Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 2, Pages 2264-2271 (2019) DOI: 10.31801/cfsuasmas.562214 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

MEAN ERGODIC TYPE THEOREMS

G. OĞUZ AND C. ORHAN

Abstract. Let T be a bounded linear operator on a Banach space X. Replacing the Cesàro matrix by a regular matrix $A = (a_{nj})$ Cohen studied a mean ergodic theorem. In the present paper we extend his result by taking a sequence of infinite matrices $\mathcal{A} = (A^{(i)})$ that contains both convergence and almost convergence. This result also yields an A-ergodic decomposition. When T is power bounded we give a characterization for T to be \mathcal{A} -ergodic.

1. Introduction

Let X be a Banach space and T be a bounded linear operator on X into itself. By $M_n(T)$ we denote the Cesàro averages of T given by $M_n(T) := \frac{1}{n+1} \sum_{i=0}^n T^i$.

An operator $T \in B(X)$ is called mean ergodic, respectively uniformly ergodic, if $\{M_n(T)\}\$ is strongly, respectively uniformly, convergent in B(X). Cohen [3] considered the problem of determining a class of regular matrices $A=(a_{nj})$ for which

$$L_n := \sum_{j=1}^{\infty} a_{nj} T^j$$

converges strongly to an element invariant under T. It is the case when $\{L_n x : n \in$ \mathbb{N} } is weakly compact and $\lim_{k} \sum_{j=k}^{\infty} |a_{n,j+1} - a_{nj}| = 0$ uniformly in n (see also [11]). Observe that Cohen's result is an extension of the mean ergodic theorems due to

von Nuemann [10], F. Riesz [8] and K. Yosida [12].

In the present paper, replacing the matrix $A = (a_{nj})$ by a sequence of infinite matrices $(A^{(i)}) = (a_{nj}^{(i)})$ we study results in an analogy of Cohen. Now, we give some basic notations concerning the sequence of infinite matrices.

Let \mathcal{A} be a sequence of infinite matrices $(A^{(i)}) = (a_{nj}^{(i)})$. Given a sequence $x = (x_j)$

Received by the editors: May 09, 2019; Accepted: June 17, 2019.

2010 Mathematics Subject Classification. 47A35, 46B15, 40C05.

Key words and phrases. Infinite matrices, almost convergence, ergodic theorems.

we write

$$A_n^{(i)} x = \sum_{j=1}^{\infty} a_{nj}^{(i)} x_j$$

if it exists for each n and $i \geq 0$. The sequence (x_j) is said to be summable to the value s by the method \mathcal{A} if

$$A_n^{(i)}x \to s \quad (n \to \infty, \text{ uniformly in } i).$$
 (1)

If (1) holds, we write $x \to s(\mathcal{A})$.

The method \mathcal{A} is called conservative if $x \to s$ implies $x \to s'(\mathcal{A})$. If \mathcal{A} is conservative and s = s', we say that \mathcal{A} is regular. We now recall a theorem which characterizes the regularity of the sequences of infinite matrices.

Theorem 1 ([2, 9]). Let \mathcal{A} be the sequence of infinite matrices $(A^{(i)}) = (a_{nj}^{(i)})$. Then, \mathcal{A} is regular if and only if the following conditions hold:

- (1) $\sum_{i} |a_{nj}^{(i)}| < \infty$, (for all n, for all i),
- (2) There exists an integer m such that $\sup_{i\geq 0, n\geq m} \sum_{j} |a_{nj}^{(i)}| < \infty$,
- (3) for all j, $\lim_{n} a_{nj}^{(i)} = 0$, (uniformly in i)
- (4) $\lim_{n} \sum_{j} a_{nj}^{(i)} = 1$, (uniformly in i).

In addition, we write

$$\|A\| := \sup_{n,i} \sum_{i} |a_{nj}^{(i)}|,$$
 (2)

and $\|\mathcal{A}\| < \infty$ to mean that, there exists a constant M such that $\sum_{j} |a_{nj}^{(i)}| \leq M$, (for all n, for all i) and the series $\sum_{i} a_{nj}^{(i)}$ converges uniformly in i for each n.

