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This study presents a newly developed mixed-integer mathematical model for university 
course-room-time assignment problem. Optimal results with no soft constraint violations 
are obtained for some type of problem instances. As problem complexity increases it 
becomes more difficult to find feasible solution for this problem in a reasonable time. 
Therefore, a heuristic approach is often needed for such problems.  In this study, a 
random key based genetic algorithm (RKGA) is developed. RKGA encoding is used in order 
to encode the chromosomes with a length of just the number of courses and not to use 
problem specific genetic operators and/or repair mechanisms.  Well-known problem 
instances from the literature are selected to evaluate the outcome. The performance of 
RKGA is competitive to that of other algorithms especially for big size problems. 

 

DERS-DERSLİK-ZAMAN DİLİMİ ATAMA PROBLEMİ İÇİN YENİ BİR 
MATEMATİKSEL MODEL VE RASSAL ANAHTAR TEMELLİ METASEZGİSEL ÇÖZÜM 

YAKLAŞIMI 
Anahtar Kelimeler  Öz 
Ders-derslik-zaman dilimi 
atama problemi, 
Matematiksel modelleme, 
Rassal anahtar temelli 
genetik algoritma. 
 

Bu çalışmada üniversite ders-derslik-zaman dilimi atama problemi için yeni bir karma 
tam sayılı matematiksel model önerilmiştir. Geliştirilen karma tam sayılı matematiksel 
model ile literatürde yer alan test problemleri çözdürülmüş ve bir kısmı için tüm esnek 
kısıtlar sağlanarak en iyi çözüm elde edilmiştir. Problem karmaşıklığı arttıkça makul 
sürelerde uygun çözüm bulmak zorlaştığından, bu tür problemlerin çözümü için sezgisel 
bir yaklaşıma ihtiyaç duyulmaktadır. Çalışmada, rassal anahtar temelli bir genetik 
algoritma (RKGA) geliştirilmiştir. Probleme özgü özel genetik operatörler ve/veya 
onarma mekanizmaları kullanmamak için sadece ders sayısı uzunluğundaki 
kromozomları kodlamak için RKGA kodlaması kullanılmıştır. Çıktıların 
değerlendirilmesi için literatürde iyi bilinen test problemleri seçilmiştir. Özellikle büyük 
boyutlu problemlerde RKGA’nın performansının diğer algoritmalar ile rekabet edebilir 
düzeyde olduğu görülmüştür. 
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1. Introduction 

Timetabling problems are a kind of scheduling problems 
deal with allocation of given resources to objects being 
placed in time, in such a way as to satisfy as nearly as 
possible a set of desirable objectives, subject to 
constraints. Educational timetabling problems, in this 
concept, are classified into two main groups: course and 
examination scheduling. In general, course scheduling is 
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defined as assigning courses to rooms and timeslots in 
such a way that there are no conflicts or clashes by 
satisfying objectives and the examination timetabling 
basically involves allocating a set of examinations to a set 
of rooms and time periods. The basic difference is that in 
course timetabling there cannot be more than one course 
per room in contrary of exam one. 

Since 1960’s, when the timetabling problems have 
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appeared as of interest for many researches, the 
educational timetabling systems are required to be more 
flexible by adding elective courses and considering 
personal preferences. Also, real-world timetabling 
systems have to cope with much more challenging 
requirements, such as “students should not have gaps in 
their individual daily timetables”, which often make the 
problem over-constrained (Burke, Marecek, Parkes and 
Rudová, 2007a). In general, the construction of a schedule 
is an optimization problem of arranging time, space, and 
(often limited) resources simultaneously. However, as 
Gunawan, Ng and Poh (2007) mentioned, mathematical 
programming models are not an effective way for finding 
the existence of an optimal solution, especially for large-
scale timetabling problems. Thus, the design of heuristic 
approaches is proposed. 

The outline of the paper is as follows. The university 
course-room-time assignment problem and the proposed 
mathematical model are introduced in Section 2. The 
proposed random key based genetic algorithm (RKGA) is 
also given in Section 2. The results are given in Section 3. 
Finally, Section 4 summarizes the conclusions. 

 

2. Material and Method 
To compare the performance of our proposed 
methodology with the current methods, we consider the 
course-room-time assignment problem studied within 
the Metaheuristics Network and by many researches like 
Socha, Knowles and Samples(2003),  Acha and 
Nieuwenhuis (2014), Abuhamdah, Ayob, Kendall and 
Sabar (2014).  The problem instances defined by Ben 
Paechter (http://www.metaheuristics.net/index.php%3Fmain=4&sub=44.html). 
These problem instances are classified in three groups as 
small, medium and large.  

Problem definition is given as follows: There is a set of 
courses to be scheduled in 45 timeslots as nine for each of 
five days, a set of rooms for courses, a set of students 
attending the courses and a set of features required by 
these courses and features included in rooms. Each course 
spans an hour, each student attends a number of courses 
and each room has a capacity. Table 1 presents the main 
characteristics of test problems defined by Paechter. In 
this study, an “event” refers to a “course”. 
 

