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CONSTANT SCALAR CURVATURE OF THREE DIMENSIONAL

SURFACES OBTAINED BY THE EQUIFORM MOTION OF A

SPHERE

FATHI M. HAMDOON AND AHMAD T. ALI

(Communicated by Hans-Peter SCHRÖCKER)

Abstract. In this paper we consider the equiform motion of a sphere in Eu-
clidean space E7. We study and analyze the corresponding kinematic three-

dimensional surface under the hypothesis that its scalar curvature K is con-

stant. Under this assumption, we prove that |K| < 2.

1. Introduction

An equiform transformation in the n-dimensional Euclidean space En is an affine
transformation whose linear part is composed of an orthogonal transformation and a
homothetical transformation. Such an equiform transformation maps points x ∈ En

according to the rule

(1.1) x 7−→ sAx + d, A ∈ SO(n), s ∈ R− {0}, d ∈ En.

The number s is called the scaling factor. An equiform motion is defined if the
parameters of (1.1), including s, are given as functions of a time parameter t. Then
a smooth one-parameter equiform motion moves a point x via x(t) = s(t)A(t)x(t)+
d(t). The kinematic corresponding to this transformation group is called equiform
kinematic, see [2, 4].

Under the assumption of the constancy of the scalar curvature, kinematic sur-
faces obtained by the motion of a circle have been obtained in [1]. In a similar
context, one can consider hypersurfaces in space forms generated by one-parameter
family of spheres and having constant curvature: [3, 5, 6, 7].

In this paper we consider the equiform motions of a sphere k0 in En. The point
paths of the sphere generate a 3-dimensional surface, containing the positions of
the starting sphere k0. The first order properties of these surfaces for the points of
these spheres have been studied for arbitrary dimensions n ≥ 3 [1]. We restrict our
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considerations to dimension n = 7 because, at any moment, the infinitesimal trans-
formations of the motion map the points of the sphere k0 to the velocity vectors,
whose end points will form an affine image of k0 (in general a sphere) that span a
subspace W of En with n ≤ 7 [8].

On other hand, in the case of cyclic surface foliated by circle, for fixed t, we
have a circle in a fixed frame and its image is an ellipse in moving frame. Then,
we need at least space of dimension 5 (2 for the circle, 2 for an ellipse and one di-
mension for skew) [1]. In the present paper, for fixed t, we have a sphere in a fixed
frame and its image is an ellipsoid in moving frame. Then, we need at least space of
dimension 7 (3 for the sphere, 3 for an ellipsoid and one dimension for skew), see [8]).

Let x(θ, φ) be a parameterization of k0 and let X(t, θ, φ) be the resultant 3-
surface by the equiform motion. We consider a certain position of the moving
space given by t = 0, and we would like to obtain information about the motion
at least during a certain period around t = 0 if we know its characteristics for one
instant. Then we restrict our study to the properties of the motion for the limit
case t → 0. A first choice is then approximate X(t, θ, φ) by the first derivative of
the trajectories. Solliman, et al. studied 3-dimensional surfaces in E7 generated
by equiform motions of a sphere proving that, in general, they are contained in a
canal hypersurface [8].

The purpose of this paper is to describe the kinematic surfaces obtained by the
motion of a sphere and whose scalar curvature K is constant. As a consequence of
our results, we prove:

A kinematic three-dimensional surface obtained by the equiform
motion of a sphere and with constant scalar curvature K satisfies
|K| < 2.

Moreover, we show the description of the motion of such 3-surface by giving the
equations that determine the kinematic geometry.

2. The representation of a kinematic surface

In two copies
∑0

,
∑

of Euclidean 7-space E7, we consider a unit sphere k0

centered at the origin of the 3-space ε0 = [x1x2x3] and represented by
(2.1)

x(θ, φ) =
(

cos(θ) cos(φ), sin(θ) cos(φ), sin(φ), 0, 0, 0, 0
)T
, θ ∈ [0, 2π], φ ∈ [0, π].

Under a one-parameter equiform motion of moving space
∑0

with respect to a fixed
space

∑
the general representation of the motion of this surface in E7 is given by

X(t, θ, φ) = s(t)A(t)x(θ, φ) + d(t), t ∈ I ⊂ R.