Throughout the paper we assume that the sequence of matrices $(A^{(i)}) = (a_{nj}^{(i)})$ satisfies the following conditions:

- (i) \mathcal{A} is regular,
- (ii) $\|\mathcal{A}\| < \infty$,
- (iii) $\limsup_{k} \sum_{i,n} \sum_{j=k}^{\infty} |a_{n,j+1}^{(i)} a_{nj}^{(i)}| = 0.$

2. Main results

In this section, using a sequence of infinite matrices we give a theorem analogous to one of Cohen [3].

We now present a lemma which will be used in the proof of the main theorem.

Lemma 2. Let T and $A_n^{(i)}$ be bounded linear operators on a Banach space X into itself such that $TA_n^{(i)} = A_n^{(i)}T$ for all n and i. If

$$\lim_{T \to \infty} A_n^{(i)}(x - Tx) = 0, \quad (uniformly in i), \tag{3}$$

and

$$A_n^{(i)}x \to x_0(w), \quad (n \to \infty, uniformly in i),$$

then $Tx_0 = x_0$, where (w) indicates the weak convergence.

Proof. By X' we denote the dual space of X. Let $f \in X'$. Then, by weak convergence (uniformly in i) of $(A_n^{(i)}x)$ we have

$$\lim_{n} \sup_{i} f(A_n^{(i)} x - x_0) = 0.$$
 (4)

Since T is a linear and continuous operator on X, we also have

$$\lim_{n} \sup_{i} f(TA_{n}^{(i)}x - Tx_{0}) = 0.$$
 (5)

It follows from (3) and the fact that $f \in X'$,

$$\lim_{n \to \infty} \sup_{i} f(A_n^{(i)} x - A_n^{(i)} T x) = 0.$$
 (6)

Using the commutativity $TA_n^{(i)} = A_n^{(i)}T$ for each n and i, one may write

$$f(x_0 - Tx_0) = f(x_0 - A_n^{(i)}x) + f(A_n^{(i)}x - A_n^{(i)}Tx) + f(TA_n^{(i)}x - Tx_0).$$
 (7)

Applying the operator $\lim_{n \to i} \sup_{i}$ to both sides of (7) we get that

$$\left| \limsup_{n} f(x_0 - Tx_0) \right| \le \left| \limsup_{n} f(x_0 - A_n^{(i)}x) \right| + \left| \limsup_{n} f(A_n^{(i)}x - A_n^{(i)}Tx) \right|$$

$$+ \left| \limsup_{n} f(TA_n^{(i)}x - Tx_0) \right|.$$
(8)

Then by (4), (5), (6) and (8), we conclude that $f(x_0 - Tx_0) = 0$ for all $f \in X'$. This implies that $Tx_0 = x_0$.

We now present the main result of the paper.

Theorem 3. Let X be a Banach space and $T: X \to X$ be a bounded linear operator. Suppose that there exists an H > 0 such that $||T^j|| \le H$ for all $j \in \mathbb{N}$. Suppose that the sequence of infinite matrices $(A^{(i)}) = (a_{nj}^{(i)})$ satisfies the conditions (i)-(iii) and define $A_n^{(i)}x = \sum_{j=1}^{\infty} a_{nj}^{(i)}T^jx$. Assume that there exists a subsequence $\{A_{np}^{(i)}x\} \subset \{A_n^{(i)}x\}$ such that

$$\lim_{p} \sup_{i} A_{n_{p}}^{(i)} x = x_{0}(w), \tag{9}$$

where $x_0 \in X$. Then, $Tx_0 = x_0$ and $\lim_{n \to \infty} A_n^{(i)} x = x_0$ (uniformly in i). Denote by P the strong limit in B(X) of $\{A_n^{(i)}x\}$. Then it is the projection onto the space N(I-T) of T-fixed points corresponding to the ergodic decomposition $X = \overline{R(I-T)} \oplus N(I-T)$ and $P = P^2 = TP = PT$.