Table 1 

Characteristics of the Test Problems  
 Small Medium Large 
#courses 100 400 400 
#rooms 5 10 10 
#features 5 5 10 
#students 80 200 400 

 

Scheduling allocates resources to activities over time 
based on hard and/or soft constraints. The hard 
constraints are listed as follows: 

(1) No student should be assigned to more than one event 
at a timeslot. 

(2) The room assigned to an event should have sufficient 
capacity and all the features required by that event. 

(3) At most one event can be scheduled in one room at a 
timeslot. 

Besides, to improve the solution quality and the overall 
performance of the educational system, three soft 
constraints are imposed as listed below. These 
constraints are preferred to be satisfied as much as 
possible.  

(1) A student is not preferred to have more than two 
consecutive classes on a day. 

(2) A student is not preferred to have only a single class 
on a day. 

(3) A student is not preferred to have a class in the last 
time slot of a day. 

The quality of timetable is measured by penalizing each 
violation of the soft constraints where each violation will 
be penalized by ‘1’ for each student who involves in this 
situation.  

 

2.1. Mathematical Model 

A mixed-integer mathematical model is developed for the 
defined problem. Model parameters, decision variables, 
constraints and the objective function are given below. 
The time slots are numbered as seen in Table 2. 
 

Table 2 

Timeslots of Days 
Hours Monday Tuesday Wednesday Thursday Friday 

1 1 10 19 28 37 
2 2 11 20 29 38 

3 3 12 21 30 39 
4 4 13 22 31 40 
5 5 14 23 32 41 
6 6 15 24 33 42 
7 7 16 25 34 43 

8 8 17 26 35 44 

9 9 18 27 36 45 

 

Sets and indices 
J =  {j | j=1,…, n} for courses     
I  = {i | i =1,…, m}  for students    
K = {k | k = 1,…, h} for rooms    
L = {l | l = 1,… , o} for features    
T = {t | t =1,…, 45 } for timeslots    
D = {d | d =1,…, 5 } for days  
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Tlast = {t | t = 9, 18, 27, 36, 45} Last time slot of a day,  

Tlast ∈ T 

Parameters 
𝑟𝑘  ∶the capacity of the kth room 
OD: the 0-1student-course matrix  
SN: the 0-1room-feature matrix  
DN: the 0-1course-feature matrix 
M  : a positive big number 

If course j is attended by student i, corresponding entry of 
OD matrix, ODij is equal to 1. If room k has feature l, 
corresponding entry of SN matrix, SNkl is equal to 1, and 
similarly, if course j requires feature l, corresponding 
entry of DN matrix, DNjl is equal to 1. 

Decision variables 

 𝑦𝑗𝑘 = {
1, 𝑖𝑓 𝑐𝑜𝑢𝑟𝑠𝑒 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑘
0, 𝑜. 𝑤.

 

𝑧𝑗𝑡 = {
1, 𝑖𝑓 𝑐𝑜𝑢𝑟𝑠𝑒 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑖𝑚𝑒 𝑡
0, 𝑜. 𝑤.

 

𝑥𝑗𝑘𝑡 = {
1, 𝑖𝑓 𝑐𝑜𝑢𝑟𝑠𝑒 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑘 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡 
0, 𝑜. 𝑤.

 

 

𝑟𝑟𝑖𝑡 = {
1,  𝑖𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖 ℎ𝑎𝑠 𝑐𝑜𝑢𝑟𝑠𝑒 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡
0, 𝑜. 𝑤.

 

 

𝑦3𝑖𝑑 = {
1, 𝑖𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖 ℎ𝑎𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑐𝑜𝑢𝑟𝑠𝑒 𝑜𝑛 𝑑𝑎𝑦 𝑑
0, 𝑜. 𝑤.

 

 

𝑦𝑎2𝑖𝑑 ∈ {0,1} 

𝑦1𝑖𝑑 ∈ {0,1} 

𝑦2𝑖𝑑 ∈ {0,1} 

𝑦3𝑖𝑑 ∈ {0,1}  

𝑦𝑎2𝑖𝑑 , 𝑦1𝑖𝑑 , 𝑦2𝑖𝑑  and 𝑦3𝑖𝑑are the pseudo variables used to 
consider soft constraint violations. 

𝑑1, 𝑑2 and 𝑑3 are the variables represent the soft 
constraint violations.  

𝑑1: The total number of occurrences that students have a 
course in the last time slot of days  

𝑑2: The total number of occurrences that students have 
more than two consecutive courses for all days  

𝑑3: The total number of occurrences that students have 
only a single course on a day 

In the light of the above definitions, the mathematical 
model of the course-room-time assignment problem is 
given as following: 

 

𝑚𝑖𝑛 𝑍 = 𝑑1 + 𝑑2 + 𝑑3 (1) 

subject to  

 𝑦𝑗𝑘𝐷𝑁𝑗𝑙 ≤ 𝑆𝑁𝑘𝑙                                                     ∀(𝑗, 𝑘, 𝑙) (2) 

∑ 𝑥𝑗𝑘𝑡 ≥ 𝑦𝑗𝑘                                                               ∀(𝑗, 𝑘)

