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Abstract

In the present article, using the generalized Bessel-Maitland transform, the Laplace trans-
form and the other known transforms, authors obtain new Parseval-Goldstein type rela-
tions. Using these relations, some generalized integrals involving Fox-Wright functions are
evaluated. Illustrative examples are also given.
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1. Introduction, definitions and preliminaries

In 2014, Singh et al [12] defined a new special function which is called generalized Bessel-
Maitland function. They considered certain properties of this function and obtained a
number of results. They showed Mellin-Barnes integral representation and the relationship
with Wright hypergeometric function of generalized Bessel-Maitland function. Then, they
calculated images of the function under some integral transforms such as Laplace, Mellin,
K- transform.

Albayrak et al [1] introduced a new integral transform whose kernel involves generalized
Bessel-Maitland function. The transform is called generalized Bessel-Maitland integral
transform. Firstly, new identities for generalized Bessel-Maitland function were obtained.
By using these identities, some properties for generalized Bessel-Maitland integral trans-
form were presented. Images of some elementary and special functions under generalized
Bessel-Maitland integral transform were calculated and some special cases of them were
shown.

In this study, our aim is to investigate Parseval-Goldstein type relations between gene-
ralized Bessel-Maitland integral transform and Laplace, Mellin, Hankel transforms which
are well known in the literature [5,6,9]. By using these relations, we will calculate some
generalized integrals involving Fox-Wright functions.

Now, we start with basic definitions and facts for understanding of this study.
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Definition 1.1. The generalized hypergeometric series is defined by [7],

ar, a2, 0| | o (1), (@2), - (o), 2"
TFS [517527“'768 Z] B nz:%) (51>n (52)71,(/88)71, n' 7

where r,s € ZTU{0}and o , 8; #0,-1,-2,... (1 <i <r,1<j<s)and (a), is Pocham-
mer symbol.

n

(1.1)

Definition 1.2. The Fox-Wright function is a generalization of the hypergeometric func-
o l(ahoq),(a2,a2),-.-,(ap,04p)
Py

tion and defined as [16]:
(b1, B1) , (b2, B2) s .-y (bgs Bg) z]

B i T (a1 +ain)T (az + agn) ..T' (ap + apn) 2"
0 r (bl + Bln) T (bz + ,3271) T (bq + Bqn) n!’
where p,q € ZT U {0}, a;,b; € C and «o;,8; € R (1 <i<p,1<j<gq). The generalized

hypergeometric series and the Fox-Wright function are related by the following formula
(7],

. l(al,l),(ag,l),...,(ap, 1) .
P8 (by, 1), (b2, 1), .ny (bg, 1)

Definition 1.3. Singh [12] defined a generalization of the Bessel-Maitland function in
2014 as follows:

(1.2)

] _ I'(a1)T (ag)..I' (ap) 7 lal,ag,...,ap
L (b1)T (b2)..T (by) * 7| b1,ba, ...,

z] . (L.3)

~ . = (V)pn (=2)" 1 (v,p)

By (2) = nz:%mf wnrvr) T e+ Z] ’ 4
where p,v,v € C; Re(u) > 0, Re(v) > —1, Re(y) > 0, p € (0,1) UN and (v), = 1,
(), = ' (v+pn)

T

Definition 1.4. Riemann-Liouville fractional integral operator of order « is defined as
follows [8,11]:

1

D f @)} = 5 / Yy - 2)°7 f (2) da, (15)

where y > 0, a € C, Re (o) > 0.

Definition 1.5. Weyl fractional integral operator of order « is defined as follows [8, 11]:

1

WS @) = 5 / T @y f (@) da, (1.6)

where y > 0, a € C, Re (o) > 0.