Proof. From the hypothesis there exists an H>0 such that $||T^j|| \leq H$ for all $j \in \mathbb{N}$. Since $||\mathcal{A}|| < \infty$, for $x \in X$ we have

$$\left\| A_n^{(i)} x \right\| = \left\| \sum_{j=1}^{\infty} a_{nj}^{(i)} T^j x \right\| \le H \|x\| \sum_{j=1}^{\infty} |a_{nj}^{(i)}|$$

$$\le H \|x\| \sup_{n,i} \sum_{j=1}^{\infty} |a_{nj}^{(i)}| < H \|x\| \|A\|.$$

$$\tag{10}$$

Since X is complete, each $\{A_n^{(i)}x\}$ is defined on X. By taking supremum over ||x|| = 1 in both sides of (10), we get, for all n and i, that

$$||A_n^{(i)}|| \le H||\mathcal{A}||. \tag{11}$$

Also we have

$$TA_n^{(i)}x = \sum_{j=1}^{\infty} a_{nj}^{(i)} T^{j+1}x = A_n^{(i)} Tx.$$
 (12)

By the hypothesis, we have for any $\varepsilon > 0$ that there exists a $k_0 = k_0(\varepsilon) \in \mathbb{N}$ such that for all $k \geq k_0$

$$\sup_{i,n} \sum_{i=k}^{\infty} |a_{n,j+1}^{(i)} - a_{nj}^{(i)}| < \varepsilon.$$

Hence, we get, for each $x \in X$, that

$$\begin{aligned} \left\| A_n^{(i)}(x - Tx) \right\| &= \left\| a_{n1}^{(i)} Tx + \sum_{j=1}^{\infty} (a_{n,j+1}^{(i)} - a_{nj}^{(i)}) T^{j+1} x \right\| \\ &\leq H \left\| x \right\| \left(\sup_i |a_{n1}^{(i)}| + \sup_i \sum_{j=1}^{k_0 - 1} |a_{n,j+1}^{(i)} - a_{nj}^{(i)}| + \sup_{i,n} \sum_{j=k_0}^{\infty} |a_{n,j+1}^{(i)} - a_{nj}^{(i)}| \right) \\ &\leq H \left\| x \right\| \left(2 \sup_i \sum_{j=1}^{k_0} |a_{nj}^{(i)}| + \varepsilon \right). \end{aligned}$$

Then, for $n > n_{\varepsilon}$ we also have $\sup_{i} \sum_{j=1}^{k_0} |a_{nj}^{(i)}| < \varepsilon$ which yields

$$\left\| A_n^{(i)}(x - Tx) \right\| \le H \|x\| \, 3\varepsilon.$$

This implies

$$\lim_{n \to \infty} A_n^{(i)}(x - Tx) = 0, \quad \text{(uniformly in } i\text{)}. \tag{13}$$

Furthermore, from (9), (12) and (13), the conditions of Lemma 2 are satisfied. Thus, one can get $Tx_0 = x_0$.

Now, we consider the linear subspace X_0 spanned by x - Tx for $x \in X$. We will show that $x_0 - x \in X_0$. To achieve this, we follow the idea given by Cohen [3]. Assume that $x_0 - x \notin X_0$. Then, one can easily see that there exists an $f \in X'$ such that

$$f(u) = 0, \quad u \in X_0; \quad f(x - x_0) = 1.$$

Since $T^kx - T^{k+1}x \in X_0$ for k = 0, 1, 2, ..., we have $f(T^kx - T^{k+1}x) = 0$. Then, it is easy to show that $f(x - T^jx) = 0$. So we obtain

$$f(x) = f(T^{j}x), \quad j = 1, 2, \dots$$
 (14)

Moreover, from (11) and (13), it follows that

$$\lim_{n} \sup_{i} A_{n}^{(i)} u = 0, \quad u \in X_{0}.$$
 (15)

Since $f \in X'$, one can get by (14) that

$$f(A_n^{(i)}x) = \sum_{j=1}^{\infty} a_{nj}^{(i)} f(T^j x) = \left(\sum_{j=1}^{\infty} a_{nj}^{(i)}\right) f(x)$$

which yields

$$\limsup_{n} f(A_n^{(i)}x) = f(x).$$
(16)

By (9) and (16) we obtain

$$0 = \lim_{p} \sup_{i} f(A_{n_{p}}^{(i)}x - x_{0}) = \lim_{p} \sup_{i} (f(A_{n_{p}}^{(i)}x) - f(x_{0}))$$
$$= f(x) - f(x_{0}) = f(x - x_{0}).$$