𝑡

   (3) 

∑ 𝑥𝑗𝑘𝑡 ≤ 𝑀 ∗ 𝑦𝑗𝑘                                                       ∀(𝑗, 𝑘)

𝑡

 (4) 

∑ ∑ 𝑥𝑗𝑘𝑡𝑡𝑘 = 1                                                            ∀𝑗 (5) 

∑ 𝑥𝑗𝑘𝑡

𝑗

≤ 1                                                                 ∀(𝑘, 𝑡) (6) 

∑ 𝑂𝐷𝑖𝑗𝑦𝑗𝑘  ≤

𝑖

𝑟𝑘                                                         ∀(𝑗, 𝑘) (7) 

∑ 𝑂𝐷𝑖𝑗𝑧𝑗𝑡  ≤

𝑗

1                                                           ∀(𝑖, 𝑡) (8) 

∑ 𝑥𝑗𝑘𝑡  ≥

𝑘

𝑧𝑗𝑡                                                                ∀(𝑗, 𝑡) (9) 

∑ 𝑥𝑗𝑘𝑡  ≤ 𝑀 ∗

𝑘

𝑧𝑗𝑡                                                       ∀(𝑗, 𝑡) (10) 

𝑟𝑟𝑖𝑡 = ∑ 𝑂𝐷𝑖𝑗

𝑗

𝑧𝑗𝑡                                                      ∀ (𝑖, 𝑡) (11) 

∑ ∑ 𝑟𝑟𝑖𝑡

𝑡𝜖𝑇𝑙𝑎𝑠𝑡𝑖

= 𝑑1 (12) 

∑ 𝑟𝑟𝑖𝑡 ≥ 3 ∗ 𝑦𝑎2𝑖𝑑  

(𝑑−1)∗9+1≤𝑡≤(𝑑−1)∗9+3

                ∀(𝑖, 𝑑) (13) 

∑ 𝑟𝑟𝑖𝑡 ≥ 3 ∗ 𝑦𝑎2𝑖𝑑  

(𝑑−1)∗9+2≤𝑡≤(𝑑−1)∗9+4

                ∀(𝑖, 𝑑) (14) 

∑ 𝑟𝑟𝑖𝑡 ≥ 3 ∗ 𝑦𝑎2𝑖𝑑               

(𝑑−1)∗9+3≤𝑡≤(𝑑−1)∗9+5

   ∀(𝑖, 𝑑) (15) 

∑ 𝑟𝑟𝑖𝑡 ≥ 3 ∗ 𝑦𝑎2𝑖𝑑               

(𝑑−1)∗9+4≤𝑡≤(𝑑−1)∗9+6

   ∀(𝑖, 𝑑) (16) 

∑ 𝑟𝑟𝑖𝑡 ≥ 3 ∗ 𝑦𝑎2𝑖𝑑               

(𝑑−1)∗9+5≤𝑡≤(𝑑−1)∗9+7

   ∀(𝑖, 𝑑) (17) 

∑ 𝑟𝑟𝑖𝑡 ≥ 3 ∗ 𝑦𝑎2𝑖𝑑               

(𝑑−1)∗9+6≤𝑡≤(𝑑−1)∗9+8

   ∀(𝑖, 𝑑) (18) 

∑ 𝑟𝑟𝑖𝑡 ≥ 3 ∗ 𝑦𝑎2𝑖𝑑               

(𝑑−1)∗9+7≤𝑡≤(𝑑−1)∗9+9

   ∀(𝑖, 𝑑) (19) 

∑ 𝑟𝑟𝑖𝑡 ≤ 3 ∗ 𝑦𝑎2𝑖𝑑 + 2 ∗ (1 − 𝑦𝑎2𝑖𝑑 )
(𝑑−1)∗9+1≤𝑡≤(𝑑−1)∗9+3

       ∀(𝑖, 𝑑) (20) 

∑ 𝑟𝑟𝑖𝑡 ≤ 3 ∗ 𝑦𝑎2𝑖𝑑 + 2 ∗ (1 − 𝑦𝑎2𝑖𝑑 )   
(𝑑−1)∗9+2≤𝑡≤(𝑑−1)∗9+4

    ∀(𝑖, 𝑑) (21) 

∑ 𝑟𝑟𝑖𝑡 ≤ 3 ∗ 𝑦𝑎2𝑖𝑑 + 2 ∗ (1 − 𝑦𝑎2𝑖𝑑 ) 
(𝑑−1)∗9+3≤𝑡≤(𝑑−1)∗9+5

      ∀(𝑖, 𝑑) (22) 

∑ 𝑟𝑟𝑖𝑡 ≤ 3 ∗ 𝑦𝑎2𝑖𝑑 + 2 ∗ (1 − 𝑦𝑎2𝑖𝑑 )   
(𝑑−1)∗9+4≤𝑡≤(𝑑−1)∗9+6

   ∀(𝑖, 𝑑) (23) 
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∑ 𝑟𝑟𝑖𝑡 ≤ 3 ∗ 𝑦𝑎2𝑖𝑑 + 2 ∗ (1 − 𝑦𝑎2𝑖𝑑 )   
(𝑑−1)∗9+5≤𝑡≤(𝑑−1)∗9+7