Definition 1.6. Let f (¢) be a real- or complex-valued function and y be a real- or complex-
valued parameter. Any integral transform of a function f(¢) defined in 0 < ¢t < oo is
denoted by

T O} = [ K@@ (1.7)

where K (y,t) is given function of two variables y and ¢, is called kernel of transform. The
operator 7 is called an integral transform operator or simply an integral transformation.
The transform of a function is often referred as the image of given object function f (t),
and y is called the transform variable. Some integral transforms which have different
kernels are given in the Table-1. (see [3,5,6])
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Table 1. Table of Some Integral Transforms

Transform Symbol | Kernel | Parameter
Laplace Transform L e vt Rey >0
Fourier Sine Transform Fs sin (yt) Rey >0
Fourier Cosine Transform Fe cos (yt) Rey >0
Mellin Transform M =T yeC
[4
Widder Potential Transform P - Rey >0
t2 4 y?
I
Stieltjes Transform S P largy| <7
t —11— Y
Generalized Stieltjes Transform Sa 5 | largy| <
(t+y)

Definition 1.7. The following generalized Bessel-Maitland integral transform was intro-
duced in [1], as follows:

IG5 = [ (033 (s0) £ (0 (1.9

where a, p,v,v,s € C; Re (o) > 0, Re () > 0, Re(y) > 0, Re(v) > —1, Re(s) > 0, and
€ (0,1) UN.

The Generalized Bessel-Maitland transform and the Laplace transform are related by
the following relation [1],

1
HELLF (1) 15} = $°L {£°F (1) 5} (19)
After this, we will use the following notations for the integral transforms:
oMy =30 HEP S (8) 2} = H{a}, T{g(y);x} = T{x}.

In the following section, new Parseval- Goldstein type identities are proved. The defini-
tions given in the first part are used to obtain these identities. Triple generalized integrals
are evaluated for some elementary and special functions which are not in the integral
tables.

2. Main theorems

Lemma 2.1. The following identity,
AT W sahiv) = [ F0) HK ()i}t (2.

holds true, provided that the integrals involved converge absolutely.

Proof. By using the definitions (1.7), (1.8), respectively and changing the order of inte-
gration, we obtain (2.1). O

Lemma 2.2. The following identity,
TEUS ki) = [ FOIE @ity e (22

holds true, provided that the integrals involved converge absolutely.
Proof. The proof is similar to the proof of Lemma 2.1. O
Theorem 2.3. The following identities,

/Oooﬂf{x}ﬁ{x}dx:/omg(y) (/Ooof(t)ﬂ-f{K(y,x);t}dt> dy (2.3)
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and
[Totra= [Tro([Tow sk @) @
hold true, provided that the integrals involved converge absolutely.

Proof. By using the definition (1.7) and changing the order of integration, then using the
definition (1.8), we find

[t Tarde = [T g@) TS 050} uhd
0 0

The proof of (2.4) follows from (2.2) of Lemma 2.2. Similarly, by using the definition
(1.8), then changing the order of integration and using the definition (1.7), we have

|t T erde = [T @ % AT L9 ()0} sthar.
0 0

Now, by using Lemma 2.1, we arrive at (2.3). O

Lemma 2.4. The following identities,

HAMAS ()52} 5y} =y~ /OOO t(—];l(?)lﬂ o0y <lnyt> dt (2.5)
and
M{HA{S (@) s2}sy} = ? E:)j;lﬁ i(z_ﬁgz i Zi;M {f);1-y} (2.6)

hold true, provided that the integrals involved converge absolutely, where

1 (v,p), (@ +1,1)

2¥1 (2) = 7= 2¥1 z| . 2.7
G [ (1+v.0) 27

Proof. By setting K (x,t) = t*~!, which is the kernel of the Mellin transform, in Lemma

2.1 and using the following formula for Rea > 0, (see [1])

- a®tIl (v) (1+v,p)

we obtain (2.5). Similarly, by setting K (y,x) = x¥~!, which is the kernel of the Mellin
transform, in Lemma 2.2 and using the formula for Re > —1, [1]
r I (v — 1 1
3 {175} = (@+B+DI'(y—pla+B+1)) y
FMHLA+v—pla+p+1)) sFF
we find (2.6). O

a

3 e s} = = l(%p),(a-i-l,l)

_5] , (2.8)

(2.9)

Remark 2.5. If weset v =0, u =p, vy =1, a =0 in (2.6), then we obtain the following
identity which was obtained earlier [9, p.3, Eq(c’)],

MALAS @) ;2)5y; =T (y) MAS(8) ;1 =y}
Corollary 2.6. The following identities,

o (™ g
/0 fH(x)M(x)dx—/O e

ot Miatde = [ o (1) m%m P Vay)ae @
0 0 0 y(—Iny) Iny

hold true, provided that the integrals involved converge absolutely, where 2W1(z) is defined
by (2.7).

