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ON THE LIMIT OF DISCRETE ¢-HERMITE I POLYNOMIALS

SAKINA ALWHISHI, REZAN SEVINIK ADIGUZEL, AND MEHMET TURAN

ABSTRACT. The main purpose of this paper is to introduce the limit relations
between the discrete ¢g-Hermite I and Hermite polynomials such that the or-
thogonality property and the three-terms recurrence relations remain valid.
The discrete g-Hermite I polynomials are the g-analogues of the Hermite poly-
nomials which form an important class of the classical orthogonal polynomials.
The g-difference equation of hypergeometric type, Rodrigues formula and gen-
erating function are also considered in the limiting case.

1. INTRODUCTION

Hermite polynomials are one of the important orthogonal family of the classical
orthogonal polynomials which have several applications in various science, such
as in mathematical physics, in particular in quantum mechanics [I5], mathematics
[12], statistics [32]. These polynomials were studied by Charles Hermite in 1864 and
named after him. They satisfy the following differential equation of hypergeometric

type [11, 19, 20, 25] 26, 27]
y"(2) — 229/ (2) 4 2ny(2) = 0, (1)

where n € Ny.

Discrete version of the Hermite polynomials is also important and has enormous
applications in several problems on theoretical and mathematical physics, e.g., in
the continued fractions, Eulerian series [16], algebras and quantum groups [21], 22]
[31], discrete mathematics, algebraic combinatorics (coding theory, design theory,
various theories of group representation) [§], ¢-Schrédinger equation and g-harmonic
oscillators [3], [, [5] [6], [7], 9], 1T, 23].

In fact, discrete g-Hermite I polynomials are one of the significant polynomial
family among the g-classical polynomials in the Hahn sense. The Hermite polyno-
mials and their g-analogues can be obtained in a suitable limit case from the other
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orthogonal polynomials [2, [19, 20]. Moreover, Hermite polynomials are obtained
from the discrete g-Hermite I polynomials in the limiting case as ¢ — 1.

The main aim of this study is to consider the limit relation between the dis-
crete g-Hermite I polynomials and the classical Hermite polynomials such that the
orthogonality property and the three-terms recurrence relations (TTRR) remain
valid. In fact, some kind of limit relation is given in [I9, 20]. The importance
of this study is to deal with the limit relation which preserves the orthogonality
and TTRR. Moreover, the g-difference equation of hypergeometric type, Rodrigues
formula and generating function are also considered in detailed.

In the next chapter, some important characteristic properties, such as polynomial
solutions of the ¢-difference equation [11 [10] 18] 24 28], Rodrigues formula [14], [30],
TTRR [13] 29], generating function [I9, 20] and orthogonality relation [1I, [19] 20,
20, 26, 27] of the discrete ¢g-Hermite I polynomials are introduced. Some necessary
basic definitions related with g¢-calculus are also established in the preliminaries
part [T, 17 191 20} 25] 26] 27].

Chapter 3 includes the main results of this study where limit relation between
the discrete g-Hermite I polynomials and the classical Hermite polynomials [19, 20]
are introduced in detailed.

2. PRELIMINARIES

In this part, some preliminaries for the discrete g-Hermite I polynomials are
presented. See for example [T}, 19} 20 25] 26] 27]. Although, most of the properties
given in this part are known, for the sake of completeness they are listed here.

Let 0 < ¢ < 1. The equation
T
—DgDy-1y(x) + quq—ly(x) +Ay(z) =0 (2)

is called the ¢-Hermite difference equation. Here, D, f(z) is the ¢-Jackson derivative
[19, 20, 28] of f defined by

@i,
Dy f(z) = (1-q)z
1(0), z=0.
Observe that if f is differentiable, then
. _ df(z)
q' "[n]
For A =\, := —qu, where [n], =1+ ¢+ -+ ¢! denotes the g-integer

with n € Ny, one solution of is a polynomial of degree n. The monic polynomial
solution of is called the discrete g-Hermite I polynomial and it is denoted by
hn(z;q). Tt is known that all g-derivatives of discrete g-Hermite I polynomials are
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also solutions of an equation of the same kind. More precisely, v, := D(’;hn(az; q)
is a polynomial solution of the equation