   ∀(𝑖, 𝑑) (24) 

∑ 𝑟𝑟𝑖𝑡 ≤ 3 ∗ 𝑦𝑎2𝑖𝑑 + 2 ∗ (1 − 𝑦𝑎2𝑖𝑑 )   
(𝑑−1)∗9+6≤𝑡≤(𝑑−1)∗9+8

 ∀(𝑖, 𝑑) (25) 

∑ 𝑟𝑟𝑖𝑡 ≤ 3 ∗ 𝑦𝑎2𝑖𝑑 + 2 ∗ (1 − 𝑦𝑎2𝑖𝑑 )   
(𝑑−1)∗9+7≤𝑡≤(𝑑−1)∗9+9

  ∀(𝑖, 𝑑) (26) 

∑ ∑ 𝑦𝑎2𝑖𝑑 = 𝑑2

𝑑𝑖

 (27) 

∑ 𝑟𝑟𝑖𝑡 ≥ 2 ∗ 𝑦2𝑖𝑑 + 𝑦3𝑖𝑑 

(𝑑−1)∗9≤𝑡≤𝑑∗9

                    ∀(𝑖, 𝑑) (28) 

∑ 𝑟𝑟𝑖𝑡 ≤ 𝑦3𝑖𝑑 + 9 ∗ 𝑦2𝑖𝑑   

(𝑑−1)∗9≤𝑡≤𝑑∗9

                  ∀(𝑖, 𝑑) (29) 

𝑦1𝑖𝑑 + 𝑦2𝑖𝑑 + 𝑦3𝑖𝑑 = 1,                                          ∀(𝑖, 𝑑) (30) 

∑ ∑ 𝑦3𝑖𝑑 = 𝑑3 

𝑑𝑖

 (31) 

𝑥𝑗 ∈ {0,1}                                                                 ∀(𝑗, 𝑘, 𝑡) (32) 

𝑦𝑗𝑘 ∈ {0,1}                                                                   ∀(𝑗, 𝑘) (33) 

𝑧𝑗𝑡 ∈ {0,1}                                                                    ∀(𝑗, 𝑡) (34) 

𝑟𝑟𝑖𝑡 ∈ {0,1}                                                                   ∀(𝑖, 𝑡) (35) 

𝑦1𝑖𝑑 ∈ {0,1}                                                                ∀(𝑖, 𝑑) (36) 

𝑦2𝑖𝑑 ∈ {0,1}                                                                ∀(𝑖, 𝑑) (37) 

𝑦3𝑖𝑑 ∈ {0,1}                                                                ∀(𝑖, 𝑑) (38) 

𝑦𝑎2𝑖𝑑 ∈ {0,1}                                                              ∀(𝑖, 𝑑) (39) 

𝑑1, 𝑑2, 𝑑3 ≥ 0 (40) 

With constraint (2) it’s provided that the courses are 
assigned only to the rooms that include required features. 
If any course-room pair (j, k) is assigned to some time slot, 
constraint set (4) forces  𝑦𝑗𝑘 to be equal to 1. If this pair is 

not assigned to any time slot, then the left-hand sides of 
the corresponding two inequalities in constraint sets (3) 
and (4) are zero, and hence, the constraint set (3) forces 
 𝑦𝑗𝑘  to be equal to 0. A course is assigned to only one room 

and one timeslot by constraint (5). It’s provided that only 
one course can be assigned to each room at any timeslot 
by constraint (6). With the constraint (7) the courses are 
assigned to suitable rooms by means of the capacities. 
And finally, constraint (8) ensures that a student does not 
take more than one course in a timeslot. 

If any course-time slot pair (j, t) is assigned to a room the 
constraint set (10) forces  𝑧𝑗𝑡to be equal to 1. If this pair is 

not assigned to any room, then the left-hand sides of the 
corresponding two inequalities in the constraint sets (9) 
and (8) are zero, and hence, the constraint set (9) 
forces 𝑧𝑗𝑡to be equal to 0. 

If any course-time slot pair (j, t) is assigned to a room the 
constraint set (10) forces  𝑧𝑗𝑡  to be equal to 1. If this pair 

is not assigned to any room, then the left-hand sides of the 
corresponding two inequalities in the constraint sets (9) 
and (8) are zero, and hence, the constraint set (9) 
forces 𝑧𝑗𝑡to be equal to 0. 

As a soft constraint, courses are not preferred to be 
assigned to the last time slot of a day.  The constraint (11) 
holds the value of  𝑟𝑟𝑖𝑡 , that student i has a course at time 
t or hasn’t. Constraint (12) calculates d1 as the total 
number of courses assigned to last time slots of all days 
for all students by using  𝑟𝑟𝑖𝑡  .  

