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ON THE LIMIT OF DISCRETE q-HERMITE I POLYNOMIALS

SAKINA ALWHISHI, REZAN SEVİNİK ADIGÜZEL, AND MEHMET TURAN

Abstract. The main purpose of this paper is to introduce the limit relations
between the discrete q-Hermite I and Hermite polynomials such that the or-
thogonality property and the three-terms recurrence relations remain valid.
The discrete q-Hermite I polynomials are the q-analogues of the Hermite poly-
nomials which form an important class of the classical orthogonal polynomials.
The q-difference equation of hypergeometric type, Rodrigues formula and gen-
erating function are also considered in the limiting case.

1. Introduction

Hermite polynomials are one of the important orthogonal family of the classical
orthogonal polynomials which have several applications in various science, such
as in mathematical physics, in particular in quantum mechanics [15], mathematics
[12], statistics [32]. These polynomials were studied by Charles Hermite in 1864 and
named after him. They satisfy the following differential equation of hypergeometric
type [1, 19, 20, 25, 26, 27]

y′′(z)− 2zy′(z) + 2ny(z) = 0, (1)

where n ∈ N0.
Discrete version of the Hermite polynomials is also important and has enormous

applications in several problems on theoretical and mathematical physics, e.g., in
the continued fractions, Eulerian series [16], algebras and quantum groups [21, 22,
31], discrete mathematics, algebraic combinatorics (coding theory, design theory,
various theories of group representation) [8], q-Schrödinger equation and q-harmonic
oscillators [3, 4, 5, 6, 7, 9, 11, 23].
In fact, discrete q-Hermite I polynomials are one of the significant polynomial

family among the q-classical polynomials in the Hahn sense. The Hermite polyno-
mials and their q-analogues can be obtained in a suitable limit case from the other
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orthogonal polynomials [2, 19, 20]. Moreover, Hermite polynomials are obtained
from the discrete q-Hermite I polynomials in the limiting case as q → 1.
The main aim of this study is to consider the limit relation between the dis-

crete q-Hermite I polynomials and the classical Hermite polynomials such that the
orthogonality property and the three-terms recurrence relations (TTRR) remain
valid. In fact, some kind of limit relation is given in [19, 20]. The importance
of this study is to deal with the limit relation which preserves the orthogonality
and TTRR. Moreover, the q-difference equation of hypergeometric type, Rodrigues
formula and generating function are also considered in detailed.
In the next chapter, some important characteristic properties, such as polynomial

solutions of the q-difference equation [1, 10, 18, 24, 28], Rodrigues formula [14, 30],
TTRR [13, 29], generating function [19, 20] and orthogonality relation [1, 19, 20,
25, 26, 27] of the discrete q-Hermite I polynomials are introduced. Some necessary
basic definitions related with q-calculus are also established in the preliminaries
part [1, 17, 19, 20, 25, 26, 27].
Chapter 3 includes the main results of this study where limit relation between

the discrete q-Hermite I polynomials and the classical Hermite polynomials [19, 20]
are introduced in detailed.

2. Preliminaries

In this part, some preliminaries for the discrete q-Hermite I polynomials are
presented. See for example [1, 19, 20, 25, 26, 27]. Although, most of the properties
given in this part are known, for the sake of completeness they are listed here.
Let 0 < q < 1. The equation

−DqDq−1y(x) +
x

1− qDq−1y(x) + λy(x) = 0 (2)

is called the q-Hermite difference equation. Here, Dqf(x) is the q-Jackson derivative
[19, 20, 26] of f defined by

Dqf(x) =


f(x)− f(qx)

(1− q)x , x 6= 0,

f ′(0), x = 0.

Observe that if f is differentiable, then

lim
q→1

Dqf(x) =
df(x)

dx
.

For λ = λn := −q
1−n[n]q
1− q , where [n]q = 1 + q + · · ·+ qn−1 denotes the q-integer

with n ∈ N0, one solution of (2) is a polynomial of degree n. The monic polynomial
solution of (2) is called the discrete q-Hermite I polynomial and it is denoted by
hn(x; q). It is known that all q-derivatives of discrete q-Hermite I polynomials are
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also solutions of an equation of the same kind. More precisely, vkn := Dk
qhn(x; q)

is a polynomial solution of the equation

−DqDq−1vkn +
x

1− qDq−1vkn + µknvkn = 0

where µkn = λn−k for all n ∈ N0 and k = 0, 1, . . . , n.
The discrete q-Hermite I polynomials may also be obtained from the Rodrigues’

formula:

hn(x; q) = (1− q−1)nq(
n
2)
Dn
q−1 [ρq(x)]

ρq(x)
(3)

where
(
n
2

)
= n(n−1)

2 is the usual binomial and ρq(x) is the q-weight function given
by

ρq(x) = (qx,−qx; q)∞, (4)

in which (a; q)∞ =
∏∞
s=0(1− aqs), a ∈ C, is the infinite q-product [19, 20, 26] and

