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CHARACTERIZATION OF GENERAL HELIX IN THE 3 -
DIMENSIONAL LORENTZ-HEISENBERG SPACE

BENDEHIBA SENOUSSI AND MOHAMMED BEKKAR

(Communicated by Pascual LUCAS)

Abstract. In this paper, making use of method in [2], [6], [9], we obtained
characterizations of a curve with respect to the Frenet frame of the three-
dimensional Lorentz-Heisenberg space H3. We prove that all of the non-geodesic
non-null timelike biharmonic curves in H3 are helices.

1. Introduction

In the theory of curves in Lorentzian space, one of the important and interesting
problems is the characterizations of a regular curve. In 1845, de Saint Venant first
proved that a space curve is a general helix if and only if the ratio of curvature
to torsion be constant (see [14] for details). In [9] T. Ikawa obtained the following
equation

D3
XX − (k2 − τ2)DXX = 0,

for the circular helices which corresponds to the case that the curvatures k and τ
of a timelike curve γ on the Lorentzian manifold M are constant.

In [6] N. Ekmekçi and H. H. Hacisalihoğlu generalized T. Ikawa’s result to the
case of general helices and gave the following characterization

D3
XX −

(
3k′

k

)
D2

XX −
(

k′′

k
− 3k′

k2
+ k2 − τ2

)
DXX = 0

for timelike curve with its tangent vector fields on any point.
In [7] N. Ekmekçi and K. İlarslan obtained characterizations of timelike null

helices in terms of principal normal or binormal vector fields. H. Balgetir, M.
Bektas and M. Ergüt in [2] obtained a geometric characterization of null Frenet
curve with constant ratio of curvature and torsion. In [12] A. O. Ogrenmis, M.
Ergut and M. Bektas obtained characterizations of helix for a curve with respect
to the Frenet frame in 3−dimensional Galilean space G3.

Recently, in [11] Y. Nakanishi prove the following lemma.
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Lemma 1.1. A unit speed curve c in Mc is a helix if and only if there exist a
constant λ such that

D3
XX = λDXX.

This paper generalizes the lemma stated above to the case of a general helix.

2. Preliminaries

2.1. Lorentz-Heisenberg group. Let H3 be the Lorentz-Heisenberg group en-
dowed with a left-invariant lorentzian metric

(2.1) gλ = dx2 + dy2 − (
dz + λ(ydx− xdy)

)2
, λ ∈ R.

The following set of left-invariant vector fields forms an orthonormal basis for
the corresponding Lie algebra:

(2.2)




e1

e2

e3


 =




1 0 −λy
0 1 λx
0 0 1







∂x

∂y

∂z


 ,

where ∂x = ∂
∂x , ∂y = ∂

∂y , ∂z = ∂
∂z .

The characterising properties of this algebra are the following commutation re-
lations:

[e1, e2] = 2λe3, [e1, e3] = [e2, e3] = 0,

with
gλ(e1, e1) = gλ(e2, e2) = 1, gλ(e3, e3) = −1.

The Levi-Civita connection ∇ of the left-invariant metric gλ is explicitly given
as follows 


∇e1e1

∇e1e2

∇e1e3


 =




0 0 0
0 0 λ
0 λ 0







e1

e2

e3






∇e2e1

∇e2e2

∇e2e3


 =




0 0 −λ
0 0 0
−λ 0 0







e1

e2

e3


(2.3)



∇e3e1

∇e3e2

∇e3e3


 =




0 λ 0
−λ 0 0
0 0 0







e1

e2

e3


 .

The dual coframe field ω = (ω1, ω2, ω3) associated to B = (e1, e2, e3) is a triplet
of 1-forms which ωi(ej) = δij . This coframe field is given by

(ω1, ω2, ω3) =
(
dx, dy, dz + λ(ydx− xdy)

)
.

Note that the 1−form η3 is a contact form on H3.
The Riemannian curvature tensor is given by

R(X, Y, Z, T ) = gλ

(
R(X, Y )Z, T )

)
.