—Dqu—l’Ukn + %Dq—lvkn + UppVkn = 0
—4q
where g, = An—i foralln € Ng and £ =0,1,...,n.
The discrete g-Hermite I polynomials may also be obtained from the Rodrigues’
formula:

2y Diilpy )

T _ _ . —1\n (2
ho(z;9) = (1—q")"q PRE) (3)

n) _ n(n—1)

where (5 5— is the usual binomial and p,(z) is the g-weight function given

by

in which (a;¢)e = [[oeg(1 — ag®), a € C, is the infinite g-product [19} 20, 26] and

(a’lv cees Qg Q)oo = (al; Q)oo cee (CL,-; Q)oo-
The g-Hermite I polynomials h,(z; ¢q) satisfy the three-term recurrence relation

Tha(2;q) = hny1(230) +¢" 11— ¢"hno1(259), n=0,1,... (5)
where h_1(z;q) := 0 and ho(z;q) = 1.

A generating function of the discrete g-Hermite I polynomials is

(t%6*)o0 _ i ha(34) ()

(2t;¢) oo (¢ Dn

n=0

where (a;q)r = Hf;é(l —aq®),a € C, is the g¢-shifted factorial [19, 20} 26]. One
can derive, from @, that

hont1(05q) =0,  hon(0;9) = (=1)"¢" " V(g;¢*), and  hn(—a5q) = (—1)"hn(z;q)

foralln=0,1,...
The discrete g-Hermite I polynomials have the following hypergeometric repre-

sentation:
2n—1

2. 9

1 ) ()
where ,.¢, is the g-hypergeometric function [I7, [T9] 20] 26] given by

o0
A1,y ...,0p (al,...,a,,,.;q)k ( k (k))1+57r z
N 2 = _—_— —1 2
T¢5<b1,...,bsq ) Z(bl,. (=1

= s bsi )k (G 9k
The set {hn(z;9)}52, of ¢-Hermite I polynomials is orthogonal on the interval
(—1,1) with respect to the g-weight function pq(as). More precisely, the g-Hermite

-n ,—n+l

4

hn(z5q) = 2™ 20 (

k




ON THE LIMIT OF DISCRETE ¢-HERMITE I POLYNOMIALS 2275
I polynomials h,,(x; q) satisfy

1

[ eyl a10) o (50) dy = M8, ®)

-1

where M2 = (1 —q)(q, —1,—4;¢) o (q; q)nq(;) is the square of norm of h,(z;q).
This result can be generalized for the kth order g-derivative of h,(x;¢q). That is,

the set {vgn}52, is also orthogonal on the same interval with respect to the same

g-weight function. The orthogonality relation is

1
/ Pq(m)vkn(m)”kM(z) dgr = Min(smn
1

where

2
M2, = (1 =g F+g("2") (g, -1, —; q>oo[(n[”_]q£! Okp

and p = min{k, n}. Note that My, = M,,.

3. LiMIT RELATIONS

In this part, it will be shown that, in the limit case as ¢ — 1, the discrete ¢-
Hermite I polynomials tend to the Hermite polynomials with some suitable trans-
formation of the independent variable, which preserves the orthogonality and three-
terms recurrence relation. Under this transformation, the limiting cases of all the
properties, given in the previous section, for the discrete g-Hermite I polynomials
are studied. We start by the following key lemma which is given in [20] without
proof.

Lemma 1. Let x = 24/1 — q2. Then,
ha (z; Hy
i _n(@9) (Z)’
q—1 (]_ — q2)n/2 2n
where H,,(z) is the classical Hermite polynomials of degree n.