Here d(t) =
(
bi(t)

)T
: i = 1, 2, ..., 7 describes the position of the origin of

∑0

at time t, A(t) =
(
aij(t)

)T
: i, j = 1, 2, ..., 7 is an orthogonal matrix and s(t)

provides the scaling factor of the moving system. With s = const. 6= 0 (sufficient
to set s = 1), we have an ordinary Euclidean rigid body motion. For varying t
and fixed x(θ, φ), equation (2.1) gives a parametric representation of the surface
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(or trajectory) of x(θ, φ). Moreover, we assume that all involved functions are at
least of class C1. Using Taylor’s expansion up to the first order, the representation
of the motion is given by

X(t, θ, φ) =
[
s(0)A(0) + t

(
ṡ(0)A(0) + s(0)Ȧ(0)

)]
x(θ, φ) + d(0) + tḋ(0),

where (.) denotes differentiation with respect to the time t. Assuming that the

moving frames
∑0

and
∑

coincide at the zero position (t = 0), we have

A(0) = I, s(0) = 1, and d(0) = 0.

Thus we have

X(t, θ, φ) =
[
I + t

(
s′I + Ω

)]
x(θ, φ) + td′,

where Ω = Ȧ(0) = (ωi), i = 1, 2, ..., 21 is a skew symmetric matrix, s′ = ṡ(0),

d′ = ḋ(0) and all values of s, bi and their derivatives are computed at t = 0. With
respect to these frames, the representation of the motion up to the first order is



X1

X2

X3

X4

X5

X6

X7



=



1 + s′t ω1 t ω2 t ω3 t ω4 t ω5 t ω6 t
−ω1 t 1 + s′t ω7 t ω8 t ω9 t ω10 t ω11 t
−ω2 t −ω7 t 1 + s′t ω12 t ω13 t ω14 t ω15 t
−ω3 t −ω8 t −ω12 t 1 + s′t ω16 t ω17 t ω18 t
−ω4 t −ω9 t −ω13 t −ω16 t 1 + s′t ω19 t ω20 t
−ω5 t ω10 t −ω14 t −ω17 t −ω19 t 1 + s′t ω21 t
−ω6 t −ω11 t −ω15 t −ω18 t −ω20 t −ω21 t 1 + s′t



(2.2)

×



cos(θ) cos(φ)
sin(θ) cos(φ)

sin(φ)
0
0
0
0



+t



b′1

b′2

b′3

b′4

b′5

b′6

b′7



,

or in the equivalent form


X1

X2

X3

X4

X5

X6

X7



= t



b′1
b′2
b′3
b′4
b′5
b′6
b′7



+cos(θ) cos(φ)



1 + s′ t
−ω1 t
−ω2 t
−ω3 t
−ω4 t
−ω5 t
−ω6 t



+sin(θ) cos(φ)



ω1 t
1 + s′ t
−ω7 t
−ω8 t
−ω9 t
−ω10 t
−ω11 t



(2.3)

+ sin(φ)



ω2 t
ω7 t

1 + s′ t
−ω12 t
−ω13 t
−ω14 t
−ω15 t



= t ~b + cos(θ) cos(φ)~a0 + sin(θ) cos(φ)~a1 + sin(φ)~a2.(2.4)
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For any fixed t in equation (2.3), we generally get an ellipsoid for θ ∈ [0, 2π] and
φ ∈ [0, π] centered at the point t(b′1, b

′
2, b
′
3, b
′
4, b
′
5, b
′
6, b
′
7). The latter ellipsoid turns

to a 2-dimensional sphere if ~a0, ~a1, and ~a2 form an orthonormal basis. This gives
the following conditions:

6∑
i=2

ωi ωi+5 = ω1 ω7 −
6∑
i=3

ωi ωi+9 = ω1 ω2 +

11∑
i=8

ωi ωi+4 = 0,(2.5)

6∑
i=2

ω2
i =

11∑
i=7

ω2
i , ω2

1 +

6∑
i=3

ω2
i = ω2

7 +

15∑
i=12

ω2
i .(2.6)

3. Scalar curvature of the kinematic surface

In this section we shall compute the scalar curvature of 3-surfaces in E7 generated
by equiform motions of a sphere which satisfies the conditions (2.5)-(2.6). The
tangents to the parametric curves t = const., θ = const., and φ = const. at the zero
position are

Xt =
[
s′I + Ω

]
x + d′, Xθ =

[
I +

(
s′I + Ω

)
t
]
xθ, Xφ =

[
I +

(
s′I + Ω

)
t
]
xφ.