If we put
Rabc = R

(
ea, eb

)
ec, Rabcd = R

(
ea, eb, ec, ed

)
,

where the indices a, b, c and d take the values 1, 2, 3.
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Then the components of the curvature tensor field are

R121 = 3λ2 e2, R131 = R232 = −λ2 e3,(2.4)
R1212 = 3λ2, R1313 = R2323 = λ2.

For tangent vectors

X = x1e1 + x2e2 + x3e3, Y = y1e1 + y2e2 + y3e3

in H3, the Lorentzian exterior product X ∧L Y is computed as

(2.5) X ∧L Y = (x2y3 − x3y2)e1 + (x3y1 − x1y3)e2 + (x2y1 − x1y2)e3.

The product

(2.6) gλ (X ∧L Y, Z) = [X,Y, Z]

is called the mixed product.

2.2. Biharmonic maps. First we should recall some notions and results related
to the harmonic and the biharmonic maps between Riemannian manifolds.

Harmonic maps ψ : (M, g) → (N, g̃) between Riemannian manifolds are the
critical points of the energy functional

E1 : C∞(M, N) → R, E1(ψ) =
1
2

∫

M

|dψ|2 vg,

and is characterized by the vanishing of the first tension field

τ1(ψ) = trace∇dψ.

We remind that the bienergy of ψ is given by

E2 : C∞(M, N) → R, E2(ψ) =
1
2

∫

M

|τ(ψ)|2 vg,

and the bitension field τ2(ψ) hase the expression

τ2(ψ) = −∆ψτ(ψ)− tracegR
N (dψ, τ(ψ))dψ,

where ∆ψ = −trace(∇ψ)2 = −trace(∇ψ∇ψ −∇ψ
∇).

A smooth map ψ is biharmonic if it satisfies the following biharmonic equation

τ2(ψ) = 0.

Biharmonic maps are the critical points of the bienergy functional E2. We call
proper biharmonic the non-harmonic biharmonic maps. Biharmonic curves ψ of a
Riemannian manifold are the solutions of the fourth order differential equation

(2.7) ∇3
φ′φ

′ −R(φ′,∇φ′φ
′)φ′ = 0.
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3. Timelike biharmonic curves in H3

In this section we study the non-geodesic non-null timelike biharmonic curves in
H3. We show that every timelike biharmonic curve in the Lorentzian Heisenberg
group H3 is a helix.

Eells and Sampson in [5] introduced the notion of biharmonic maps as a natural
generalization of the well-known harmonic maps. Chen and Ishikawa in [4] classi-
fied biharmonic curves in semi-Euclidean 3-space. The biharmonic curves in the
Heisenberg group H3 are investigated in [3].

Let φ : I → H3 be a non geodesic timelike biharmonic curve in H3 parametrized
by arclength and let {T, N, B} be the orthonormal moving Frenet frame along the
curve φ in H3 such that T = φ

′
is the unit vector field tangent to φ, N is the unit

vector field in the direction ∇T T normal to φ ( principal normal) and B = T ∧L N
(binormal vector). Then we have the following Frenet equations

(3.1)




∇T T
∇T N
∇T B


 =




0 k 0
k 0 τ
0 −τ 0







T
N
B


 ,

where
k2 = gλ(τ1(φ), τ1(φ)) = gλ(∇T T,∇T T ),

is the curvature of φ and τ is its torsion.
From (3.1) we have

(3.2) ∇3
T T = (3kk′)T + (k′′ + k3 − kτ2)N + (2k′τ + kτ ′)B,

where k′ = dk
ds , k′′ = d2k

ds2 , τ ′ = dτ
ds .

Using (2.4) one obtains

(3.3) R(T, N, T, N) = λ2(1 + 4B2
3), R(T,N, T, B) = 4λ2B3N3,

where 



T = T1e1 + T2e2 + T3e3

N = N1e1 + N2e2 + N3e3

B = T ∧L N = B1e1 + B2e2 + B3e3.