This is a contradiction. Then we necessarily have $x_0 - x \in X_0$. Since $Tx_0 = x_0$ we have $T^j x_0 = x_0$ for $j = 1, 2, \ldots$ Hence we have

$$A_n^{(i)} x_0 = \sum_{j=1}^{\infty} a_{nj}^{(i)} T^j x_0 = \left(\sum_{j=1}^{\infty} a_{nj}^{(i)}\right) x_0$$
 (17)

from which we immediately get

$$\lim_{n} \sup_{i} A_n^{(i)} x_0 = x_0. \tag{18}$$

Since $x = x_0 + (x - x_0)$, we get from (15) and (18) that

$$\lim_{n} \sup_{i} A_n^{(i)} x = x_0,$$

which proves the first claim.

We can write $x = x_0 + (x - x_0)$ such that $x_0 \in N(I - T)$ and $(x - x_0) \in R(I - T) \subset I$

 $\overline{R(I-T)}$. Now let $\varepsilon > 0$ and let $z \in \overline{R(I-T)} \cap N(I-T)$. Following [4] we then have $||z - (u - Tu)|| < \varepsilon/(3H ||A||)$ for $u \in X$. Hence

$$\left\| A_n^{(i)}(z - (u - Tu)) \right\| < \left\| \sum_{j=1}^{\infty} a_{nj}^{(i)} T^j \right\| \|z - (u - Tu)\| < \frac{\varepsilon}{3}.$$
 (19)

Since $z \in \overline{R(I-T)} \cap N(I-T)$, we observe that

$$A_n^{(i)}z = \sum_{j=1}^{\infty} a_{nj}^{(i)} T^j z = \sum_{j=1}^{\infty} a_{nj}^{(i)} z$$
 (20)

from which we get

$$\lim_{n} \sup_{i} A_n^{(i)} z = z. \tag{21}$$

By (15), (19) and (21), we conclude that

$$||z|| = ||z - A_n^{(i)}z + A_n^{(i)}z|| \le ||z - A_n^{(i)}z|| + ||A_n^{(i)}(z - (u - Tu))|| + ||A_n^{(i)}(u - Tu)|| < \varepsilon.$$

Hence, we find that $\overline{R(I-T)} \cap N(I-T) = \{0\}$, which implies that

$$X = \overline{R(I-T)} \oplus N(I-T).$$

On the other hand, we know that $\lim_n \sup_i A_n^{(i)} x = x_0$. Let $Px := \lim_n \sup_i A_n^{(i)} x = x_0$. Then, since $Tx_0 = x_0$ and $Px = x_0$ one can obtain, for all $x \in X$, that

$$Tx_0 = TPx = x_0 = Px$$
,

which yields TP = P. Also, we have $T^{j}P = P$ for all $j \in \mathbb{N}$. Hence, we observe that

$$A_n^{(i)}Px = \sum_{i=1}^{\infty} a_{nj}^{(i)}T^jPx = \sum_{i=1}^{\infty} a_{nj}^{(i)}Px$$

Applying the operator \limsup to both sides we find $P^2 = P$.

In addition, from (15) we obtain Px = PTx for all $x \in X$, that is P = PT. This concludes the proof.

Remark 4. If we define the sequence of matrices $(A^{(i)}) = (a_{n,i}^{(i)})$ by

$$a_{nj}^{(i)} = \begin{cases} \frac{1}{n+1} &, & i \le j \le i+n, \\ 0 &, & otherwise \end{cases}$$

then A reduces to almost convergence method of Lorentz [6]. Observe that $(a_{nj}^{(i)})$ defined as above satisfies the conditions (i)-(iii) imposed in Section 1. Some results concerning the almost convergence of the sequence of operators may be found in [1] and [7].

Given a sequence \mathcal{A} of matrices $(A^{(i)}) = (a_{nj}^{(i)})$, if the limit of $\{A_n^{(i)}x\}$ exists then we call the operator T an \mathcal{A} -ergodic operator. Motivated by that of Proposition 2.2 in [5] we have the following

Theorem 5. Let X be a Banach space, T be a bounded linear operator on X into itself. Assume that there exists an H > 0 such that $||T^j|| \le H$ for all $j \in \mathbb{N}$. Let $(A^{(i)}) = (a_{nj}^{(i)})$ be a sequence of infinite matrices satisfying the conditions (i)-(iii). Then, the operator T is A-ergodic if and only if $(I - T)\overline{(I - T)X} = (I - T)X$.