The coordinate functions of the first fundamental form of X(t, θ, φ) are{
g11 = XT

t Xt, g12 = XT
t Xθ, g13 = XT

t Xφ,

g22 = XT
θ Xθ, g23 = XT

θ Xφ, g33 = XT
φ Xφ.

Under the conditions (2.5)-(2.6), we obtain

g11 = γ + α5 cos(2φ) + α8 sin(φ) + 2 cos(φ)
[

cos(φ)
(
α4 cos(2θ) + α1 sin(2θ)

)
+ sin(θ)

(
α7 + α2 sin(φ)

)
+ cos(θ)

(
α6 − 2α3 sin(φ)

)]
,

g12 = cos(φ)
[
2 t cos(φ)

(
α1 cos(2θ)− α4 sin(2θ)

)
− ω1 cos(φ)

− sin(θ)
[
t
(
α6 − 2α3 sin(φ)

)
+ b′1 + ω2 sin(φ)

]
+ cos(θ)

[
t
(
α7 + 2α2 sin(φ)

)
+ b′2 + ω7 sin(φ)

]]
,

g13 = 2t cos(2φ)
(
α2 sin(θ)− α3 cos(θ)

)
− t sin(2φ)

(
α5 + α4 cos(2θ)

+ α1 sin(2θ)
)
− sin(φ)

[(
b′1 + t α6

)
cos(θ) +

(
b′2 + t α7

)
sin(θ)

]
,

g22 = cos2(φ)
[
1 + 2t s′ + 2t2

(
δ − α4 cos(2θ)− α6 sin(2θ)

)]
,

g23 = t2
[
2 cos2(φ)

(
α2 cos(θ) + α3 sin(θ)

)
+ sin(2φ)

(
α4 sin(2θ)− α1 cos(2θ)

)]
,

g33 = 1 + 2t s′ + t2
[
γ − β − α5 cos(2φ) + 2 sin2(φ)

(
α4 cos(2θ) + α1 sin(2θ)

)
+ 2 sin(2φ)

(
α3 cos(θ)− α2 sin(θ)

)]
,
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where 

α1 =
1

2

[∑6
i=2 ωi ωi+5

]
,

α2 =
1

2

[
ω1 ω2 +

∑11
i=8 ωi ωi+4

]
,

α3 =
1

2

[
ω1 ω7 −

∑6
i=3 ωi ωi+9

]
,

α4 =
1

4

[∑6
i=2

(
ω2
i − ω2

i+5

)]
,

α5 =
1

4

[
ω2
1 − 2ω2

2 − 2ω2
7 +

∑11
i=1 ω

2
i − 2

(∑15
i=12 ω

2
i

)]
,

α6 = b′1 s
′ −
∑7
i=2 b

′
i ωi−1,

α7 = b′1 ω1 + b′2 s
′ −
∑7
i=3 b

′
i ωi+4,

α8 = 2
[
b′1 ω2 + b′2 ω7 + b′3 s

′ −
∑7
i=4 b

′
i ωi+8

]
,

β =
∑7
i=1 b

′2
i ,

γ = β + s′2 +
1

4

[
2(ω2

1 + ω2
2 + ω2

7) +
∑15
i=2 ω

2
i +

∑15
i=12 ω

2
i

]
,

δ =
1

4

[
2 (s′2 + ω2

1) +
∑11
i=2 ω

2
i

]
.

The conditions (2.5)-(2.6) lead to the following relations

α1 = α2 = α3 = α4 = α5 = 0, γ = β + 2δ.

In order to calculate the scalar curvature, we need to compute the Christoffel sym-
bols of the second kind, which are defined as

(3.1) Γlij =
1

2
glm
[∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

]
,

where i, j, l are indices that take the values 1, 2, 3, x1 = t, x2 = θ, x3 = φ, and
(
glm
)

is the inverse matrix of
(
gij

)
. Then the scalar curvature of the surface X(t, θ, φ) is

K(t, θ, φ) = gij
[∂Γlij
∂xl

− ∂Γlil
∂xj

+ Γlij Γmlm − Γmil Γljm

]
.