As a second soft constraint, students are not preferred to 
have more than two consecutive courses in a day. All three 
consecutive timeslots of a day are taken into 
consideration to check whether if a student has more than 
two consecutive courses in a day or not. If a student has 
three consecutive courses in a day the variable ya2id 
takes the value 1. There are 9 timeslots daily so, seven 
different consecutiveness situations are required to be 
checked for each day. The constraints (13)-(26) represent 
the consecutiveness. For constraint (13), consider the 
first day (d=1). If d=1, then 1≤t≤3 means that three 
consecutive timeslots begin at time 1 and ends at time 3.  
If d=2, then 10≤t≤12 means that three consecutive 
timeslots begin at time 10 and ends at time 12, and so on. 
The other constraints (14)-(19) check the 
consecutiveness beginning at time slot 2, 3, 4, 5, 6, 7 and 9 
for each day. The constraint (27) calculates d2 as the total 
number of situations that more than two consecutive 
courses assigned to all students in all days. 

Students are not preferred to have only one scheduled 
course on a day and this requirement is hold by the last 
soft constraint.  A student may not have any course in a 
day either. In this case, the variable 𝑦1𝑖𝑑  takes the value 1, 
and the variables 𝑦2𝑖𝑑  and 𝑦3𝑖𝑑  take the value 0. If a 
student has a single course on day d, the variable 𝑦3𝑖𝑑   
takes the value 1, the variables 𝑦2𝑖𝑑  and 𝑦1𝑖𝑑  take the 
value 0. Both situations are provided by the constraints 
(28)-(30). The constraint (31) calculates 𝑑3 as the total 
number of occurrences that having a single course on a 
day for all students.  

The objective of the course-room-time assignment 
problem is defined as minimizing the soft constraint 
violations. By definition, as explained above, 𝑑1, 𝑑2 and 
𝑑3 are the number of soft constraint violations which then 
used in the objective function as minimizing their 
weighted sum with equal weights. 

 

2.2. Problem Complexity and the Need for a Heuristic 

Approach 

The optimum solutions that satisfy all soft constraints are 
obtained by using GAMS with CPLEX solver for all small 
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instances. Small type test problems are run in average 3.5 
hours by an 8-core MacPro computer with 2.13 GHz and 6 
GB RAM.  

On the other hand, we were able to solve this problem for 
100 courses in three and a half hours. By being 
encouraged by this improvement, Medium type problems 
which have 400 courses are tried to be solved. However, 
no feasible solution is found in 96 hours and the running 
process is then terminated. We present some sets of 
solution performances for Small instances in Table 3. 
Burke, Kendall and Soubeiga (2003) and Socha et al., 
(2003) solved the problem. The numbers in columns refer 
the number of soft constraint violations. It’s seen that our 
approach is able to solve all Small types of the problem 
without any soft constraint violation.  

 
Table 3 

Some Solution Performances for Small Type Instances 

instances HH [4]  RRLS [5] ANT [5] 
proposed 

mathematical 
model 

Small01 1 8 1 0 
Small02 2 11 3 0 
Small03 0 8 1 0 
Small04 1 7 1 0 
Small05 0 5 0 0 

 

In his literature survey, Schaerf (1999) explains that the 
optimum solution for course-room-time assignment 
problem is obtained only for small instances up to ten 
courses. It’s seen that since his statement, the good quality 
solutions of some are even optimal is obtained for the 
defined problem.  For instance, Daskalaki, Birbas and 
Housos (2004) proposed an integer programming 
formulation.  In order to evaluate the proposed “one-
objective IP model”, three problems of different size were 
solved. The number of the courses varied from 25 to 92 in 
addition to the lab courses that varied from 8 to 27, 
totaling the requirements for teaching periods from 139 
to 326. We should note that these teaching periods are 
scheduled within the 70 available time periods during 
each week. The mode suggested IP formulation carried 
7,543–17,159 equations and 4,100–19,295 binary 
variables, while the non-zeros of the IP model varied from 
35,685 to 92,358. Similarly, Schimmelpfeng and Helber 
(2007) also were able to solve the course scheduling 
problem at School of Economics and Management at 
Hannover University, Germany. The decision problem is 
to assign teaching groups to time slots and rooms so that 
several soft and hard constraints are met.  

By defining i as student, j as course, k as room, l as feature 
and t as timeslot; the proposed model has (3jk + 2jt + jkl 
+j + kt + 2it + 17id + 2) number of constraints and (jkt + jk 
+ jt + it + 4id + 3) number of variables.  

For the illustrative example Small01 (j=100, i=80, k=5, 
l=5, t=45, d=5), there are 27322 constraints and 32703 
variables. For Medium type problems (j=400, i=200, k=10, 
l=5, t=45, d=5), these values will be 67852 and 215003 
respectively. Even for the smallest model with 100 
courses, the problem size is quite large. As the variable 
and the number of constraints increase, the search space 
and the complexity of the problem will substantially 
increase. 