/OOO F (1) 90y (lnty) dt] dy  (2.10)

and
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Proof. By setting K(x,y) = y*~!, which is the kernel of the Mellin transform, in (2.3)
and (2.4) of Theorem 2.3, and using the formula (2.8), we arrive at (2.10) and (2.11),

respectively. O
Lemma 2.7. The following identities,
HALA{S @) ;2}yh =y° OOO {a(ff A2 (—z) dt (2.12)
and
LAHA{S ()52} 5y} = yalﬂ /Ooo tf (1) 2% (—é) dt, (2.13)

hold true, provided that the integrals involved converge absolutely, where 2W1(2) is defined
by (2.7).

Proof. By setting K (x,t) = e~®!, which is the kernel of the Laplace transform, in Lemma
2.1 and using the known formula (2.8), we obtain (2.12). Similarly, by setting K (y,x) =
e~ Y% which is the kernel of the Laplace transform, in Lemma 2.2 and using the known
formula (2.8), we obtain (2.13). O

Remark 2.8. By setting v = 0,4 = p,¥ = 1 in Lemma 2.7, using the relations (1.9) and
the identity,

@10 1 ) M | -

we get the following formulas which were obtained earlier [14, p.65, Eq(13)],
LAz LAS ()52} 59 =T (@ +1) Sarr {F (1)}, (2.15)
L {2 (1) 0} syb = T (o 1) San 167 (1)} (2.16)

Remark 2.9. By setting a = 0 in (2.15) and (2.16) of Remark 2.8, we obtain the following
formula which was obtained earlier [15, p.7],

LAL{S ()sa}syh =8{f(t);y}. (2.17)
Corollary 2.10. The following identities,

[Tottabeayar= [TU0 ([T s (<D a)a e

0

/Oooil{{x}L {a} do = /OOO tf (t) (/OOO chﬂ A2 <—;> dy) dt (2.19)

hold true, provided that the integrals involved converge absolutely, where 2W1(z) is defined
by (2.7).
Proof. By setting K (z,y) = e~ *¥, which is the kernel of the Laplace transform, in (2.3)

and (2.4) of Theorem 2.3, and using the formula (2.8), we arrive at (2.18) and (2.19),
respectively. O

and

Remark 2.11. By setting v = 0, = p,7 = 1 in Corollary 2.10, using the relations (1.9)
and (2.14), we have the following Parseval-Goldstein type relations, which were obtained
earlier [14, p.65, Eq(15)],

[Tt ©i0) £l w)iabdr =T (@ +1) [~ g @) Sara {1°F (0)5ubdy (220
and
[Tt r ©:0) el @)iabde =T (a+1) [ F OSar (g )stydt, (221

where Re (a) > —1 .
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Remark 2.12. By setting a = 0 in Remark 2.11, we obtain the following formulas which
were obtained earlier [13, p.243, Eq(13)],

/Oooﬁ{f(t);x}ﬁ{g(y);w}dwz/ooog(y)S{f(t);y}dy (2.22)
and
| et @iayetgiarde = [T r08{g @ity ar (2.23)

Corollary 2.13. The following identities hold true,

T S 2
st =vres () [ 8w ()

2 2
a+1 .: T o f(t) * y2
+y“" sin <2) e 305 ) dt (2.24)
and
1 QY 0 t?
s STyiY) = - “ Uy | =3
FAKL O30} 0h = —reos (5] [0 ) ( y2>dt
1 | (7T« a1 N t2
+ Jot? sin (2> /0 T (t) 3¥5 <_g/2> dt, (2.25)
provided that the integrals involved converge absolutely, where
1 (v,2p), (@ +1,2),(1,1)
3V (2) = = 3V z|, 2.26
A C) [ (140.20).(1.2) (2:26)
1 (v+p,2p), (¢ +2,2),(1,1)