At the zero position (t = 0), the scalar curvature of X(t, θ, φ) is given by

K = K(0, θ, φ) =
P
(

cos(n1θ ±m1φ), sin(n1θ ±m1φ)
)

Q
(

cos(n2θ ±m2φ), sin(n2θ ±m2φ)
) .(3.2)

This quotient writes then as
(3.3)

P
(

cos(n1θ±m1φ), sin(n1θ±m1φ)
)
−KQ

(
cos(n2θ±m2φ), sin(n2θ±m2φ)

)
= 0.

The assumption on the constancy of the scalar curvature K implies that equation
(3.3) is a linear combination of the functions cos(n θ ± mφ), sin(n θ ± mφ). Be-
cause these functions are linearly independent , the corresponding coefficients must
vanish. Throughout this work, we have employed the Mathematica programm in
order to compute the explicit expressions of these coefficients.



CONSTANT SCALAR CURVATURE OF THREE DIMENSIONAL... 73

Assumption 3.1. Without loss of generality, we assume that the two conditions
(2.5)-(2.6) are satisfied and there are no translation motions in the plane which
contain the starting sphere, i.e.,

b′1 = b′2 = b′3 = 0.

3.1. Kinematic surfaces with zero scalar curvature. We assume that K = 0.
From the expression (3.2), we have

P
(

cos(n1θ ± m1φ), sin(n1θ ±m1φ)
)

=

12∑
i=0

12∑
j=−12

(
Ai,j cos(i θ + j φ) +Bi,j sin(i θ + j φ)

)
= 0.

In this case, a straightforward computation shows that the coefficients of cos(12φ),
cos(6θ + 12φ) and sin(6θ + 12φ) are

A0,12 =
3

8192

[
16ω6

1 − 120ω4
1

(
ω2
2 + ω2

7

)
+ 9ω2

1

(
ω2
2 + ω2

7

)2
− 5

(
ω2
2 + ω2

7

)3]
,

A6,12 =
3

32768

[
ω6
2 − 15ω4

2 ω
2
7 + 15ω2

2 ω
4
7 − ω6

7

]
,

B6,12 =
3

16384
ω2 ω7

(
3ω2 − ω2

7

)(
ω2
2 − 3ω2

7

)
.

By solving the three equations A0,12 = 0, A6,+12 = 0 and B6,+12 = 0, we get

ω1 = ω2 = ω7 = 0.

Then

B0,9 =
3

256
α8

[
α2
8 − 6

(
α2
6 + α2

7

)]
,

A3,9 =
3

256
α6

(
3α2

7 − α2
6

)
,

B3,9 =
3

256
α7

(
α2
7 − 3α2

6

)
.

The three equations B0,9 = 0, A3,9 = 0, and B3,9 = 0 imply

α6 = α7 = α8 = 0.

From these values, equation A0,6 = 0 leads to(
β + 2 δ

)(
β + s′2 − 2 δ

)
= 0.

It is worth to point out that the quantities β and δ are positive and thus we obtain
the following condition

δ =
1

2

(
β + s′2

)
.

At this time, the explicit computations of coefficients imply that all Ai,j and Bi,j
are equal zero. So, we have the following:
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Theorem 3.1. A kinematic 3-surface in E7 foliated by spheres and with zero con-
stant scalar curvature satisfies

ω1 = ω2 = ω7 = 0,
7∑
i=4

b′i ωi−1 =

7∑
i=4

b′i ωi+4 =

7∑
i=4

b′i ωi+8 = 0,

6∑
i=3

ω2
i =

7∑
i=4

b′2i .

3.2. Kinematic surfaces with non-zero constant scalar curvature. We as-
sume that the kinematic 3-surface has constant scalar curvature K 6= 0. From (3.1),
we have

P
(

cos(n1θ ± m1φ), sin(n1θ ±m1φ)
)
−KQ

(
cos(n2θ ±m2φ), sin(n2θ ±m2φ)

)
=

12∑
j=−12

12∑
i=0

(
Ai,j cos(i θ + j φ) +Bi,j sin(i θ + j φ)

)
= 0.

In this case, a straightforward computation shows that the coefficients of cos(12φ),
cos(12θ + 6φ) and sin(12θ + 6φ) are

A0,12 =
1

16384

(
K + 6

)[
16ω6

1 − 120ω4
1

(
ω2
2 + ω2

7

)
+ 90ω2

1

(
ω2
2 + ω2

7

)2
− 5

(
ω2
2 + ω2

7

)3]
,

A6,12 =
1

65536

(
K + 6

)[
ω6
2 − 15ω4

2 ω
2
7 + 15ω2

2 ω
4
7 − ω6

7

]
,

B6,12 =
1

32768
ω2 ω7

(
K + 6

)(
3ω2 − ω2

2

)(
ω2
2 − 3ω2

7

)
.