Proof. Let the operator T be \mathcal{A} -ergodic. Then, by Theorem 3 we have

$$X = \overline{R(I-T)} \oplus N(I-T).$$

The necessity is proved by applying the operator (I - T).

Assume that $(I-T)\overline{(I-T)X} = (I-T)X$. We have, for $x \in N(I-T)$, that

$$A_n^{(i)} x = \sum_{j=1}^{\infty} a_{nj}^{(i)} T^j x = \sum_{j=1}^{\infty} a_{nj}^{(i)} x.$$

Hence, we get

$$||A_n^{(i)}x - x|| \to 0$$
, $(n \to \infty$, uniformly in i). (22)

Now, let $x \in \overline{R(I-T)}$. Hence, there exists $x_k \in R(I-T)$ so that $x_k \to x$. One can get

$$||A_n^{(i)}x|| \le ||A_n^{(i)}x_k|| + ||A_n^{(i)}(x_k - x)||.$$

If we choose k in order to make $||x_k-x||$ sufficiently small, we find that $||A_n(x_k-x)||$ is also sufficiently small (no matter what n may be) because of the fact that \mathcal{A} satisfies (ii) and T is power bounded. Combining this with (15), we observe, for $x \in \overline{R(I-T)}$, that

$$||A_n^{(i)}x|| \to 0$$
, $(n \to \infty$, uniformly in i). (23)

Thus, by (22) and (23) the sequence $\{A_n^{(i)}\}$ is strongly convergent on $\overline{R(I-T)} \oplus N(I-T)$. Since $(I-T)\overline{(I-T)X} = (I-T)X$, for $y \in X$ there exists $z \in \overline{R(I-T)}$ such that (I-T)z = (I-T)y. We then get $h = y - z \in N(I-T)$. Since we have y = h + z such that $h \in N(I-T)$ and $z \in \overline{R(I-T)}$, the proof is completed.

References

- Aleman, A. and Suciu, L., On ergodic operator means in Banach spaces, Integr. Equ. Oper. Theory 85, (2016), 259-287.
- [2] Bell, H.T., Order summability and almost convergence, Proc. Amer. Math. Soc., 38 (3), (1973), 548-552.
- [3] Cohen, L.W., On the mean ergodic theorem, Ann. Math. (3), 41, (1940), 505-509.
- [4] Krengel, U., Ergodic Theorems, de Gruyter Studies in Mathematics vol 6, Walter de Gruyter & Co., Berlin, 1985.

- [5] Lin, M., Shoikhet, D. and Suciu L., Remaks on uniform ergodic theorems, Acta Sci. Math. (Szeged) 81, (2015), 251-283.
- [6] Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math. 80, (1948), 167-190.
- [7] Nanda, S., Ergodic theory and almost convergence, Bull. Math, de la Soc. Sci. Math, de la R. S. de Roumanie 26, (1982), 339-343.
- [8] Riesz, F., Some mean ergodic theorems, J. Lond. Math. Soc. 13, (1938), 274.
- [9] Stieglitz, M., Eine verallgen meinerung des Begriffs Fastkonvergenz, Math. Japon. 18, (1973), 53-70.
- [10] von Neumann, J., Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA, 18, (1932), 70-82.
- [11] Yoshimoto, T., Ergodic theorems and summability methods, Quart. J. Math. 38 (3), (1987), 367-379.
- [12] Yosida, K., Mean ergodic theorem in Banach space, Proc. Imp. Acad. Tokyo, 14, (1938), 292-294.

 $Current\ address$: G. Oğuz: Ankara University, Faculty of Science, Department of Mathematics, 06100, Tandoğan, Ankara, Turkey.

 $E ext{-}mail\ address: gencayyoguzz@gmail.com}$

 ${\rm ORCID~Address:}~~ {\tt https://orcid.org/0000-0003-4077-1080}$

Current address: C. Orhan: Ankara University, Faculty of Science, Department of Mathematics, 06100, Tandoğan, Ankara, Turkey.

E-mail address: orhan@science.ankara.edu.tr

ORCID Address: https://orcid.org/0000-0002-3558-4945