35 (2) =

T 8 z] . (2.27)

Proof. By setting K (x,t) = sin (xt), which is the kernel of the Fourier Sine transform, in
Lemma 2.1 and following the known formula (see [1]),

] s T s2 setl e . 52
f]'f{sm (at) ,S} = W COS <2) 3\1’2 <—a2> + W S1n (2> 3\112 (—a2 s (228)

for Rea > 0, we arrive at (2.24). By setting K (y,x) = sin (yz), which is the kernel of the
Fourier Sine transform, in Lemma 2.2 and using the formula (2.28) for Rey > 0, we obtain
(2.25). O

Remark 2.14. If we set v =0, = p,7 = 1,a = 0 in (2.24) and (2.25), then we obtain
the following known formulas,

LATAS @) ;2)59 =P{f ()9}

(L4+v+p20),(2,2)

and

T2 {5 Oobsp =0 { L0}
These relations were obtained earlier in [4, p.4, Eq(23)-Eq(24)] for generalized transforms.
Corollary 2.15. The following identities hold true,

/Ooof}c{a:} Fs{z} dx = cos (?) /OOO Zi_‘qﬁ (/000 tf (t) 3% <—;22> dt) dy
e (?) /000 iﬁ; </OOO () 35 (—;) dt) dy (2.29)
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and

/OOOJ-C{:U}EFs{x}dx = cos (?) /Oooto‘f(t) (/OOO ga(_zﬁ 3Wy < t2> )
+ sin (W;) /OOO ttf (1) </OOO 505_%; 305 ( ;) dy) dt, (2.30)

provided that the integrals involved converge absolutely, where 3Ws(z) and 3V3(z) are
defined in (2.26) and (2.27), respectively.

Proof. By setting K(z,y) = sin (zy), which is the kernel of the Fourier Sine transform,
in (2.3) and (2.4) of Theorem 2.3, and using the known formula (2.28), we arrive at (2.29)
and (2.30), respectively. O

Remark 2.16. If we set v =0, = p,v = 1,a = 0 in (2.29) and (2.30), then we obtain
the following known formulas [4, p.7, Eq(43)-Eq(44)] for generalized transforms,

/OOOL{f(t);x}’J"s{g(y);x}d:c:/Oooyg(y)(p{f(t);y}dy

t
and

| e @i s swin o= [T 0o )i de
0 0

Lemma 2.17. The following identities hold true,

T 2
HAFeds )sekivh = Y cos (QQ) 0 ta+2 303 < i)
¥
2

-y sm( 5 ) A {ag_z 3\IJQ< . )dt (2.31)

TQ & 2
S’C{J{{f(t);x};y}:yalﬂcos (2)/0 (9L (1) 303 <—;> dt

oo 2
—yalﬂsin (?)/0 tf () 3%( ;2> dt, (2.32)

provided that the integrals involved converge absolutely, where 3Vs(2) and 335 (2) are
defined in (2.26) and (2.27), respectively.

and

Proof. By setting K (x,t) = cos (xt), which is the kernel of the Fourier Cosine transform,
in Lemma 2.1 and using the following known formula (see [1]),

sotl T . 52 ¢ [T« 52
H {cos (at);s} = cos( 5 > 35 <_c12> — oy sin <2> 3y 3 (2.33)

for Rea > 0, we obtain (2.31). By setting K(y,x) = cos (yz), which is the kernel of the
Fourier Cosine transform, in Lemma 2.2 and using the formula (2.33) for Rey > 0, we find
(2.25). O

Remark 2.18. If we set v =0, = p,v = 1,a =0 in (2.24) and (2.25), then we obtain
the following known formulas [4, p.4, Eq(25),Eq(26)] for generalized transforms,

L{FAS @) 2} 59} Zyi]’{fit);y}

and

FAL{S @)}y =P{f (t)0}.
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Corollary 2.19. The following identities hold true,

[T ottabs ey e = cos () [T 20 (/Omtaﬂf(t) - (_;) dt) N

_sin (”;) /0 - ga(ﬂ ( /0 T (1) 40 (-Z) dt) dy  (2.34)
and

/OOO H{z}F.{zr}dx = cos (?) /OOO t°‘+1f (t) (/OOO 55@ 303 <—;22> dy)
_sin (”20‘) /O T ) < /O - ga(ﬂ STy (-Z) dy) dt,  (2.35)

provided that the integrals involved converge absolutely, where 3Ws(z) and 3V3(z) are
defined in (2.26) and (2.27), respectively.