We consider the three equations A0,12 = 0, A6,12 = 0, and B6,12 = 0. From here,
we discuss two possibilities: K = −6 and ω1 = ω2 = ω7 = 0.

(1) Case K = −6. A computation of coefficients yields

A5,11 =
1

2048

[
α6

(
ω4
2 − 6ω2

2 ω
2
7 + ω4

7

)
− 4α7 ω2 ω7

(
ω2
2 − ω2

7

)]
= 0

B5,11 =
1

2048

[
α7

(
ω4
2 − 6ω2

2 ω
2
7 + ω4

7

)
+ 4α6 ω2 ω7

(
ω2
2 − ω2

7

)]
= 0.

We consider two cases: α6 = α7 = 0 and ω2 = ω7 = 0.

Case (1): We assume α6 = α7 = 0. The computation of coefficients
leads to

B0,11 =
1

2048
α8

[
8ω4

1 − 24ω2
1

(
ω2
2 + ω2

7

)
+ 3

(
ω2
2 + ω2

7

)2]
= 0,

A4,11 =
1

512
α8 ω2 ω7

(
ω2
7 − ω2

2

)
= 0,

B4,11 =
1

2048
α8

(
ω4
2 − 6ω2

2 ω
2
7 + ω4

7

)
= 0,

which implies two subcases: α8 = 0 and ω1 = ω2 = ω7 = 0.
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Subcase (1.1): If α8 = 0, then we have

A0,10 =
1

1024

[
8ω2

1 − ω2
1

(
ω2
2 + ω2

7

)
+ 3

(
ω2
2 + ω2

7

)2](
β + s′2 + 6 δ − ω2

1 − ω2
2 − ω2

7

)
A4,10 =

1

2048
ω2 ω7

(
ω4
2 − 6ω2

2 ω
2
7 + ω4

7

)(
β + s′2 + 6 δ − ω2

1 − ω2
2 − ω2

7

)
B4,10 =

1

512
ω2 ω7

(
ω2
7 − ω2

2

)(
β + s′2 + 6 δ − ω2

1 − ω2
2 − ω2

7

)
.

The last term in the above three equations is not zero because

β + s′2 + 6 δ − ω2
1 − ω2

2 − ω2
7 =

7∑
i=4

b′2i + ω2
2 +

11∑
i=8

ω2
i + 2

[
2 s′2 + ω2

1 +

6∑
i=3

ω2
i

]
> 0.

The three equations A0,10 = 0, A4,10 = 0, and B4,10 = 0 lead ω1 = ω2 =
ω7 = 0. Now, the coefficient A0,6 must equal zero, that is,(

β + 2 δ
)2 (

2β + 8 δ − s′2
)

= 0,

contradiction.

Subcase (1.2): If ω1 = ω2 = ω7 = 0 and α8 6= 0, the equation B0,9 = 0
implies that α8 = 0: contradiction.

Case (2): If ω2 = ω7 = 0 and α6, α7 6= 0, the computation of coefficients
yields

A5,11 =
1

2048
α6 ω

4
1 = 0,

B5,11 =
1

2048
α7 ω

4
1 = 0.

Because α6 6= 0 and α7 6= 0, we conclude ω1 = 0. New computations give

A3,9 =
9

256
α6

(
α2
6 − 3α2

7

)
,

B3,9 =
9

256
α7

(
3α2

6 − α2
7

)
.

By solving the equations A3,9 = 0 and B3,9 = 0, we get α6 = α7 = 0:
contradiction.

Corollary 3.1. There are no kinematic 3-surfaces in E7 foliated by spheres
and with scalar curvature K equal −6.

(2) Case ω1 = ω2 = ω7 = 0 and K 6= −6.
A computation of the coefficients yields

B0,9 =
1

256
α8

[
α2
8 − 6

(
α2
6 + α2

7

)](
2K + 3

)
= 0,

A3,9 =
1

256
α6

(
3α2

7 − α2
6

)(
2K + 3

)
= 0,

B3,9 =
1

256
α7

(
α2
7 − 3α2

6

)(
2K + 3

)
= 0,
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which gives two cases: K = −3

2
or α7 = α6 = α8 = 0.

