (2.4) with respect to s and applying (2.1), we obtain the system of equations

a′(s) + b(s)κ2(s)− c(s)κ3(s) = 1, a(s) + b′(s) = 0, b(s) = 0, c′(s) = 0.

It follows that

(3.1) a(s) = 0, b(s) = 0, c(s) = c0, k3(s) = −1/c0, c0 ∈ R0.

Therefore, statement (ii) holds. Substituting (3.1) in (2.4), we easily obtain that
statements (i) and (iii) hold.

Conversely, assume that statement (i) holds. Differentiating the equation g(α, α) =
r2 with respect to s, we find g(α, T ) = 0 which means that α is the normal curve. If
statement (ii) holds, putting k3(s) = −1/c0, c0 ∈ R0 and applying (2.1) we obtain
d/ds[α(s)− c0B2(s)] = 0. Thus α is congruent to a normal curve. If statement (iii)
holds, differentiating the equation g(α,B2) = c0 with respect to s, we easily obtain
that α is a normal curve which completes the proof. �

Theorem 3.2. Let α(s) be a unit speed pseudo null curve in E4
1 with curvatures

k1(s) = 1, k2(s) ̸= 0 and k3(s) ̸= 0. Then α is a normal curve if and only if one of
the following statements hold:

(i) α lies in pseudosphere or pseudohyperbolic space in E4
1 ;

(ii) the first binormal and the second binormal component of the position vector
α are respectively given by g(α,B1) = 0, g(α,B2) = c, c ∈ R.

Proof. First assume that α is a normal curve. Then its position vector satisfies
relation (2.5). By taking the derivative of (2.5) with respect to s and applying
(2.2), we obtain the system of equations

(3.2)
c(s) = −1, c′(s)− b(s)κ2(s) = 0,
a(s)κ2(s) + b′(s)− c(s)κ3(s) = 0, a′(s) + b(s)κ3(s) = 0.

From the first and second equation of (3.2), we get b(s) = 0. Therefore, the system
of equations (3.2) reduces to the system

(3.3) a(s) = −κ3(s)/κ2(s), b(s) = 0, c(s) = −1, a′(s) = 0.
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From the first and the last equation of (3.3) we get a(s) = a0 ∈ R0. Consequently,
by using the last relation and (3.3), relation (2.5) becomes

α(s) = a0N(s)−B2(s), a0 ∈ R0.

The last relation implies g(α, α) = −2a0, g(α,B1) = 0, g(α,B2) = a0, a0 ∈ R0,
which proves statements (i) and (ii).

Conversely, suppose that statement (i) holds. Differentiating the equation g(α, α) =
c, c ∈ R with respect to s we easily get that α is a normal curve. If statement (ii)
holds, by taking the derivative of the equation g(α,B2) = c with respect to s, it
follows that α is a normal curve, which proves the theorem. �

Remark 3.1. If pseudo null normal curve has the third curvature κ3(s) = 0, then
its parameter equation reads α(s) = −B2(s), so it lies in the lightcone C3(O).

The following theorem can be proved in a similar way as theorems 3.1 and 3.2.,
so we omit its proof.

Theorem 3.3. A unit speed partially null curve α(s) in E4
1 with the curvatures

κ1(s) ̸= 0, κ2(s) ̸= 0 and κ3(s) = 0 is a normal curve if and only if one of the
following statements hold:

(i) the first curvature κ1(s) is non-zero constant;

(ii) α lies in a circular cylinder with null axis;

(iii) the principal normal and the first binormal component of the position vector
α are respectively given by g(α,N) = a0, a0 ∈ R0, g(α,B1) = 0.

(iv) the first binormal and the second binormal component of the position vector
α are respectively given by g(α,B1) = 0, g(α,B2) = −a0

∫ s

0
κ2(s)ds, a0 ∈ R0.

Recall that arbitrary curve in E4
1 is called a helix or a W-curve, if all its curva-

ture functions are constant. It is known that every pseudo null helix lies in some
hyperquadric in E4

1 ([9]).

Corollary 3.1. Every null, pseudo null and partially null helix in E4
1 is a normal

curve.

Next we obtain a simple relationship between null normal curves and non-null
rectifying curves in Minkowski space-time.

Theorem 3.4. Let α be a null curve in E4
1 and let β be the orthogonal projection

of α onto the spacelike (timelike) hyperplane Σ of E4
1 . Then α is a normal curve if

and only if β is a spacelike (timelike) rectifying curve.

Proof. We give the proof when Σ is a spacelike hyperplane. When Σ is a timelike
hyperplane, the proof is analogous.

Assume that α is a normal curve. The equation of α in terms of β can be written
as

(3.4) α(s) = β(s) + µ(s)V,

where s is arclength parameter of β, µ(s) is a nonconstant differentiable function
and V ∈ Σ⊥ is a constant unit timelike vector. Taking the derivative of (3.4) with
respect to s and using the condition g(α′(s), α′(s)) = 0 we get g(β′(s), β′(s)) =
µ′2(s) = 1. Up to a translations of E4

1 , we may take

(3.5) µ(s) = s.



SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES... 31

From the condition g(α(s), α′(s)) = 0, we obtain

g(β(s), β′(s)) = µ(s)µ′(s).

Differentiating the previous equation with respect to s and using (3.5) we find
g(β(s), β′′(s)) = 0, which means that β is a spacelike rectifying curve.

Conversely, assume that the projected curve β is a spacelike rectifying curve
lying fully in the spacelike hyperplane Σ of E4

1 . Then β is given by ([3])

β(t) =
a

cos t
y(t), a ∈ R+

0 ,

where y(t) is a unit speed spacelike curve lying in the unit sphere S2(1). Hence the
equation of α can be written as

(3.6) α(t) =
a

cos t
y(t) + µ(t)V, a ∈ R+

0 ,

where µ(t) is a nonconstant differentiable function and V ∈ Σ⊥ is a constant unit
timelike vector. By using the condition g(α′(t), α′(t)) = 0, we obtain µ(t) = a tan t.
Substituting this in (3.6), it follows that g(α(t), α′(t)) = 0, which means that α is
a normal curve. �

It can be verified that the orthogonal projection of a pseudo null normal curve
α in E4

1 onto non-degenerate hyperplane of E4
1 is not necessarily a rectifying curve.

However, the mentioned projection can be a rectifying curve under some additional
conditions given in the next theorem.

Theorem 3.5. Let α be non-null normal curve in E4
1 and β a unit speed timelike

orthogonal projection of α onto timelike hyperplane Σ of E4
1 . Then α is pseudo null

curve and holds

(3.7) g(α(s), V ) =
√
s2 + a, a ∈ R−

0 ,

where s is arclength parameter of β and V ∈ Σ⊥ is a constant unit spacelike vector,
if and only if β is a rectifying curve with the first curvature

(3.8) kβ(s) =

√
|a|

s2 + a
, a ∈ R−

0 .

Proof. First assume that α is pseudo null normal curve and holds g(α(s), V ) =√
s2 + a, a ∈ R−

0 . The equation of α, in terms of its orthogonal projection β, can
be written as

(3.9) α(s) = β(s) + µ(s)V,

where µ(s) = g(α(s), V ). Differentiating the previous equation with respect to s
we obtain

(3.10) α′(s) = β′(s) + µ′(s)V.

Since α is a normal curve, it follows that g(α(s), α′(s)) = 0. Substituting (3.9) and
(3.10) into the last equation, we get

g(β(s), β′(s)) + µ(s)µ′(s) = 0.

Differentiating the previous equation with respect to s and using the conditions
g(β′(s), β′(s)) = −1, µ(s) =

√
s2 + c, c ∈ R−

0 , we obtain g(β(s), Nβ(s)) = 0. Hence
β is a rectifying curve. Denote by t arclength parameter of α. Since α(s) = α(t(s)),
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differentiating the last equation two times with respect to s and using the condition
g(α′′(t), α′′(t)) = 0, we obtain

(3.11) g(α′′(s), α′′(s)) = t′′2(s).

In particular, differentiating relation (3.10) with respect to s yields

(3.12) g(α′′(s), α′′(s)) = κ2
β(s) + µ′′2(s).

The arclength parameter t of α is given by

(3.13) t(s) =

∫ s

0

||α′(u)|| du =

∫ s

0

√
µ′2(u)− 1 du.

Differentiating relation (3.13) two times with respect to s and using (3.11) and
(3.12) we obtain that the first curvature κβ is given by (3.8).

Conversely, assume that β is a timelike rectifying curve with the first curvature
given by (3.8). Then β has parameter equation ([6])

β(u) =
a

sinhu
y(u), a ∈ R+

0 ,

where y(u) is the unit speed spacelike curve lying in pseudohyperbolic space H2
0 (1).

The last equation in terms of arclength parameter s of β, reads

β(s) = y(s)
√
s2 − a2, a ∈ R+

0 .

Substituting the last relation in (3.9) we get

(3.14) α(s) = y(s)
√

s2 − a2 + µ(s)V.

Differentiating the previous equation with respect to s we find

(3.15) α′(s) = y′(s)
√
s2 − a2 + y(s)

s√
s2 − a2

+ µ′(s)V.

Since α is a normal curve, there holds g(α(s), α′(s)) = 0. Substituting (3.14) and
(3.21) into the last equation we find

(3.16) µ(s) = g(α(s), V ) =
√
s2 + d, d ∈ R,

and therefore

(3.17) µ′′(s) =
d

(s2 + d)
3
2

, d ∈ R.

Differentiating relation (3.9) two times with respect to s yields

α′′(s) = β′′(s) + µ′′(s)V.

It follows that

g(α′′(s), α′′(s)) = κ2
β(s) + µ′′2(s).

In particular, substituting (3.8) and (3.17) into the last equation, we find

g(α′′(s), α′′(s)) = − a

(s2 + a)2
+

d2

(s2 + d)3
, a ∈ R−

0 , d ∈ R.

Without loss of generality, we may take d = a. Then the last equation becomes

(3.18) g(α′′(s), α′′(s)) = − as2

(s2 + a)3
, a ∈ R−

0 .

