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ABSTRACT. In this paper, making use of method in [2], [6], [9], we obtained
characterizations of a curve with respect to the Frenet frame of the three-
dimensional Lorentz-Heisenberg space Hz. We prove that all of the non-geodesic
non-null timelike biharmonic curves in H3 are helices.

1. INTRODUCTION

In the theory of curves in Lorentzian space, one of the important and interesting
problems is the characterizations of a regular curve. In 1845, de Saint Venant first
proved that a space curve is a general helix if and only if the ratio of curvature
to torsion be constant (see [14] for details). In [9] T. Ikawa obtained the following
equation

D%X — (k* - ™)Dx X =0,

for the circular helices which corresponds to the case that the curvatures k and 7
of a timelike curve v on the Lorentzian manifold M are constant.
In [6] N. Ekmek¢i and H. H. Hacisalihoglu generalized T. Tkawa’s result to the
case of general helices and gave the following characterization
3K k" 3K
3 2 2 2 _

for timelike curve with its tangent vector fields on any point.

In [7] N. Ekmekc¢i and K. flarslan obtained characterizations of timelike null
helices in terms of principal normal or binormal vector fields. H. Balgetir, M.
Bektas and M. Ergiit in [2] obtained a geometric characterization of null Frenet
curve with constant ratio of curvature and torsion. In [12] A. O. Ogrenmis, M.
Ergut and M. Bektas obtained characterizations of helix for a curve with respect
to the Frenet frame in 3—dimensional Galilean space Gs.

Recently, in [11] Y. Nakanishi prove the following lemma.
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Lemma 1.1. A unit speed curve ¢ in M. is a heliz if and only if there exist a
constant A such that

D% X = ADxX.

This paper generalizes the lemma stated above to the case of a general helix.

2. PRELIMINARIES

2.1. Lorentz-Heisenberg group. Let H3 be the Lorentz-Heisenberg group en-
dowed with a left-invariant lorentzian metric

(2.1) gx = dz? + dy® — (dz + Aydz — xdy))z, AeR.

The following set of left-invariant vector fields forms an orthonormal basis for
the corresponding Lie algebra:

e1 1 0 =Xy Oy
(2.2) e |=10 1 Xz Oy |,
e3 0 0 1 0,
where 9, = 8%’ y = 8%’ 9, = Baz'

The characterising properties of this algebra are the following commutation re-
lations:

[61, 62] = 2)\63, [61, 63] = [62, 63} = 0,
with
grler,e1) = galez,e2) =1, ga(es,e3) = —1.

The Levi-Civita connection V of the left-invariant metric gy is explicitly given
as follows

o 0 0 0 er
vel €2 = O 0 )\ ()
veleB 0 A 0 €3
veg €1 0 0 —A el

(2.3) VQQ €9 = 0 0 0 €9
Ve, €3 -2 0 0 e3
ves €1 0 A 0 €1
Ves €9 = - 0 0 €9
Vese3 0 0 0 es

The dual coframe field w = (w1, we,ws) associated to B = (e, e, €3) is a triplet
of 1-forms which w;(e;) = ;5. This coframe field is given by

(w1, ws,w3) = (dz, dy,dz + ANydx — xdy))

Note that the 1—form 73 is a contact form on Hs.
The Riemannian curvature tensor is given by

If we put
Rabc = R(ea7 eb)ecy Rabcd = R(ecu €b, €c, ed)7

where the indices a, b, ¢ and d take the values 1,2, 3.
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Then the components of the curvature tensor field are

(2.4) Risi = 3\ ey, Rizgi = Rogo= -\ ey,
Riziz = 3)\?,  Riziz = Rogos = A2

For tangent vectors
X =me; + a6z +x3e3, Y =y1e1 + yae2 + yses
in Hjs, the Lorentzian exterior product X Ay Y is computed as
(2.5) X ALY = (z2y3 — w3y2)er + (T3y1 — T1y3)e2 + (291 — T1y2)es.
The product
(2.6) (X ALY, Z)=[X,Y, Z]

is called the mixed product.