Proof. By setting K(z,y) = cos (zy), which is the kernel of the Fourier Cosine transform,
in (2.3) and (2.4) of Theorem 2.3, and using the formula (2.33), we arrive at (2.34) and
(2.35), respectively. O

Remark 2.20. If we set v =0, = p,v = 1,a = 0 in (2.29) and (2.30), then we obtain
the following known formulas [4, p.7, Eq(45),Eq(46)] for generalized transforms,

[T et @iy Tl wyiatde= [T o) P00} dy
0 0

and

/OOOL{f(t);x}?c{g(y);x}dx:/Oootf(t)?{ggj/);t}dt

Lemma 2.21. The following identities hold true,

HASF 1)) ) = s [ 1 (0) 2t ()
Ty~ > .
ey A AORV O (236)
and
SO0 0sahiv) = i [ 70 2 )
Ty Sl
e /0 1F (£) 1V (ty) dt, (2.37)
provided that the integrals involved converge absolutely, where
__ 1 (7, p)
1V (2) = ) 1V (14 v, ) 21 , (2.38)
1 (v —pa,p), (1,1)

2V (2) =

2Ws z|. 2.39
ey [(1+vua,u), (1-o1) ] (239
1
Proof. By setting K(z,t) = Pt which is the kernel of the Stieltjes transform, in
x
Lemma 2.1 and using the formula for Rea > 0 (see [1]),

}({ 1 }: 7 (as)” 1\111(@5)4_8. T

atrt’ ~ sin (7a) in (ra)

2V (as), (2.40)
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1
we obtain (2.36). By setting K (y,x) = pearpe which is the kernel of the Stieltjes transform,
rTy
in Lemma 2.2 and using the formula (2.40) for Rey > 0, we find (2.37). O

Remark 2.22. The following relation is a direct result of Lemma 2.21,
HAS{S ()2} y} = S{HA{S (1) 250} (2.41)
Remark 2.23. If we set v =0,y =1 and p = p in (2.36) and use (1.9), then we obtain
a Ty
LA{x8{f (t);2};y} =

sin (7_:1) /ooof(t) 1 l(l(}olé,)l) ty] dt

o
— | t*f(t) et
sin (ra) /0 f)e
Now, we use the relation (1.3) and the formula [10, p.465, Eq(45:6:2)],

1A (11— asty) = —aet%y*y (—a, ty) (2.42)

where v (.) is incomplete gamma function [10, p.463, Eq(45:3:1)], then we have
LAzS{f(t);z}:y} = /OO t) ety (—a, ty) dt
{228 {f (t);2};y} o) Jo f @) ety (—a,ty)
/ t>f (t) et
0

Now, if we use the relationship between gamma function and incomplete gamma function
[10, p.461,Eq(45:0:1)],

s

sin (ra)
™

sin (7o)

F'v)=T"(v,z)+~v(vz), (2.43)

where I" (v, x) is complementary gamma function [10, p.463, Eq(45:3:2)], and the known
formula [7, p.3,Eq(6)],
s

=T(a)T(1-a), (2.44)

sin (ra)

we find
LAz*S{f(t);x2};y} =T 1+ «) /Ooo t*eT (—a, ty) f (1) dt. (2.45)

Remark 2.24. If we set v =0, v = 1 and ¢ = p in (2.37) and use (1.9), (2.42), (2.43)
and (2.44), then we obtain

S{x* LAt f(t);z};y} =y*T (1 + «) /OOO t*eVT (—a, ty) f (t) dt. (2.46)

Remark 2.25. If we set a = 0 in (2.45) and (2.46), then we get the known relation
2, p.1378,Eq(2.1-2.2)],