Theorem 3.1. Let φ : I → H3 be a timelike curve parametrized by arclength. φ is
a non geodesic biharmonic curve if and only if

(3.4)





k = constant 6= 0
k2 − τ2 = λ2(1 + 4B2

3)
τ ′ = 4λ2B3N3.

Proof. The biharmonic equation of φ is:

τ2(φ) = ∇3
T T −R(T,∇T T )T

= (3kk′)T + (k′′ + k3 − kτ2)N + (2k′τ + kτ ′)B − kR(T,N)T
= 0.(3.5)

From (3.5) it follows that φ is biharmonic curve if and only if




kk′ = 0
k′′ + k3 − kτ2 = kR(T, N, T,N)
2k′τ + kτ ′ = kR(T,N, T,B).
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Since k 6= 0 (φ is a non geodesic)

(3.6)





k = constant 6= 0
k3 − kτ2 = kR(T, N, T,N) = kλ2(1 + 4B2

3)
kτ ′ = kR(T, N, T, B) = k4λ2B3N3.

These, together with (3.6), complete the proof of the theorem. ¤

Corollary 3.1. If τ = 0 and k = constant 6= 0 for a timelike curve φ. φ is a non
geodesic biharmonic curve if and only if{

k2 = λ2(1 + 4B2
3)

B3N3 = 0.

Theorem 3.2. Let φ : I → H3 be a timelike curve with k =constant. If

B3N3 6= 0,

then φ is not biharmonic.

Proof. From (3.1) and (2.3) we have


∇T T = (T ′1 − 2λT2T3)e1 + (T ′2 + 2λT1T3)e2 + (T ′3)e3

∇T N = (N ′
1 − λ(T2N3 + T3N2))e1 + (N ′

2 + λ(T1N3 + T3N1))e2 + (N ′
3 + λB3)e3

∇T B = (B′
1 − λ(T2B3 + T3B2))e1 + (B′

2 + λ(T1B3 + T3B1))e2 + (B′
3 + λN3)e3.

It follows that the third component of these vectors are given by

(3.7)





gλ(∇T T, e3) = −T ′3
gλ(∇T N, e3) = −(N ′

3 + λB3)
gλ(∇T B, e3) = −(B′

3 + λN3).

From (3.1) we have

(3.8)





gλ(∇T T, e3) = −kN3

gλ(∇T N, e3) = −kT3 − τB3

gλ(∇T B, e3) = τN3.

By comparing (3.7) and (3.8) we obtain

(3.9)





T ′3 = kN3

N ′
3 = kT3 + τB3 − λB3

B′
3 = −τN3 − λN3.

Assume now that φ is biharmonic, then using (3.4) and

τ ′ = 4λ2B3N3 6= 0,

we obtain

(3.10) τ = −B′
3

N3
.

From (3.9), we obtain λN3 = 0, which is a contradiction. ¤

Corollary 3.2. φ : I → H3 is timelike non geodesic biharmonic curve if and only
if 




k = constant 6= 0
τ = constant
k2 − τ2 = λ2(1 + 4B2

3)
B3N3 = 0.
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4. Timelike general helix in H3

Definition 4.1. Let φ be a curve in 3- dimensional Lorentz-Heisenberg H3 and
{T,N,B} be the Frenet frame on H3 along φ.

1) If both k and τ are positive constant along φ, then is called circular helix with
respect to Frenet frame.

2) A curve φ such that
k

τ
= c, c ∈ R,

is called a general helix with respect to Frenet frame.

If k =constant 6= 0 and τ = 0, then the curve φ is a circle.

Theorem 4.1. Let φ be a curve in 3- dimensional Lorentz-Heisenberg H3. φ is a
general helix with respect to the Frenet frame {T, N, B} if and only if

1)

(4.1) ∇3
T T − σ1(s)∇T T = 3k′∇T N,

where σ1(s) = 1
k

(
k′′ + k3 − kτ2

)
.