Case (1): Assume K = −3

2
. Now, we obtain

A0,8 =
1

64

[
α2
8 −

(
α2
6 − α2

7

)](
6 δ − β − 2 s′2

)
,

A2,8 =
1

64

(
α2
6 − α2

7

)(
6 δ − β − 2 s′2

)
,

B2,8 =
1

32
α7α6

(
6 δ − β − 2 s′2

)
.

Solving the three equations A0,8 = 0, A2,8 = 0, and B2,8 = 0, we find two

cases: δ =
β + 2 s′2

6
and α6 = α7 = α8 = 0.

Case (1.1): If δ =
β + 2 s′2

6
, we obtain

A0,4 =
1

72
(2β + s′2)

[
4(2β + s′2)2 − 9

(
α2
8 + 4(α2

6 + α2
7)
)]
,

which leads the following condition

4(2β + s′2)2 = 9
(
α2
8 + 4(α2

6 + α2
7)
)
.

At this point, all coefficients Ai,j and Bi,j are equal zero.

Case (1.2): Assume α6 = α7 = α8 = 0 and δ 6= β + 2 s′2

6
. The

coefficient A0,6 is A0,6 =
1

32

(
β + 2 δ

)[
14 δ− β − 4 s′2

]
. From A0,6 = 0, we

conclude

δ =
β + 4 s′2

14
.

As a consequence, all coefficientsAi,j andBi,j , i = 1, 2, ..., 12, j = −12, ..., 12
are zero.

From the above reasonings, it follows the next:

Theorem 3.2. A kinematic 3-surface in E7 foliated by spheres and with

K = −3

2
satisfies ω1 = ω2 = ω7 = 0 and one of the following pairs of

equations:

s′2 + 3

6∑
i=3

ω2
i =

7∑
i=4

b′2i ,

4
[
s′2 + 2

7∑
i=4

b′2i

]
= 9

[( 7∑
i=4

b′iωi+8

)2
+ 4
( 7∑
i=4

b′iωi−1

)2
+ 4
( 7∑
i=4

b′iωi+4

)2]
,

or
7∑
i=4

b′i ωi−1 =

7∑
i=4

b′i ωi+4 =

7∑
i=4

b′i ωi+8 = 0,

3 s′2 + 7

6∑
i=3

ω2
i =

7∑
i=4

b′2i .
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Case (2): Assume α6 = α7 = α8 = 0 and K 6= −3

2
. In this case we

obtain

A0,6 =
1

16

(
β + 2 δ

)2[
K
(
β + 2 δ

)
− 2
(

2 δ − β − s′2
)]

= 0,

which yields

(3.4) K =
2(2 δ − β − s′2)

β + 2δ
.

From here, all coefficients Ai,j and Bi,j are equal zero. So, we have the
following:

Theorem 3.3. A kinematic 3-surface in E7 foliated by spheres and with
constant scalar curvature

K =
2
[∑6

i=3 ω
2
i −

∑7
i=4 b

′2
]

s′2 +
∑6
i=3 ω

2
i +

∑7
i=4 b

′2

satisfies

ω1 = ω2 = ω7 = 0,
7∑
i=4

b′i ωi−1 =

7∑
i=4

b′i ωi+4 =

7∑
i=4

b′i ωi+8 = 0.

From the expression (3.4), we can write the quantity β in the form

β =
2
[(

2−K
)
δ − s′2

]
K + 2

.

As β is positive, we have two cases:

(a) Case K + 2 < 0 and
(

2−K
)
δ − s′2 < 0. This implies

K < −2, and K >
2 δ − s′2

δ
=

2
∑6
i=3 ω

2
i

s′2 +
∑6
i=3 ω

2
i

> 0,

which is a contradiction.

(b) Case K + 2 > 0 and
(

2 − K
)
δ − s′2 > 0. This gives the following

condition for K:

−2 < K <
2δ − s′2

δ
=

2
∑6
i=3 ω

2
i

s′2 +
∑6
i=3 ω

2
i

< 2.

As consequence of Theorems 3.2 and 3.3, we have the next statement, which was
established in the Introduction.

Corollary 3.2. A kinematic three-dimensional surface in E7 obtained by the equiform
motion of a sphere and with constant scalar curvature K satisfies |K| < 2.
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