LA8{f(t)sz}sy =8{LA{f () sx}sy) =& {f();u}, (2.47)

where & is the exponential integral transform, which has the kernel K (y,t) = e E; (ty)
and Fj (ty) =T (0,ty) [2, p.1377,Eq(1.1)].
Corollary 2.26. The following identities hold true,

s

[Totarstaras = [To) ([ 10 22 0dt) ay

sin (ra)

7r /OOO ¥9(y) </0°° tf () 1% (y) dt) dy (2.48)

 sin (7a)
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and

[Toctmseran= =7 ("0 ([Tot) ) a

sin (ma)

i () /ooo er) ( /OOO y g (y) 1% (ty) dy) dt, (2.49)

~ sin (1a)
provided that the integrals involved converge absolutely, where Vi (z) and oVs (2) are

defined in (2.38) and (2.39), respectively.

1
Proof. By setting K (x,y) = et which is the kernel of the Stieltjes transform, in (2.3)
y+x

and (2.4) of Theorem 2.3, and using the formula (2.40), we arrive at (2.48) and (2.49),
respectively. O

Remark 2.27. If we set v =0, vy =1 and g = p in (2.48), (2.49) and use (1.9), (2.42),
(2.43) and (2.44), then we obtain the following identities, respectively,

/Ooo 290 {taf (t) ;1’} S {g (y) ;l’} dx

—T(1+a) /0°o g (1) (/OOO (VT (—a, ty) £ (1) dt) dy, (2.50)
| et s @0} 89 )0} do
=T (1+a) /OOO tf (t) </Ooo y“eT (—a, ty) g (y) dy) dt. (2.51)

Remark 2.28. If we set @ = 0 in (2.50) and (2.51), we obtain the known relations
2, p.1381,Eq(3.1-3.2)],

/OOOL {f@);2}8{g(y);a}de = /Ooog(y) E{f();y}dy, (2.52)
[ et ®ia)sig@iatde= [T r@e gt (2.53)

where & is the exponential integral transform, which has the kernel K(y,t) = e E; (ty)
and F; (ty) =T (0,ty) [2, p.1377,Eq(1.1)].

Example 2.29. We show that

o0, l—p 2
[ v (Y= o (2.5
0o Yy+a a sin® ()

where 1 < Rev <2, Rex > Rea.

If we set f(t) = e % Rex > Rea and g(y) = y'™#, 1 < Rev < 2 in (2.52), then we

have
/OOOL {e_at; x} S {yl_“;x} dx = /000 y' ey {e_at§ y} dy.

By using the formulas [6, p.216 Eq(5)], [5, p.178,Eq(24)] and

& {e "y} = ; Jlr ~log (i) ,

we arrive at (2.54)
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Lemma 2.30. The following identities hold true,

Ty®

HA{P{f@);2)5u) = 2008(7”1) /000 t*f (1) 292 (*y2t2) dt

T a+1 00 .
+ yim/ L (1) 0 (—y2t2) d
. 0
2sin (>
- St / tf () 205" (—y?t?) dt (2.55)
and
Wya+1 o a+1 * 2,42
PLHAS ()52} 59} = — < / t T (T) 295 (—3/ t )dt
2 cos <> 0
2
Ty 0
e e IO A R
. 0
2sin [ —
(%)
T oo
t) U5 (—yt?) dt 2.56
Fnteay £ 0w () ar (2:56)
provided that the integrals involved converge absolutely, where
1 (7,2p), (1, 1)
2Wa (2) = 2 z|, 2.57
=00 2 @ vaw. 2) (257
. 1 (v +p.2p),
U =—— U 2.58
0= 157 29 |0 L a et (2:5%)
- 1 (v —pa+p,2p), (1,
v = — 2.59
3B =5y 20 l(1+v—ua+u,2u), > aal] (2.59)
v = Uy . 2.60
= 1y 2% |14y o (e (260)
t
Proof. By setting K(z,t) = PEEpCR which is the kernel of the Widder Potential trans-

