
International Electronic Journal of Geometry
Volume 6 No.1 pp. 147-150 (2013) c©IEJG

ON THE SMOOTHABLE SCHEME RANK WITH RESPECT TO
NON-DEGENERATE VARIETIES

EDOARDO BALLICO

(Communicated by H. Hilmi HACISALİHOǦLU)

Abstract. Let X ⊂ Pn be an integral and non-degenerate variety. Set m :=
dim(X) and assume n ≥ m + 2. Here we prove that for each P ∈ Pn there
is a zero-dimensional smooth scheme Z ⊂ Pn such that deg(Z) ≤ n −m and
the linear span of Z contains P . We may find Z with the additional condition
that either Z is reduced or it has only two unreduced connected components,
both with degree 2 or that it has a unique unreduced connected component,
Z1, and deg(Z1) ∈ {2, 3}.

1. Introduction

Let X ⊂ Pn be an integral and non-degenerate subvariety. For each P ∈ Pn the
X-rank rX(P )(resp. scheme-rank zX(P ), resp. smoothable scheme rank smX(P ))
of P is the minimal cardinality of a finite subset (resp. zero-dimensional scheme,
resp. zero-dimensional smoothable scheme inside X) Z of Pn such that P ∈ 〈Z〉,
where 〈 〉 denote the linear span. We recall that a zero-dimensional scheme Z ⊂ X
is said to be smoothable inside X if it is a flat limit of a flat family of finite subsets
of X. The key concept is the notion of X-rank, because it is the one used in
the applications to tensors and symmetric tensors. If X is a Segre embedding
of a multiprojective space Pm1 × · · · × Pm1 , then P corresponds to a tensor of
format n1, . . . , ns and rX(P ) is the tensor rank of the tensor P (here n + 1 =
(m1+1) ˙· · ·(̇ms+1). If X is a order d Veronese embedding of Pm (here n =

(
n+d

n

)−1)
, then P corresponds to a degree d homogeneous polynomial f ∈ K[x0, . . . , n] and
rX(P ) is the minimal integer t such that f =

∑t
i=1 Ld

i , where each Li is a linear
form ([5]). In this note we first improve (just by 1) an upper bound for the X-rank
given in [6] ([6], Proposition 5.1) and prove the following result.

Theorem 1.1. Let X ⊂ Pn be an integral and non-degenerate variety. Set m :=
dim(X) and assume m ≤ n− 1. Then smX(P ) ≤ n−m for all P ∈ Pn.
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We recall that [6], Proposition 5.1, fails by 1 in a few well-described cases if
char(K) > 0 ([2]).

Remark 1.1. Take X as in Theorem 1.1 and P ∈ Pn. The proof of Theorem
1.1 gives the existence of a zero-dimensional smoothable scheme Z ⊂ X such that
P ∈ 〈Z〉, deg(Z) = n−m and either Z is reduced or it has two unreduced connected
components, both of them with degree 2, or it has a unique unreduced connected
component Z1 and deg(Z1) ∈ {2, 3}.

2. The proof

Remark 2.1. The scheme Z ⊂ X is smoothable if and only if each connected
component of Z is smoothable. If Z ⊂ Xreg, then Z is smoothable inside X if and
only if it is smoothable inside Pn. If Z ⊂ Xreg, then it is smoothable inside X if and
only if it is smoothable inside Pn ([4], Proposition 2.1.5). Hence if X is smooth.,
then a zero-dimensional scheme Z ⊂ X is smoothable inside X if and only if it is
smoothable inside Pn. This is the reasons why for smooth varieties X one usually
write smoothable without specifying the ambient smooth variety allowed to do the
smoothing. Notice that each degree 2 subscheme of Xreg is smoothable.

For each integer k ≥ 1 let σk(X) ⊆ Pn denote the closure in Pn of the union of
all linear subspaces spanned by k points of X. Each σk(X) is an integral variety
and dim(σk(X)) ≤ min{n, k ·(dim(X)+1)−1}. If dim(X) = 1, then dim(σk(X)) =
min{n, 2k − 1} for all k ≥ 1 ([1], Remark 1.6). In particular σ2(X) = P3 for each
non-degenerate curve X ⊂ P3.

Remark 2.2. Fix a zero-dimensional smoothable scheme Z ⊂ X. Since Z is a flat
limit of a set of deg(Z) points and σdeg(Z)(X) is defined as a closure of all linear
spans of deg(Z) distinct points, we have 〈Z〉 ⊆ σdeg(Z)(X).

We need the following lemma (proof of [3], Proposition 11).

Lemma 2.1. Let β′(X) denote the maximal integer such that dim(〈Z〉) = deg(Z)−
1 for each zero-dimensional and smoothable scheme of degree ≤ β′(X). Fix an
integer k such that 1 ≤ k ≤ β′(X). Then σk(X) is the union of all 〈Z〉, where Z is
a smoothable subscheme of Z of degree k.

