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ON THE SMOOTHABLE SCHEME RANK WITH RESPECT TO
NON-DEGENERATE VARIETIES
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ABSTRACT. Let X C P" be an integral and non-degenerate variety. Set m :=
dim(X) and assume n > m + 2. Here we prove that for each P € P™ there
is a zero-dimensional smooth scheme Z C P" such that deg(Z) < n —m and
the linear span of Z contains P. We may find Z with the additional condition
that either Z is reduced or it has only two unreduced connected components,
both with degree 2 or that it has a unique unreduced connected component,
Z1, and deg(Z1) € {2,3}.

1. INTRODUCTION

Let X C P” be an integral and non-degenerate subvariety. For each P € P" the
X-rank rx (P)(resp. scheme-rank zx (P), resp. smoothable scheme rank smx (P))
of P is the minimal cardinality of a finite subset (resp. zero-dimensional scheme,
resp. zero-dimensional smoothable scheme inside X) Z of P" such that P € (Z),
where ( ) denote the linear span. We recall that a zero-dimensional scheme Z C X
is said to be smoothable inside X if it is a flat limit of a flat family of finite subsets
of X. The key concept is the notion of X-rank, because it is the one used in
the applications to tensors and symmetric tensors. If X is a Segre embedding
of a multiprojective space P™* x --- x P™ then P corresponds to a tensor of
format ni,...,ns and rx(P) is the tensor rank of the tensor P (here n + 1 =
(m1+1)-* -(ms—&—l). If X is a order d Veronese embedding of P™ (here n = (”::d) —1)
, then P corresponds to a degree d homogeneous polynomial f € K[z, ...,n] and
rx (P) is the minimal integer ¢ such that f = Zle L4, where each L; is a linear
form ([5]). In this note we first improve (just by 1) an upper bound for the X-rank
given in [6] ([6], Proposition 5.1) and prove the following result.

Theorem 1.1. Let X C P" be an integral and non-degenerate variety. Set m :=
dim(X) and assume m <n —1. Then smx(P) <n—m for all P € P™.
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We recall that [6], Proposition 5.1, fails by 1 in a few well-described cases if
char(K) > 0 ([2]).

Remark 1.1. Take X as in Theorem 1.1 and P € P". The proof of Theorem
1.1 gives the existence of a zero-dimensional smoothable scheme Z C X such that
P € (Z), deg(Z) = n—m and either Z is reduced or it has two unreduced connected
components, both of them with degree 2, or it has a unique unreduced connected
component Z; and deg(Z7) € {2,3}.

2. THE PROOF

Remark 2.1. The scheme Z C X is smoothable if and only if each connected
component of Z is smoothable. If Z C X,.q4, then Z is smoothable inside X if and
only if it is smoothable inside P". If Z C X4, then it is smoothable inside X if and
only if it is smoothable inside P™ ([4], Proposition 2.1.5). Hence if X is smooth.,
then a zero-dimensional scheme Z C X is smoothable inside X if and only if it is
smoothable inside P™. This is the reasons why for smooth varieties X one usually
write smoothable without specifying the ambient smooth variety allowed to do the
smoothing. Notice that each degree 2 subscheme of X, is smoothable.

For each integer k > 1 let 0 (X) C P™ denote the closure in P of the union of
all linear subspaces spanned by k points of X. Each o (X) is an integral variety
and dim (o (X)) < min{n, k- (dim(X)+1)—1}. If dim(X) = 1, then dim(ox (X)) =
min{n, 2k — 1} for all ¥ > 1 ([1], Remark 1.6). In particular o2(X) = P? for each
non-degenerate curve X C P3.

Remark 2.2. Fix a zero-dimensional smoothable scheme Z C X. Since Z is a flat
limit of a set of deg(Z) points and ggee(z)(X) is defined as a closure of all linear
spans of deg(Z) distinct points, we have (Z) C 0geg(z)(X).

We need the following lemma (proof of [3], Proposition 11).

Lemma 2.1. Let §'(X) denote the mazimal integer such that dim((Z)) = deg(Z)—
1 for each zero-dimensional and smoothable scheme of degree < ('(X). Fix an
integer k such that 1 < k < §'(X). Then o,(X) is the union of all (Z), where Z is
a smoothable subscheme of Z of degree k.