2.2. Biharmonic maps. First we should recall some notions and results related
to the harmonic and the biharmonic maps between Riemannian manifolds.

Harmonic maps % : (M,g) — (N,g) between Riemannian manifolds are the
critical points of the energy functional

E,:C®(M,N) =R, Ei(¢)= %/M\dwl%g,

and is characterized by the vanishing of the first tension field
71(¢) = traceVdi.

We remind that the bienergy of v is given by
1
Bys CXMN) =R Bav) = 5 [ 700,
M
and the bitension field m5(v) hase the expression

T2(¥) = =AY () — traceg RN (dip, 7(1))d),

where AY = —trace(V¥)? = —trace(V¥V¥ — V@).
A smooth map v is biharmonic if it satisfies the following biharmonic equation

TQ(’I/J) ES 0

Biharmonic maps are the critical points of the bienergy functional E5. We call
proper biharmonic the non-harmonic biharmonic maps. Biharmonic curves 1 of a
Riemannian manifold are the solutions of the fourth order differential equation

(2.7) V3¢ — R(¢', V') =0.
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3. TIMELIKE BIHARMONIC CURVES IN Hjy

In this section we study the non-geodesic non-null timelike biharmonic curves in
Hj;. We show that every timelike biharmonic curve in the Lorentzian Heisenberg
group Hj is a helix.

Eells and Sampson in [5] introduced the notion of biharmonic maps as a natural
generalization of the well-known harmonic maps. Chen and Ishikawa in [4] classi-
fied biharmonic curves in semi-Euclidean 3-space. The biharmonic curves in the
Heisenberg group Hjs are investigated in [3].

Let ¢ : I — Hj be a non geodesic timelike biharmonic curve in Hsg parametrized
by arclength and let {T', N, B} be the orthonormal moving Frenet frame along the
curve ¢ in Hs such that T' = qu/ is the unit vector field tangent to ¢, N is the unit
vector field in the direction V7T normal to ¢ ( principal normal) and B =T Ay N
(binormal vector). Then we have the following Frenet equations

VT 0 k O T
(3.1) VoeN | = k 0 N |,
VrB 0O —7 0 B

where
K = ga(11(0), 11(¢)) = gA(V2T, V1 T),
is the curvature of ¢ and 7 is its torsion.
From (3.1) we have

(3.2) VAT = (3kK)T + (K" + k* — km®)N + (2K'7 + k7')B,
where k' = & = %, = dr,
Using (2.4) one obtains
(3.3) R(T,N,T,N)=X*(1+4B3), R(T,N,T,B)=4)*B3Ns3,
where

T = T1€1 + TQGQ + Tgeg
N = Niey + Naes + Nses
B = T/\L N = 3161 + Bgeg +Bg€3.

Theorem 3.1. Let ¢ : I — Hj be a timelike curve parametrized by arclength. ¢ is
a non geodesic biharmonic curve if and only if

k = constant # 0
(3.4) k* — 72 = \%(1+ 4B3)
T/ = 4)\233N3.

Proof. The biharmonic equation of ¢ is:
m(¢) = V3T — R(T,V¢T)T
(3kk)T + (K" + k* — km*)N + (2k'T + k7')B — kR(T,N)T
(3.5) = 0.
From (3.5) it follows that ¢ is biharmonic curve if and only if
kk'=0

k' 4+ k3 — kr? = kR(T,N,T, N)
2k't + k' = kR(T,N, T, B).
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Since k # 0 (¢ is a non geodesic)
k = constant # 0

(3.6) k3 — kr? = kR(T, N, T, N) = kX2(1 + 4B2)
k' = kR(T,N, T, B) = k4\2B;N;.
These, together with (3.6), complete the proof of the theorem. O