In particular, relation (3.16) becomes
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(3.19) µ(s) = g(α(s), V ) =
√
s2 + a, a ∈ R−

0 .

Denote by t arclength parameter of α.Differentiating the equation α(s) = α(t(s))
two times with respect to s we get α′′(s) = α′′(t)t′2 + α′(t)t′′. The last relation
implies

(3.20) g(α′′(s), α′′(s)) = g(α′′(t), α′′(t))t′4 + g(α′(t), α′(t))t′′2.

On the other hand, from (3.13) we have

t′ =
√
µ′2 − 1, t′′ =

µ′µ′′√
µ′2 − 1

.

Substituting this into (3.20) we obtain

g(α′′(s), α′′(s)) = κ2
α(t)g(Nα(t), Nα(t))(µ

′2 − 1)2 + g(α′(t), α′(t))
µ′2µ′′2

µ′2 − 1
.

By using (3.19), the last equation becomes

g(α′′(s), α′′(s)) = κ2
α(t)g(Nα(t), Nα(t))

a2

(s2 + a)2
− g(α′(t), α′(t))

as2

(s2 + a)3
.

The last equation and (3.18) imply

(3.21)
s2

s2 + a
(g(α′(t), α′(t))− 1) = aκ2

α(t)g(Nα(t), Nα(t)), a ∈ R−
0 .

By assumption, α is non-null curve, so g(α′(t), α′(t)) = ±1. If g(α′(t), α′(t)) =
−1, relations α′(s) = β′(s) + µ′(s)V and α′(s) = α′(t)t′(s) imply

g(α′(s), α′(s)) = −t′2(s) = g(β′(s), β′(s)) + µ′2(s).

Relation (3.13) implies t′2 = µ′2 − 1. Substituting this into the last equation,
we find g(β′(s), β′(s)) = 1 − 2µ′2(s) = −1. It follows that µ(s) = ±s + b, b ∈ R,
which is a contradiction with (3.19). Hence g(α′(t), α′(t)) = 1, so relation (3.21)
implies g(Nα, Nα) = 0 which means that α is a pseudo null curve. This completes
the proof of the theorem. �

The relationship between partially null normal curves and rectifying curves is
given in the last theorem.

Theorem 3.6. Let α be a partially null curve in E4
1 and β a spacelike orthogonal

projection of α onto lightlike 2-plane of E4
1 . If α is a normal curve, then β is a

rectifying curve.

Proof. Assume that α is partially null normal curve lying in the lightlike hyperplane
Ω of E4

1 . We may assume that up to isometries of E4
1 , Ω has the equation x1 = x2.

Then up to a parametrization, parameter equation of α reads

α(s) = (α1(s), α1(s), s,
√

r2 − s2), r ∈ R+
0 ,

where α1 is some differentiable function. Moreover, the orthogonal projection of α
onto lightlike 2-plane has the equation

β(s) = (α1(s), α1(s), s, 0).

It follows that g(β(s), β(s)) = s2. Differentiating the last equation two times with
respect to s, we get g(β(s), Nβ(s)) = 0, which means that β is a rectifying curve. �
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4. Some examples of null, pseudo null and partially null normal
curves in E4

1

In this section, we give some examples of null, pseudo null and partially normal
curves in terms of their orthogonal projections onto non-degenerate hyperplanes
and lightlike 2-plane of E4

1 . Denote by Σ non-degenerate hyperplane of E4
1 .

Case (1) Σ is spacelike. By theorem 3.4 the null normal curve α is given by

α(s) = β(s) + sV,

where the rectifying curve β(s) =
√
s2 + c2 y(s), c ∈ R+

0 , is the unit speed orthog-
onal projection of α onto Σ, y(s) is a spacelike curve lying in the unit sphere S2(1)
and V ∈ Σ⊥ is a constant unit timelike vector.

Case (2) Σ is timelike. According to theorem 3.4, the null normal curve α has
the equation

α(s) = β(s) + sV, c ∈ R+
0 ,

where the rectifying curve β(s) = (c − s)
√

s+c
s−c y(s) is the unit speed orthogonal

projection of α onto Σ, y(s) is a spacelike curve lying in pseudohyperbolic space
H2

0 (1) and V ∈ Σ⊥ is a constant unit spacelike vector.
According to theorem 3.5, parameter equation of pseudo null normal curve is

given by

α(s) = β(s) +
√
s2 + a V, a ∈ R−

0 ,

where the rectifying curve β(s) = (c − s)
√

s+c
s−c y(s), c ∈ R+

0 , is the unit speed

orthogonal projection of α onto timelike hyperplane Σ, y(s) is a spacelike curve
lying in pseudohyperbolic space H2

0 (1) and V ∈ Σ⊥ is a constant unit spacelike
vector.

Finally, according to theorem 3.6, parameter equation of partially null normal
curve can be written as

α(s) = (s2, s2, s,
√
r2 − s2), r ∈ R+

0 ,

where the rectifying curve β(s) = (s2, s2, s, 0) is the orthogonal projection of α onto
lightlike 2-plane of E4

1 . Since κβ(s) = 1 and τβ(s) = 0, the projected curve β is a
pseudo null circle.
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