Proof of Theorem 1.1 Fix P ∈ Pn. If P ∈ X, then rX(P ) = smX(P ) = 1.
Hence we may assume P /∈ X. In steps (a) and (b) we assume char(K) = 0.

(a) Assume m = 1. First assume n = 3. Since any degree 2 subscheme of
X spans a line, Remark 2.1 and Lemma 2.1 give that for each P ∈ P3 there is a
zero-dimensional smoothable degree 2 scheme Z ⊂ X such that P ∈ 〈Z〉. Hence
Theorem 1.1 is true in this case. Now assume n ≥ 4. Fix a general S ⊂ Xreg such
that ](S) = n − 3. If P ∈ 〈S〉, then srX(P ) ≤ rX(P ) ≤ n − 3. Hence we may
assume P /∈ 〈S〉. For general S we may also assume that each point of 〈S〉 is a
smooth point of S (in characteristic zero we may even get 〈S〉∩X = S as schemes).
Let ` : Pn \ 〈S〉 → P3 denote the linear projection from 〈S〉. Since each point of
〈S〉∩X is a smooth point of X, `|(X \〈X〉∩X) extends to a morphism f : X → P3.
Notice that f(X) is an integral and non-degenerate curve (in characteristic zero we
may even assume that f is birational onto its image). The case n = 3 gives the
existence of a degree two smoothable scheme W ⊂ P3 such that `(P ) ∈ 〈W 〉. Since
f : X → f(D) is a proper and surjective morphism, there is a zero-dimensional
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scheme W ′ ⊂ X such that deg(W ′) = 2 and f(W ′) = W . However, in general
such a scheme W ′ may be non-smoothable if X is singular. To find W ′ as above
and with the additional property that W ′ is smoothable we use the following path.
Fix an affine integral curve ∆, o ∈ ∆ and a flat family {Wλ}λ∈∆ of degree two
schemes with Wo = W and Wλ reduced for all λ 6= o. Taking a finite covering ∆′ of
∆ \ {o} we lift this family to a family F of distinct points of X. We call W ′ a flat
limit of F) (a flat limit exists, because X is projective and hence each connected
component of Hilb(X) is projective). We have deg(W ′) = 2 and f(W ′) = W . By
construction W ′ is smoothable. First assume W ′ ∩ S = ∅. Since `(P ) ∈ 〈W 〉, we
get P ∈ 〈S ∪W ′〉. Now assume W ′ ∩ S 6= ∅. Let Z be the only scheme such that
Zred = Wred ∪ S, it coincide with W at the points of W ′

red \ S ∩W ′
red (there is at

most one point, and there is such a point if W ′ is reduced and ](S∩W ′) = 1) and at
each Q ∈ S it has multiplicity 1 + εQ ∈ {1, 2, 3}, where εQ is the multiplicity of W ′

at Q. Since each unreduced connected component of Z is contained in S ⊂ Xreg,
Z is smoothable. We have P ∈ 〈Z〉 and deg(Z) = n− 1.

(b) Assume m > 1. Let V ⊂ Pn be a general linear subspace such that P ∈ V
and dim(V ) = n−m + 1. Since P /∈ X, the linear system of all hyperplanes of Pn

passing through P has no base points on X. Hence Bertini’s theorem gives that
X ∩V is an integral curve. Let H ⊂ Pn be any hyperplane. Since X is integral, we
have h1(IX) = 0. Since X is non-degenerate, we have h0(IX(1)) = 0. Hence the
exact sequence

0 → IX → IX(1) → IX∩H,H(1) → 0
shows that the scheme X ∩ H spans H. Applying m − 1 times this observation
we get that the curve X ∩ V spans V . Since P ∈ V and X ∩ V ⊂ X we have
smX(P ) ≤ smX∩V (P ) ≤ n−m, the last inequality being true by step (a).

(c) From now on we assume p := char(K) > 0. First assume m = 1. The
proof of the case n = 3 made in step (a) works verbatim. In the case n > 3 we
were careful to use only characteristic free statements. Now assume m > 1. We
use induction on m. Let α : Pn \ {P} → Pn−1 denote the linear projection from P .
Since P /∈ X, u := α|X is a finite morphism. First assume that u is not separable,
i.e. assume that for a general O ∈ Xreg we have P ∈ TOX, where TOX denote
the Zariski tangent space to X at P . In this case the scheme 〈{O, P}〉 ∩ X is a
scheme containing O with multiplicity ≥ 2. Hence P ∈ 〈E〉, where E be the degree
2 subscheme of the line 〈{O, P}〉 with O as its support. Since m > 0, we have
E ⊂ X ∩ TOX. Since O ∈ Xreg, the degree 2 scheme E is smoothable inside P
(Remark 2.1). Hence srX(P ) ≤ 2. Now assume that u is separable, i.e. that P is
not a strange point of X. In this case we may repeat the proof of the corresponding
part in [2] (top of page 6) to reduced to the case m = 1 just proven. ¤
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