2)

(4.2) ∇3
T B − σ2(s)∇T B + 3τ ′∇T N = 0,

where σ2(s) = τ2 − k2 − τ ′′
τ .

Proof. Suppose that φ is general helix with respect to the Frenet frame {T, N, B}.
Then from (3.1), we have

(4.3) ∇3
T T = (k′′ + k3 − kτ2)N + (3kk′)T + (2k′τ + kτ ′)B

(4.4) N =
(

1
k

)
∇T T, B =

(
1
τ

)
∇T N −

(
k

τ

)
T.

Since φ is general helix, we have

(4.5) k′τ = kτ ′.

If we substitute the equation (4.4) and (4.5) in (4.3), we obtain (4.1).
Conversly let us assume that the equation (4.1) holds. Differentiating covariantly

(4.4) we obtain

∇T N = −
(

k′

k2

)
∇T T +

(
1
k

)
∇2

T T

and so

∇2
T N =

(
− k′

k2

)′
∇T T − 2

(
k′

k2

)
∇2

T T +
(

1
k

)
∇3

T T

= k′T + (k2 − τ2)N +
(

k′τ
k

)
B.(4.6)

Also we obtain

(4.7) ∇2
T N = k′T + (k2 − τ2)N + τ ′B.

Since (4.6) and (4.7) are equal, then

(4.8) τ ′ =
k′τ
k

.
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From (4.8), we obtain
k

τ
= constant.

This means that φ is a general helix.
2) Suppose that φ is general helix with respect to the Frenet frame. Then, from

(3.1), we have

(4.9) ∇3
T B = −(k′τ + 2τ ′k)T + (τ3 − k2τ − τ ′′)N − 3ττ ′B

(4.10) N = −
(

1
τ

)
∇T B, B =

1
τ
∇T N − k

τ
T.

Now we replace (4.10) in the above expression of ∇3
T B, and we obtain (4.2).

Conversely (4.2) holds.
Differentiating covariantly of

N = −
(

1
τ

)
∇T B,

we obtain

(4.11) ∇2
T N = −

(
1
τ

)′′
∇T B − 2

(
1
τ

)′
∇2

T B −
(

1
τ

)
∇3

T B.

If we use (3.1) and (4.2) we get,

(4.12) ∇2
T N =

(
τ ′k
τ

)
T + (k2 − τ2)N + τ ′B.

Also we obtain

(4.13) ∇2
T N = k′T + (k2 − τ2)N + τ ′B.

By comparing (4.12) and (4.13), we obtainwe obtain
(

k

τ

)′
= 0.

From this, we have
k

τ
= constant.

Then φ is a general helix. ¤
Corollary 4.1. Let φ be a curve in H3. φ is a circular helix with respect to the
Frenet frame {T, N, B} if and only if

1)
∇3

T B − (τ2 − k2)τN = 0
2)

∇3
T T + k(τ2 − k2)N = 0.

Theorem 4.2. Let φ be a curve in H3. φ is a general helix with respect to the
Frenet frame {T, N,B}, then

(4.14) ∇3
T T + σ1(s)∇T B = 3k′∇T N,

where σ1(s) = 1
τ

(
k′′ + k3 − kτ2

)
.

Proof. Suppose that φ is general helix with respect to the Frenet frame {T, N, B}.
If we substitute (4.10) in (3.2), we obtain (4.14). ¤
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Corollary 4.2. Let φ be a general helix in H3. φ is a non geodesic timelike bihar-
monic curve if

R(T,∇T N)T = 3k′∇T N − σ1(s)∇T B.

Theorem 4.3. φ is a general helix in H3 if and only if
1)

[∇T T,∇2
T T,∇3

T T ] = 0,

2)
[∇T B,∇2

T B,∇3
T B] = 0,

3)
[∇T N,∇2

T N,∇3
T N ] = 0.