There are various techniques developed to solve the 
problem. While smaller instances might be solved by 
exact algorithms, most real-world problems are large 
dimensional problems, so there is a need for heuristic 
methods to obtain near-optimal solutions in reasonable 
time. The most used ones are metaheuristics like tabu 
search (Valdes, Crespo and Tamarit, 2002; Yuan and Lan, 
2016), simulated annealing (Abramson, 1991; Thompson 
and Dowsland, 1998; Bellio, Ceschia, Di Gaspero, Schaerf 
and Urli,  2016; Goh, Kendall and Sabar 2018), genetic and 
evolutionary algorithms (Beligiannis, Moschopoulosa, 
Kaperonisa and Likothanassisa, 2008; Susan and Bhutani, 
2018; Matias, Fajardo and Medina, 2018), neural 
networks (Kovačič, 1993), ant colonies (Socha et al., 
2003), bee colony algorithm (Bolaji, Kahader and Betar, 
2014), particle swarm optimization (Chen and Shih, 
2013;Imran Hossain, Akhand, Shuvo, Siddique and Adeli,, 
2019), artificial immune algorithm (Yazdani, Naderi and 
Zeinali, 2017) and hyperheuristics (Burke, McCollum, 
Meisels, Petrovic, and Qu, 2007b). Besides, there are some 
studies dealing with the analysis and design of interactive 
decision support system for timetable management 
(Piechowiak and Kolski, 2004; Kamisli Ozturk, Ozturk and 
Sagir, 2010). 

In the following section, a random key based genetic 
algorithm for the solution of related problem is presented. 

 

2.3. Random Key Based Genetic Algorithm (RKGA) 

Approach for Course-Room-Time Assignment 

Genetic algorithm search methods are rooted in the 
mechanisms of evolution and natural genetics. They 
generate a sequence of populations by using a selection 
mechanism, and use crossover and mutation as search 
mechanisms. In the literature, Holland’s genetic algorithm 
is commonly called as the Simple Genetic Algorithm 
(SGA). Essential to the SGA’s working is a population of 
binary strings. Each string of 0s and 1s is the encoded 
version of a solution to the optimization problem 
(Srinivas and Patnaik, 1994). 

The encoding strategy is different for different 
optimization problems, and a given problem may have 
more than one workable encoding strategy (Snyder and 
Daskin, 2006). A good encoding method can make finding 
good solutions relatively efficient. Conversely, a poor 
chromosome encoding method can make finding good 
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solutions nearly impossible (Michalewicz, 1996; Eklund, 
2006). The coding procedure for the educational 
timetabling problems solved by GA in the literature is 
mostly based on matrix and vector. When the binary 
coding is used, the chromosome length is the “number of 
course times the number of resources”.  In another issue 
encountered is the probability of crossover and mutation 
operators to generate infeasible solutions. These 
infeasible solutions may be the result of using an 
inappropriate chromosome representation and 
traditional genetic operators. Therefore, special 
crossover and mutation operators use different 
representation and genetic repair mechanisms are 
required.  

These stressed drawbacks can be overcome by 
transferring the concept of random keys. The random key 
representation for representing permutations was first 
presented by Bean (1994). RKGA encoding is used to 
encode the chromosomes of length n. This encoding has 
the important property of never producing infeasible 
solutions to permutation problems either in the initial 
population or through any crossover or mutation 
operation. As a result, no repair mechanism or problem-
specific operators are needed. Each gene represents a 
particular sampled value, and the alleles are initially of 
random numbers. The sorted order of the alleles 
determines to which position (either a particular position 
in the hole or set aside) the sampled value is assigned 
(Eklund, 2006).   

RKGAs are used for various problems like single and 
multiple machine scheduling, vehicle routing, resource 
allocation, quadratic assignment, traveling salesman, 
facility layout and multi-robot welding task sequencing 
problems.  

The following section introduces a newly developed 
RKGA for course-room-time assignment problem, 
considered in this paper. 

As Bean proposed, Figure 1 depicts the entire general 
transition of a RKGA. 
 

 

Figure 1. General Transition (Bean, 1994) 

 

In the first step of the algorithm, initial population is 
generated by using random keys. Then all chromosomes 
are decoded and evaluated. In order to construct next 
generation, elitism, crossover and immigration operators 
are applied to the current population according to 
predetermined ratios.  The algorithm continues up to a 
point of a specified number of iterations. The basic steps 
are explained in detail as follows: 
 

2.3.1 Initialization 

Since there are 45 available time slots for each room, we 
can’t excess this number for course-room assignments. In 
the room assignment procedure, each gene is used for 
assignments one by one. For the last assignment we 
assign the room enforcedly for the last course. If this 
course has a special requirement that room doesn’t 
satisfy, an infeasible solution is obtained.  In order to 
avoid such solutions we want to assign courses to rooms 
by considering this rule.  As the initialization step, a 
feasible course-room assignment is obtained. The 
assignment also provides assigning an equal number of 
courses to each room as much as possible by considering 
course clashes and requirements. 