Proof. Let x = zy/1 — ¢2 and set u(z) = y(21/1 — ¢?) in ([2) with A = —¢*~"[n],/(1—
q). Using

quy(a:)b:zﬁ = \/11_7(]2Dq1u(z),

and
1
Dqu71y($)‘m:z -2 = 1_7q2Dqu71u(z),
the equation becomes
1 2 qlfn
———DyD,1u(z) + Dy-1u(z) — [n]qu(z) =0 (9)

1—¢? 1—g¢q 1—gq
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Since [n]; — n and D, f — f’ as ¢ — 1, multiplying the last equation by —(1 — ¢?)
and taking the limit as ¢ — 1, one derives

u’(2) — 220/ (2) + 2nu(z) = 0, (10)
which is the Hermite differential equation given in . As the monic polynomial
solutions of @D and are

hn (z 1—q2;q) H,(2)
(]_ _ q2)n/2 on

respectively, one obtains

i hn (z 1—q2;Q) _ Hy(2) (11)
qLH{ (1_q2)n/2 T o9n

Theorem 2. Let x = 21/1 — ¢2. Then,
lim p, () = p(2),

where p,(z) is the the q-weight function defined by of the discrete q-Hermite 1
polynomials and p(z) is the weight function of the classical Hermite polynomials.

Proof. Under the given transformation, the g-weight function defined in (), py(T) =

(qz, —q7; @) 0o = (¢?2?; ¢*) o becomes

— g2)22: g2
Py (zvl —qz) = (P —-¢)2%q%) = (A=) a )°°. (12)

1—(1—¢?)22

Using Euler’s identity [2],

2 2k 1
Gk (50
one derives
1
lim —————— =€, (14)

a—1 ((1 - ¢%)21¢%) s
Therefore, leads to
. (=), s
gﬂpq(zvl_q2):l}% 1—(1—¢%)22 =e " =p(2)

which is the weight function for the Hermite polynomials. O

Theorem 3. Let v = 24/1 — ¢2. Then, Rodrigues formula given in for the dis-
crete qg-Hermite I polynomials tends to Rodrigues formula for the classical Hermite
polynomaals in the limit case as ¢ — 1.



ON THE LIMIT OF DISCRETE ¢-HERMITE I POLYNOMIALS 2277

Proof. Applying the transformation to the Rodrigues formula for the discrete
g-Hermite I polynomials leads to

r=2/1—q3

()

B, (z 1— qQ;q> — (1—q )nq®)

Using the fact that
Dy f(z)

and dividing both sides of the last expression by (1 — ¢?)

B, (z 1- q2;q) (—1)ng(3)=7 Dijipg (zﬂ)

1=z~ (1+qr o (VT- )

Taking the limit of both sides as ¢ — 1 and using 7 we see that

Ho(z) = (—1)me” & (<)

dz™

which is the Rodrigues formula for Hermite polynomials. [

=a "Dy f(az),

r=«

n/2 one obtains

Theorem 4. Let x = z+/1— ¢2. Then, the three-term recurrence relation given
n for the discrete q-Hermite I polynomials tends to the three-term recurrence
relation for the classical Hermite polynomials as g — 1.

Proof. For the three-term recurrence relation OF the discrete ¢-Hermite I polyno-
mials given by , using the transformation and dividing the resulting equation by

(1—¢*)"%", one derives

hnta (z l—qQ;q) b, (z 1—q2;q> ¢ [n), fn—1 (z 1—q2;q)

n—1

n n +
(1-¢%)" (1-¢?)% 1+gq (1-q2)"

Taking the limit as ¢ — 1, and multiplying both sides by 2"*!, we obtain
H,1(2) —22H,(2) + 2nH,_1(z) =0,

which is the three-term recurrence relation for Hermite polynomials. O

Theorem 5. Let x = 24/1 — 2. Then, the generating function @ for the discrete
q-Hermite I polynomials satisfies the following limit relation

(1% 0% )00 9ui_?

a—1 xt;q) oo

2zt—t2

where e is the gemerating function for the classical Hermite polynomials.
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Proof. In , replacing x by (1 — ¢%)zt and taking the limit as ¢ — 1, result in

1
hm _— = €2Zt.
a—1 ((1—q?)zt;q) o

Also, from , we have
hm ((1 —q )t2;q2)oo =t

Now, using the transformation z = z4/1 — ¢? and replacing ¢ by /1 — ¢?t in the
generating function relation @ for the discrete g-Hermite I polynomials, we get

((1 — q2)t2;q2)oo B > A, (zﬂ’ (]) (t _ 2)
(1-¢?)zt;q),. —~ @ q

N h"(z 1_(12;‘1) (1-q)" n

- ng() (1 —q2)n/2 @D (14 q)t]™.