form, in Lemma 2.1 and using the following formula for Rea > 0 (see [1]),
1 a—1 .«
H{QW} = 5 _ PR D) (—a2s2)
aZ + 12 Ta
2cos <2>

waa3a+1

a2 (—0?s)
2sin <2)

s
- 5 (—as? 2.61
sin(ﬂa)Qz(GS) (2:61)
we obtain (2.55). By setting K (y,x) = %, which is the kernel of the Widder Potential
T Y

transform, in Lemma 2.2 and using the formula (2.61) and relation

¢ » 1
ch{/;&’)y{az_}_tg;s}zs Oz-‘rlf}cufy{ 2+t27 }7

we find (2.56). O
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Corollary 2.31. The following identities hold true,

Amwumwmmpdamwa)/ o ([T @) o (<) ) ay
m( )/ i o) ([0 03 (<) de) ay
e b ([Terw v (<) a)a e

nd/o 902} P {w}do 200527;“) [T ([Trow 2w (—042) dy) i

~ 5in (ra) / tf(t ( /0 g y) 205 (—%) dy) dt, (2.63)

provided that the integrals involved converge absolutely, where o2Wa (2), 2V5 (2) and 2V5* (2)
are defined in (2.57), (2.58) and (2.59), respectively.

Proof. By setting K(z,y) = — -yk 5, which is the kernel of the Widder Potential trans-
T Yy
form, in (2.3) and (2.4) of Theorem 2.3, and using the formula (2.61), we arrive at (2.62)
and (2.63), respectively. O
Theorem 2.32. We have the following relations,
HIp—~h ¢ M /OO atf  p, (— d 2.64
PP @it = Sty b s f@de(264)
and
H {W_B {f(z);t}; s} = sa/ 2P Wy (—sz) f () da, (2.65)
0
provided that the integrals involved converge absolutely, where
1 (v:p), (@ +1,1)
v = — . 2.66
S ol (LR I WY (200

Proof. By using the definition of generalized Bessel-Maitland integral transform (1.8),
the Riemann Fractional integral (1.5) and changing the order of integration, we get

H{D {f (2):t}is) = /Omf(:c) (F(lﬁ) /;O (s1)° 8L (st) (¢ — x)ﬁ—ldt) da.

By using the series representation of generalized Bessel-Maitland function (1.4) and chang-
ing the variable of integration from ¢ to u where ¢ — x = xu, we obtain,

() (—1)" s0Fngotn8 oo e
{0 (f@)ithish = [ ( }j e / u+urw¢%mgdﬂ

By using the definition of Beta function [7, p.9,Eq(1)] and the known formula [7],

™

=I'(z)T(1-2), (2.67)

sinmz
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we arrive at (2.64). Now, the assertion (2.65) follows upon inserting the definitions of gen-
eralized Bessel-Maitland transform (1.8) and Weyl fractional integral (1.6) and changing
the order of integration, we have

W {f (a / f ( / (st)™ 827 (st) (x—t)ﬁldt> dz.

By using the series representation of generahzed Bessel-Maitland function (1.4) and chang-
ing the variable of integration from ¢ to u where ¢t = zu, we obtain

—1)” Sa+n$a+n+6
o {W G / f ( Z (7)17; él +)y + pn) n! /0 a1 =) du) da-
=0 !

By using the definition of Beta function [7, p.9, Eq(2)] and the Fox-Wright function (1.2),
we obtain (2.65). O

In the third section of this article, some generalized integrals are calculated by using
theorems and corollaries given in the second section. The examples shown in this section
are obtained for the first time.

3. Illustrative examples

Example 3.1. We show for —1 < Ref <0,

/OO tﬁfafl A (’Yap) ’ (O[ +1, 1) Yy dt
0 (I1+v,p) t
DB+ D (AT (3 —pla—p) 1 .
F(l+v—pla=p)) y* P
By setting f (t) = t” in (2.12) of Corollary 2.10 and using (2.9) and the known formula
- Irg+1) .
[5, p.137, Eq(1)] £ {tﬂ;x} = — 7 we obtain (3.1),
Remark 3.2. If we set 5 =0 in (3.1), then we find
© 1,1 r T'(y— 1
/ t—a—l o0 (’%p) ) (a +1 ) _ g t — (Oé) (’7 pa) - (32)
0 (L+v,p) ¢ P(1+v—pa) y*