 

2.3.2 Chromosome structure and decoding 

In the RKGA proposed here, each chromosome consists of 
genes up to the total number of courses to be scheduled. 
Figure 2 gives a chromosome for a hundred courses. Each 
gene on the chromosome is encoded by a four digit 
random number. In order to decode a chromosome to the 
solution of the problem we suggest a decoding procedure 
as follows:  

First of all, we divide each random number into two parts 
as 𝑟𝑠1 and 𝑟𝑠2. The first two digits (𝑟𝑠1) are related with 
room and the last two (𝑟𝑠2) are for the time assignments. 
 

course 
no: 

1 2 3 4 … 100  

room & 
time: 

1335 2357 1190 7809 … 9813  

         

Figure 2. A Chromosome for a Hundred Number of 
Courses 

 

Two matrices are organized: a matrix of courses, CT, can 
be assigned to each timeslot, and a matrix of courses, CR, 
can be assigned to each room.  

The courses are assigned to rooms according to the 
second matrix. In this process, the courses are sorted by 
their total number of available rooms that each satisfies 
the feature requirements of courses. Hence an assignment 
probability ojk which is calculated based on the number of 

current population next generation

copy best
with el i ti s im ratio 

(%20)

crossover 79%

randomly generate with immigration ratio (%1)
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courses assigned by that specified phase of the current 
iteration is used. 

By using the room matrix that the course j can be assigned 
to (crjk), and total number of courses assigned to room k 
by that time (ndk), the assignment probability can be 
calculated by equation (41). If 𝑟𝑠1 is smaller than the     
𝑜𝑗𝑘 ∗ 100,  the course j is assigned to room k. Otherwise, 

next available room is checked. Until all the courses are 
assigned, the procedure continues, similarly. 

𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑐𝑟𝑗𝑘 ∗ (45 − 𝑛𝑑𝑘)

𝑘𝑗

 

 

 𝑜𝑗𝑘 =
𝑐𝑟𝑗𝑘∗(45−𝑛𝑑𝑘)

𝑡𝑜𝑡𝑎𝑙
   

 

 

 

 (41) 

Followed by course-room assignments, the course-room 
pairs are assigned to timeslots by considering soft and 
hard constraints. The last time slots of each day are 
considered as lay over and the courses have common 
students are not allowed to be assigned to the same 
timeslots.  

Let us give some more details related to this procedure. 
The course j as the first course of the randomly ordered 
course set is selected. Its related courses are defined as 
next. Related courses are the ones have common students.  
If the course j doesn’t have any such course, its assignable 
time slot is calculated by 𝑟𝑠2. Then course j is assigned to 
this defined time period. Otherwise, related courses are 
being prevented from being assigned to this specific time 
period.   

Consider the chromosome given in Figure 3. In the first 
gene (1335), the last two digit of the random key “35” is 
used for the time assignment. According to the 
assignment procedure, we previously determine that the 
first course can be assigned to three time slots as 13, 19 
and 44. By using the random key “35”, one is selected 
according to the formula (42).  
 

⌊
(𝑙𝑎𝑠𝑡 𝑡𝑤𝑜 𝑑𝑖𝑔𝑖𝑡 𝑜𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 𝑘𝑒𝑦) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡

100
⌋ + 1 (42) 

As given in the Figure 3, the first course is assigned to the 
timeslot 19 which is in the second order. 
 

course no: 1 2 3 4 … 100  
        

room & 
time: 

1335 2357 1190 7809 
… 

9813 
 

  order  
 13 1  

 

19 2  

 44 3  
 

Figure 3. Timeslot Assignment Using Random Keys 

2.3.3 Evaluation of the fitness value 

The evolution process is conducted to accomplish the 
objectives (minimization of the three soft constraint 
violations) of the problem. The fitness value for the 
solutions is calculated as the sum of 𝑓1, 𝑓2 and 𝑓3, where 
the 𝑓1, 𝑓2 and 𝑓3 represent the soft constraint violations, 
described in the previous section, respectively. 

 

2.3.4 Crossover 

Instead of traditional one/multi point crossover operator, 
parametric crossover is used. Parametric crossover is 
applied according to the RKGA’s parameter of head 
probability and a new chromosome is generated from 
randomly selected two chromosomes.  Then, for each 
gene of the new chromosome, random numbers are 
generated. If the random number is smaller than the head 
probability, the gene of the new chromosome is copied 
from the first chromosome otherwise from the second 
one. A sample of parametric crossover where the head 
probability is 0.6 is given in Figure 4.  For instance, the 
first random number is smaller than the head probability 
(0.17<0.6), so the first gene of the new chromosome is the 
first gene of the chromosome 1 as 1214, and so on. 

 
Genes 1 2 3 … N  

Chromosome 1 1214 2241 6173 … 1829  

Chromosome 2 1132 4342 3324 … 4453  

       
Random 
number 

.17 .77 .89 … .54 
 

       
New 

chromosome 
1214 4342 3324 … 1829 

 

       

Figure 4. Illustration of the Parametric Crossover Operator 

for Two Chromosomes 

 

3. Computational Results 

Small, medium and large problem instances are solved on 
an 8-core MacPro computer with 2.13 GHz and 6 GB RAM. 
The results obtained by some algorithms in the literature 
and RGKA are given and the best ones are highlighted in 
Table 4. These methods are tabu search based hyper 
heuristic (HH)4, RRLS and ANT5, fuzzy multiple heuristic 
ordering (FMHO) (Asmuni, Burke and Garibaldi, 2005), 
graph-based hyper heuristic (GBHH) (Burke, McCollum, 
Meisels, Petrovic and Qu, 2007b), a die-hard co-operative 
ant behavior approach (DCABA) (Ejaz and Javed, 2007), 
variable neighborhood search (VNS) (Abdullah, Burke 
and Collumn, 2005) and particle collision algorithm (PCA) 
(Abuhamdah and Ayob, 2005). 