Taking the limit of both sides as ¢ — 1, we obtain

serit _ g~ Hal2) 20" S5 H(2) 0

which is the generating function relation for Hermite polynomials. (|
Theorem 6. Let x = z\/1 — q2. Then, the hypergeometric representation of

the discrete q-Hermite I polynomials tends to the hypergeometric representation of
the classical Hermite polynomials as ¢ — 1.

Proof. Note that the hypergeometric representation @ of the discrete ¢g-Hermite I
polynomials is

o —n41. 2 1 /21y K
hn(x;q):xnkz_o(q ,q()q ,(Zz)k 10, (1) <qx2 )

Using the transformation of the independent variable and dividing both sides by
(1 — ¢?)™2, one obtains

hn, (z 1—q2;q) e = (g~ ) (q—n-‘,-l;qQ)k k() 1 221 k
= kZ:O (( 1)%q ) <( )

(1= (%) = )22

oo —n k
_n Z (q e - qZ)kq(Qn_nk—(’;) <1> .
= A=) (A=) (%) 22

Taking the limit as ¢ — 1, and noting that

i (4% Dk (o)

eC,
=1 (1—¢g)F )



ON THE LIMIT OF DISCRETE ¢-HERMITE I POLYNOMIALS 2279

where (a) denotes the Pochammer’s symbol, we get

ZACHES ol (—1)’“

2
2n o (1)k z
or
) —n+1 (—Z_Q)k oy [ Lonl 1
Hy(z) = (22)" ) - 5 o =29 F N
k=0 k k
which is the hypergeometric representation of the Hermite polynomials. O

Finally, the limit relation of the orthogonality relation for the discrete g-
Hermite I polynomials is given in the next theorem.

Theorem 7. Let x = 21/1 — q2. Then, the orthogonality relation of the discrete
q-Hermite I polynomials tends to the orthogonality relation of the classical Hermite
polynomials as ¢ — 1.

Proof. For the orthogonality relation, we first note that the substitution z =

2y/1—¢2 in leads to
/\/111T Pq (zx/l - q2) A, (z 1— qQ;q) R (z\/l - q2;q> \/1 —@%dyx = M2 Sy

2

—4q

ntm+1

Divide both sides by (1 —¢?)" 2
MQ

/_”liqu(zm)h"(z SR St ) WU S

2
1—q2 (1_(12)% (1—(]2)% (l_qz)% nm-

Take the limit as ¢ — 1 to obtain
00 22n 2
/ ¢ Hy(2) Ho(2) d= = lim —2 05 (15)
o =1 (1—¢2)7 2
To complete the proof, we shall evaluate the limit on the right side. Now,
My %) (1 - ) (@ )nle. ~1, ~ ¢ )
= gl (1—¢2)*5"
. " 2. .2 o 1 oo
~ Jim (1 — g) 29 n(q 147 )oo(=159)
AT T
: (4%6%) o (—139)os
= lim (1 — q)[n],! .
g1 T 4gny1-¢

Recall the ¢g-gamma function defined by

lim
=1 (1-¢?)

) .
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which is the g-analogue of the gamma function and satisfies lim,_,; I'y(z) = I'(z).
(See [2].) Since

T, (1> _ @) s

2 (4:0?)
one has
M T (3) (66%)0(-1;0)0e 0l 1
1 - n____ _— |1 _4 2 ’ o0 »HJoo b g 1 2 o
liy (1-¢2) %5 lin [n],! 1+ g1 g i g2 { 5 ) (007 oo (0 0)

where we have used the fact that (—1;¢)c0 = 2(—¢; ¢) 0. Clearly,
()03 0 )

.2 .
(647 ) 0 (— Do (¢ 9o L.
Also,
lim T (1> _r(1> _ /R
¢—1 T\ 2 2
Hence,
lim M, = n!\/f

g—1 (] — qz)% on
As a result, gives us

/ eiZan(z)Hm(z) dz = 2" nIN/T 6

— 00

which is the orthogonality relation for the Hermite polynomials. (Il
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