Corollary 3.1. If 7 =0 and k = constant # 0 for a timelike curve ¢. ¢ is a non
geodesic biharmonic curve if and only if

k* = \%(1 +4B3)
B3N3 = 0.
Theorem 3.2. Let ¢ : I — Hj be a timelike curve with k =constant. If
B3N3 # 0,
then ¢ is not biharmonic.
Proof. From (3.1) and (2.3) we have
VTT = (Tll — 2)\T2T3)61 + (TQI + 2)\T1T3)€2 + (Té)eg
VrN = (N{ — )\(TQNS + T3N2))61 + (NQ/ + )\(T1N3 + T3N1))62 + (Né + /\B3)63
VTB = (Bi — )\(TQBg —|— T3B2))61 —|— (Bé —|— )\(TlBg —|— T3Bl))€2 —|— (Bé —|— )\Ng)eg.
It follows that the third component of these vectors are given by
IN(V1T,e3) = —Tj
(37) g)\(VTN, 63) = —(Né + /\Bg)
g)\(VTB, 63) = 7(Bé + )\Ng)
From (3.1) we have
g\(VrT,e3) = —kN3
(38) g,\(VTN, 63) = —k‘Tg — TB3
g,\(VTB, 63) = TN3.
By comparing (3.7) and (3.8) we obtain
T; = EkNs
(3.9) N} = kT5 + 7Bs — AB3
Bg = —TN3 — )\Ng.
Assume now that ¢ is biharmonic, then using (3.4) and

7/ = 4\* B3N3 # 0,

we obtain
B/
3.10 =-22
(3.10) =g
From (3.9), we obtain AN3 = 0, which is a contradiction. O

Corollary 3.2. ¢ : I — Hj is timelike non geodesic biharmonic curve if and only
if

k = constant # 0

T = constant

k? — 12 = \2(1+4B3?)

B3N3; = 0.
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4. TIMELIKE GENERAL HELIX IN Hj

Definition 4.1. Let ¢ be a curve in 3- dimensional Lorentz-Heisenberg Hs and
{T, N, B} be the Frenet frame on Hj along ¢.

1) If both k and 7 are positive constant along ¢, then is called circular helix with
respect to Frenet frame.

2) A curve ¢ such that

k
—=c ceR,
.
is called a general helix with respect to Frenet frame.
If k£ =constant # 0 and 7 = 0, then the curve ¢ is a circle.

Theorem 4.1. Let ¢ be a curve in 3- dimensional Lorentz-Heisenberg Hs. ¢ is a
general heliz with respect to the Frenet frame {T, N, B} if and only if
1)

(4.1) V3T — 01(s)VrT = 3K’V N,
where o1(s) = 1 (K" + k* — k7?).

2)
(4.2) V3B — 09(s)VrB 4 37'VyN =0,

where o(s) =72 — k2 — =

Proof. Suppose that ¢ is general helix with respect to the Frenet frame {T, N, B}.
Then from (3.1), we have

(4.3) VAT = (K" + k* — kr*)N + (3kk")T + (2k'T + k7')B

»” v (v - (2w (5)r

Since ¢ is general helix, we have
(4.5) K'r =kt

If we substitute the equation (4.4) and (4.5) in (4.3), we obtain (4.1).
Conversly let us assume that the equation (4.1) holds. Differentiating covariantly

(4.4) we obtain
K 1 9

2 kl / k/ 2 1 3

(4.6) = KT+ (K —7*)N+ (’f) B.

and so

Also we obtain
(4.7) V2N =KT+ (k* —7*)N +7'B.
Since (4.6) and (4.7) are equal, then

(4.8) 7=-T
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From (4.8), we obtain
— = constant.
T

This means that ¢ is a general helix.
2) Suppose that ¢ is general helix with respect to the Frenet frame. Then, from
(3.1), we have

(4.9) V%B = —(K'7+27K)T + (7'3 — k%7 — 7Y\N - 3r7'B
(4.10) N =— (1> VrB, B= lVTN - ﬁT.
T T T

Now we replace (4.10) in the above expression of V3B, and we obtain (4.2).
Conversely (4.2) holds.
Differentiating covariantly of

N=-— (1> V1B,
T

we obtain
1\” IR 1
(4.11) VZN = — (T) VrB -2 (T> VB — <T> ViB.
If we use (3.1) and (4.2) we get,
/
(4.12) V2N = (Tk) T+ (k* = )N +7'B.
T