  (35*3)/100 +1=2 
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In the literature, the comparisons of the results are 
generally given as number of soft constraint violations. 
Hence, Table 4 gives the algorithm performances in terms 
of soft constraint violations except HH algorithm. In HH 
column not only the soft constraint violations but also the 
proportions of feasible solutions in 5 runs and best hard 
constraint violations in all runs are provided. For 
example, for Small01 instance the proportion of feasible 
solution in 5 runs is 1, average soft constraint violation is 
2.2, and best hard constraint violation is 1. Besides, it’s 
seen that some algorithms are not able to provide feasible 
solutions for some problem instances.  

For example, RRLS is one of these algorithms for 
Medium05 and Large problems and also VNS for Large.  

DCABA obtains feasible results competitor to others for 
some instances (Small05). VNS approach obtains the best 
results for small type instances. However, it couldn’t find 
a solution for the Large instance and the results for 
Medium type instances are not as good as the others.  

With the parameters of 0.1 elitism ratio, 0.1 immigration 
ratio, 0.8 head probability and the population size of 20, 
the best results in 20 runs for RKGA are given in Table 4. 
The results are quite good for some instances when 
compared to other algorithms.  

RKGA gives better results than RRLS, GBHH and VNS for 
Medium03 instance. For Medium05 instance, RKGA is 
better than RRLS. And for Large, RGKA is better than 
FMHO, RRLS, VNS and HH. In the HH algorithm hard 
constraint violations can be occurred so it can produce 
infeasible solutions. Similarly, the RRLS and VNS 
algorithms are able to produce infeasible solutions. RKGA 
guarantees the feasible solutions in every run for every 
instance and produce good-quality solutions by the 
property of the random keys.  Also, the initial population 
is always feasible and by using the immigration operator, 
the feasible solutions are not destroyed. Among all 
methods, the PCA also emphasize that this algorithm 
doesn’t let hard constraint violations. 

 

Table 4 
Comparison Between RKGA and Heuristic Results on Course Timetabling Problem Instances 

instance HH RRLS ANT FMHO GBHH DCABA VNS PCA RKGA 
Small 01 1 / 2.2 / 1 8 1 10 6 5 0 1 20 
Small 02 1 / 3 / 2 11 3 9 7 5 0 1 45 
Small 03 1 / 1.4 / 0 8 1 7 3 3 0 1 32 
Small 04 1 / 1.8 / 1 7 1 17 3 3 0 1 28 
Small 05 1 / 0.2 / 0 5 0 7 4 0 0 0 32 
Medium 01 1 / 179 / 146 199 195 243 372 176 338 136 530 
Medium 02 1 / 197.6 / 173 202.5 184 325 419 154 326 138 523 
Medium 03 1 / 295.4 / 267 77,5% Inf 248 249 359 191 384 165 347 
Medium 04 1 / 180 / 169 177.5 164.5 285 348 148 299 143 511 
Medium 05 0.8 / 388.5 / 303 100% Inf 219.5 132 171 166 307 135 542 
Large 0.2 / 1166 / 1166 100% Inf 851.5 1138 1068 798 100%Inf 789 1132 

4. Discussion and Conclusion 

This study mainly contributes to the literature by 
presenting a genetic algorithm which is based on 
random keys as the first RKGA application in the 
educational timetabling area.  

As seen from the literature, just the heuristic solution 
approaches are proposed. A mathematical model is 
developed for defined problem as another contribution 
to the literature, of this study. The developed 
mathematical model and the optimal solutions for small 
type instances are given firstly here. 

This model is able to obtain optimal solutions of 
problems for small instances of 100 courses 5 rooms, 5 
features and 80 students. 

Random keys are efficient tools for encoding ordering 
and scheduling problems. Based on this motivation the 
problem is solved by a newly developed RKGA in this 
study.  An important advantage of RKGA is that there is 

no need for problem specific genetic operators and/or 
repair mechanisms. The other and also the most 
important advantage is that it always satisfies feasible 
solutions in all iterations. It’s promising that RKGA gives 
better results than some of the algorithms as the 
problem size grows.  

For further research, we plan to extend our solution 
strategies to a few more directions: Some local search 
algorithms like 2-opt are going to be integrated to the 
developed algorithm with the hope of having some 
improved solutions. In addition, developed 
mathematical model is going to be revised with the hope 
of having better quality feasible solutions for medium 
and large sized problems.  

There are some assumptions widely used related to 
educational timetabling researches. A relaxed model 
will also be considered with course spans more than an 
hour and also daily course schedules which have lunch 
breaks. 
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