Remark 3.3. If we set g(u) = 1 in (2.19) of Corollary 2.10 and use the formula (3.2),
then we obtain

1 [()T (v = pa) /°°
—HA{f(t);z}dx = t) dt. .
LIS (@)} do = o PP [ (33
Remark 3.4. If we set f(t) = e %" in Remark 3.3 and use the formula (2.8), then we
obtain
o LY 2], T@T(-pa)
a—1 ; (77p)7(a+ ) — 2 de = a 3.4
/0 T () v T T v pa) (34)

Example 3.5. We show for |argal| < m,

o e (v,p), (a+1,1) y| . wy (v —pa,p), (1,1)
/ ot ‘I’l Ao |t " snima) 2 (40— pag), <1—a,1>“4
ma® (v, p)
e Ry e F &

By setting f (t) = e~ % in (2.12) of Corollary 2.10 and using the formula (2.40), where
for Re (x — a) > 0, we obtain (3.5).

<and £ {e 2} =
|arga| < 7 and £ {e”%; 2} P
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Remark 3.6. If weset vy =1,p = p,v =0in (3.5) and use (2.42), then we obtain

Susr {0} = 0T ().

Example 3.7. We show that
Ta\ [ 1 (7,2p), (a+1,2)
— ———— 3WU
cos( 5 >_/0 fatB+1 372 l (14 v,24), (
(v +p,2p), (a+2 2),(1,1)

1n _— —_—
VIR ) Jo et TR (o4, 2p),(2,2)

oo () LU=E)T AT O - pla ) ]
— o\ CAtv—plath) g

If we set f(t) = t# (0 < Ref < 1) in (2.24) of Corollary 2.13 and use formulas
Fs { ﬁ,y} = #7107 (1 — B) cos (?) [5, p.68, Eq(1)] and (2.9), then we obtain (3.6).

_v Ny
t2
2

Yy
tz] ’

(3.6)

Remark 3.8. If we set @ = 0 in (3.6), then we find for 0 < Ref < 1,
TR @ - T 5 B s eua - . .
/0 T 2 o dt T csc 2 (3.7)

(14 v,2pu) L+v—pup)2y°
Remark 3.9. If we set « =1 in (3.6), then we obtain for 0 < Ref < 1,

/°° L g, |0Fp), 32, ALY _v|
o s ? (I+v+m2p), (2,2) | £

_COS<7Tﬁ>F(l—B)F(lJrﬂ)F(v—p(lJrﬁ)) 1 (3.8)
a 2 Fl+v—p(l+5)) yo2 '
Example 3.10. We show that
T\ [ s (7,2p), (1 +a,2), (L, 1) ¢
ycos<2)/0 e 13\1}2[ (1+,2u), (1,2) _y?]dt
(T [*, (y+p2p),2+a,2),(1,1)] ¢

+Sm<2>/o s (L+v+p,20),(2,2) _yQ]dt

_ (NI =B (@+ BT (v —p(a+h) 4

s (%) FA+v—p(a+p) o (39

If we set f () =771, (0 < Ref < 1) in (2.25) of Corollary 2.13 and use formulas (2.9)
and [5, p.68, Eq(1)], then we obtain (3.9).
Example 3.11. We show that
o a+B+6—1 i (77])) ) (CM + 17 1) _ d
b Havew . @rsrnyl T

_sin(m(a BTG (a+6+ BT (y—platstp) 1

sin (mav) FO+B8T(1+v—pla+d+p) sithta’ (3.10)
If we set f (x) = 2°~1 in (2.64) of Theorem 2.32 and use the formulas,
5—}—6—11-\ (5)
/B ——
b {a: ,y} INCENE) (3.11)

and (2.9), then we find (3.10).
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4. Conclusion

We conclude that, many other relations could be found by using different corollaries of
this article and many other infinite integrals could be evaluated in this manner by applying
the lemmas, theorems and corollaries considered in this article.

1]
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