Also we obtain
(4.13) V2N =k'T+ (k* — )N +7'B.
By comparing (4.12) and (4.13), we obtainwe obtain

¢

k
— = constant.
j

From this, we have

Then ¢ is a general helix. ([
Corollary 4.1. Let ¢ be a curve in Hs. ¢ is a circular heliz with respect to the
Frenet frame {T, N, B} if and only if
1)
ViB— (1> —k*)TN =0
2)
VAT 4+ k(1* — k*)N = 0.
Theorem 4.2. Let ¢ be a curve in Hz. ¢ is a general helixz with respect to the
Frenet frame {T, N, B}, then
(4.14) VaT 4 01(s)VrB = 3k'V N,
where o1(s) = %(k” + k3 — kiTQ).
Proof. Suppose that ¢ is general helix with respect to the Frenet frame {T, N, B}.
If we substitute (4.10) in (3.2), we obtain (4.14). O
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Corollary 4.2. Let ¢ be a general helixz in Hs. ¢ is a non geodesic timelike bihar-

monic curve if
R(T, VTN)T = 3k’VTN - Ul(S)VTB.

Theorem 4.3. ¢ is a general helix in Hs if and only if

1)

VT, V2T, V3T] = 0,
2)

[VTBv V%B7 V%B] = Oa
3)

[V N, V%N, V3N] = 0.
Proof. 1) From (2.6) and

VoT 0 k 0 T
VAT | =| k2 1% k N |,
virT 3kk! K+ k3 — kr? 27k + k7! B

we have

/
V2T, V3T, V4T] = g(VoT AL VAT, VET) = 1 (7)) -

Since ¢ is general helix, we have
VT, V2T, ViT] = 0.

The proof is completed.
2) From (2.6) and

Vrb 0 -7 0 T
V%B = —kT e 77_2 N ,
ViB k't =2kt —7" 473 —71k%2 317 B

we have

[VrB, VB, VB

I
=
at
/N
=19
N———

The proof is completed.
3) From (2.6) and

VrN k 0 T T

VZN = 4 k2 — 12 i N

V3N E'+ k3 —kr? 3kk —3r7 1" — 13 4 7k? B
we have

[VrN, V2N, VaN] = (12 = k*) (k7" — 7k") + 3(kk' — 77")(K'T — T'k).
Since ¢ is general helix, we have
kv —7k" = 0
Kr—7k = 0.
The proof is completed. O
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5. SPACELIKE GENERAL HELIX IN Hg

Let ¢ : I — Hs be a non geodesic spacelike curve parametrized by arclength
and let {T, N, B} be the orthonormal moving Frenet frame along the curve ¢ in Hj
such that T = ¢ is the unit vector field tangent to ¢. Then we have the following
Frenet equations

VT 0 k O T
(5.1) VeN | = -k 0 71 N
VrB 0 -7 0 B
Theorem 5.1. ¢ = ¢(s) is a general heliz in Hs if and only if
1)
VT, V2T, ViT] =0,
2)
[VrB,V%B,V3B] =0,
3)

[V N, V%N, V3N] = 0.
Proof. From (2.6) and

V1T 0 k 0 T
VZT | = —k? K Tk N |,
viT —3kk!  —K'+ K>+ kr? 27K + k7’ B
we have
2 3 a5 (7Y
VT, VAT, V3T] = —k ( k)
= 0.
The proof is completed.
2) From (2.6) and
VrB 0 —T 0 T
V2B | = kT —7! —72 N
V3B Er+2kr —1t" 4+ 4+7k% 377 B
we have
/
Ve, V5. vEE] = (%)
= 0.
The proof is completed.
2) From (2.6) and
VN —k 0 T T
VQTN = —kK' —k2— 72 T N
V3.N K"+ k3 +kr? =377 —3kk 1 — 13 —1k? B
we have
B e (@Y
VrN.VEN.VIN] = o () e <k>
T

= 0.
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The proof is completed. O
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