Proof. 1) From (2.6) and


∇T T
∇2

T T
∇3

T T


 =




0 k 0
k2 k′ τk

3kk′ k′′ + k3 − kτ2 2τk′ + kτ ′







T
N
B


 ,

we have
[∇T T,∇2

T T,∇3
T T ] = g(∇T T ∧L ∇2

T T,∇3
T T ) = k5

(τ

k

)′
.

Since φ is general helix, we have

[∇T T,∇2
T T,∇3

T T ] = 0.

The proof is completed.
2) From (2.6) and



∇T B
∇2

T B
∇3

T B


 =




0 −τ 0
−kτ −τ ′ −τ2

−k′τ − 2kτ ′ −τ ′′ + τ3 − τk2 −3ττ ′







T
N
B


 ,

we have

[∇T B,∇2
T B,∇3

T B] = τ5
(τ

k

)′

= 0.

The proof is completed.
3) From (2.6) and



∇T N
∇2

T N
∇3

T N


 =




k 0 τ
k′ k2 − τ2 τ ′

k′′ + k3 − kτ2 3kk′ − 3ττ ′ τ ′′ − τ3 + τk2







T
N
B




we have

[∇T N,∇2
T N,∇3

T N ] = (τ2 − k2)(kτ ′′ − τk′′) + 3(kk′ − ττ ′)(k′τ − τ ′k).

Since φ is general helix, we have

kτ ′′ − τk′′ = 0
k′τ − τ ′k = 0.

The proof is completed. ¤
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5. Spacelike general helix in H3

Let φ : I → H3 be a non geodesic spacelike curve parametrized by arclength
and let {T,N, B} be the orthonormal moving Frenet frame along the curve φ in H3

such that T = φ
′
is the unit vector field tangent to φ. Then we have the following

Frenet equations

(5.1)




∇T T
∇T N
∇T B


 =




0 k 0
−k 0 τ
0 −τ 0







T
N
B


 .

Theorem 5.1. φ = φ(s) is a general helix in H3 if and only if
1)

[∇T T,∇2
T T,∇3

T T ] = 0,

2)
[∇T B,∇2

T B,∇3
T B] = 0,

3)
[∇T N,∇2

T N,∇3
T N ] = 0.

Proof. From (2.6) and

∇T T
∇2

T T
∇3

T T


 =




0 k 0
−k2 k′ τk
−3kk′ −k′′ + k3 + kτ2 2τk′ + kτ ′







T
N
B


 ,

we have

[∇T T,∇2
T T,∇3

T T ] = −k5
(τ

k

)′

= 0.

The proof is completed.
2) From (2.6) and



∇T B
∇2

T B
∇3

T B


 =




0 −τ 0
kτ −τ ′ −τ2

k′τ + 2kτ ′ −τ ′′ + τ3 + τk2 −3ττ ′







T
N
B




we have

[∇T B,∇2
T B,∇3

T B] = −τ5

(
k

τ

)′

= 0.

The proof is completed.
2) From (2.6) and

∇T N
∇2

T N
∇3

T N


 =




−k 0 τ
−k′ −k2 − τ2 τ ′

−k′′ + k3 + kτ2 −3ττ ′ − 3kk′ τ ′′ − τ3 − τk2







T
N
B




we have

[∇T N,∇2
T N,∇3

T N ] = τ5

((
k
τ

)′
τ

)′

+ k5

((
τ
k

)′
k

)′

= 0.
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The proof is completed. ¤
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[7] Ekmekçi, N., İlarslan, K. On characterization of general helices in Lorentzian space. Hadronic
J. 23 (2000), no. 6, 677-682.

[8] Ekmekci, N. On general helices and pseudo-Riemannian manifolds. Comm. Fac. Sci. Univ.
Ankara. Series A1 V. 47. (1998), 45-49.

[9] Ikawa, T. On curves and submanifolds in an indefinite Riemannian manifold. Tsukuba J.
Math., 9 (1985), 353-371.
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