Proof of Theorem 1.1 Fix P € P". If P € X, then rx(P) = smx(P) = 1.

Hence we may assume P ¢ X. In steps (a) and (b) we assume char(K) = 0.
(a) Assume m = 1. First assume n = 3. Since any degree 2 subscheme of
X spans a line, Remark 2.1 and Lemma 2.1 give that for each P € P? there is a
zero-dimensional smoothable degree 2 scheme Z C X such that P € (Z). Hence
Theorem 1.1 is true in this case. Now assume n > 4. Fix a general S C X,.4 such
that §(S) = n — 3. If P € (S), then srx(P) < rx(P) < n — 3. Hence we may
assume P ¢ (S). For general S we may also assume that each point of (S) is a
smooth point of S (in characteristic zero we may even get (S) N X = S as schemes).
Let £ : P\ (S) — P3 denote the linear projection from (S). Since each point of
(SYNX is a smooth point of X, £|(X \ (X)NX) extends to a morphism f : X — P3.
Notice that f(X) is an integral and non-degenerate curve (in characteristic zero we
may even assume that f is birational onto its image). The case n = 3 gives the
existence of a degree two smoothable scheme W C P3 such that £(P) € (W). Since
f:+ X — f(D) is a proper and surjective morphism, there is a zero-dimensional
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scheme W' C X such that deg(W’) = 2 and f(W') = W. However, in general
such a scheme W’ may be non-smoothable if X is singular. To find W’ as above
and with the additional property that W’ is smoothable we use the following path.
Fix an affine integral curve A, o € A and a flat family {Wy}rca of degree two
schemes with W, = W and W), reduced for all A # o. Taking a finite covering A’ of
A\ {o} we lift this family to a family F of distinct points of X. We call W’ a flat
limit of F) (a flat limit exists, because X is projective and hence each connected
component of Hilb(X) is projective). We have deg(W') = 2 and f(W') = W. By
construction W’ is smoothable. First assume W’ NS = . Since £(P) € (W), we
get P € (SUW’). Now assume W' NS # (. Let Z be the only scheme such that
Zred = Wrea U S, it coincide with W at the points of W/ ,\ S NW/_, (there is at
most one point, and there is such a point if W’ is reduced and §(SNW’') = 1) and at
each @ € S it has multiplicity 1+ ¢eg € {1, 2,3}, where € is the multiplicity of W’
at (. Since each unreduced connected component of Z is contained in S C X,g,
Z is smoothable. We have P € (Z) and deg(Z) =n — 1.

(b) Assume m > 1. Let V' C P™ be a general linear subspace such that P € V
and dim(V) =n —m + 1. Since P ¢ X, the linear system of all hyperplanes of P"
passing through P has no base points on X. Hence Bertini’s theorem gives that
X NV is an integral curve. Let H C P™ be any hyperplane. Since X is integral, we
have h!(Zx) = 0. Since X is non-degenerate, we have h°(Zx (1)) = 0. Hence the
exact sequence

0— ZX — Ix(l) — IXﬁH,H(l) — 0
shows that the scheme X N H spans H. Applying m — 1 times this observation
we get that the curve X NV spans V. Since P € V and X NV C X we have
smx (P) < smxnav(P) <n —m, the last inequality being true by step (a).

(¢) From now on we assume p := char(K) > 0. First assume m = 1. The
proof of the case n = 3 made in step (a) works verbatim. In the case n > 3 we
were careful to use only characteristic free statements. Now assume m > 1. We
use induction on m. Let a : P"\ {P} — P"~! denote the linear projection from P.
Since P ¢ X, u := «a|X is a finite morphism. First assume that u is not separable,
i.e. assume that for a general O € X,., we have P € TpX, where Tp X denote
the Zariski tangent space to X at P. In this case the scheme ({O,P})N X is a
scheme containing O with multiplicity > 2. Hence P € (E), where E be the degree
2 subscheme of the line ({O, P}) with O as its support. Since m > 0, we have
E C XNTpX. Since O € X,4, the degree 2 scheme E is smoothable inside P
(Remark 2.1). Hence srx(P) < 2. Now assume that u is separable, i.e. that P is
not a strange point of X. In this case we may repeat the proof of the corresponding
part in [2] (top of page 6) to reduced to the case m = 1 just proven. O
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