(a1, . . . , ar; q)∞ = (a1; q)∞ . . . (ar; q)∞.
The q-Hermite I polynomials hn(x; q) satisfy the three-term recurrence relation

xhn(x; q) = hn+1(x; q) + qn−1(1− qn)hn−1(x; q), n = 0, 1, . . . (5)

where h−1(x; q) := 0 and h0(x; q) = 1.
A generating function of the discrete q-Hermite I polynomials is

(t2; q2)∞
(xt; q)∞

=

∞∑
n=0

hn(x; q)

(q; q)n
tn (6)

where (a; q)k =
∏k−1
s=0 (1 − aqs), a ∈ C, is the q-shifted factorial [19, 20, 26]. One

can derive, from (6), that

h2n+1(0; q) = 0, h2n(0; q) = (−1)nqn(n−1)(q; q2)n and hn(−x; q) = (−1)nhn(x; q)

for all n = 0, 1, . . .
The discrete q-Hermite I polynomials have the following hypergeometric repre-

sentation:

hn(x; q) = xn 2φ0

(
q−n, q−n+1

−

∣∣∣∣∣q2; q2n−1x2

)
(7)

where rφs is the q-hypergeometric function [17, 19, 20, 26] given by

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣∣q; z
)

=

∞∑
k=0

(a1, . . . , ar; q)k
(b1, . . . , bs; q)k

(
(−1)kq(

k
2)
)1+s−r zk

(q; q)k
.

The set {hn(x; q)}∞n=0 of q-Hermite I polynomials is orthogonal on the interval
(−1, 1) with respect to the q-weight function ρq(x). More precisely, the q-Hermite
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I polynomials hn(x; q) satisfy∫ 1

−1
ρq(x)hn(x; q)hm(x; q) dqx =M2

nδnm, (8)

whereM2
n = (1− q)(q,−1,−q; q)∞(q; q)nq

(n2) is the square of norm of hn(x; q).
This result can be generalized for the kth order q-derivative of hn(x; q). That is,

the set {vkn}∞n=0 is also orthogonal on the same interval with respect to the same
q-weight function. The orthogonality relation is∫ 1

−1
ρq(x)vkn(x)vkm(x) dqx =M2

knδmn

where

M2
kn = (1− q)n−k+1q(

n−k
2 )(q,−1,−q; q)∞

([n]q!)
2

[n− k]q!
δkp

and p = min{k, n}. Note thatM0n =Mn.

3. Limit Relations

In this part, it will be shown that, in the limit case as q → 1, the discrete q-
Hermite I polynomials tend to the Hermite polynomials with some suitable trans-
formation of the independent variable, which preserves the orthogonality and three-
terms recurrence relation. Under this transformation, the limiting cases of all the
properties, given in the previous section, for the discrete q-Hermite I polynomials
are studied. We start by the following key lemma which is given in [20] without
proof.

Lemma 1. Let x = z
√

1− q2. Then,

lim
q→1

hn(x; q)

(1− q2)n/2 =
Hn(z)

2n
,

where Hn(z) is the classical Hermite polynomials of degree n.

Proof. Let x = z
√

1− q2 and set u(z) = y(z
√

1− q2) in (2) with λ = −q1−n[n]q/(1−
q). Using

Dq−1y(x)
∣∣
x=z
√
1−q2 =

1√
1− q2

Dq−1u(z),

and

DqDq−1y(x)
∣∣
x=z
√
1−q2 =

1

1− q2DqDq−1u(z),

the equation becomes

− 1

1− q2DqDq−1u(z) +
z

1− qDq−1u(z)− q1−n

1− q [n]qu(z) = 0. (9)
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Since [n]q → n and Dqf → f ′ as q → 1, multiplying the last equation by −(1− q2)
and taking the limit as q → 1, one derives

u′′(z)− 2zu′(z) + 2nu(z) = 0, (10)

which is the Hermite differential equation given in (1). As the monic polynomial
solutions of (9) and (10) are

hn

(
z
√

1− q2; q
)

(1− q2)n/2 and
Hn(z)

2n
,

respectively, one obtains

lim
q→1

hn

(
z
√

1− q2; q
)

(1− q2)n/2 =
Hn(z)

2n
. (11)

�

Theorem 2. Let x = z
√

1− q2. Then,
lim
q→1

ρq(x) = ρ(z),

where ρq(x) is the the q-weight function defined by (4) of the discrete q-Hermite I
polynomials and ρ(z) is the weight function of the classical Hermite polynomials.

Proof. Under the given transformation, the q-weight function defined in (4), ρq(x) =

(qx,−qx; q)∞ = (q2x2; q2)∞ becomes

ρq

(
z
√

1− q2
)

=
(
q2(1− q2)z2; q2

)
∞ =

(
(1− q2)z2; q2

)
∞

1− (1− q2)z2 . (12)

Using Euler’s identity [2],
∞∑
k=0

zk

(q; q)k
=

1

(z; q)∞
, |q| < 1, (13)

one derives

lim
q→1

1

((1− q2)z; q2)∞
= ez. (14)

Therefore, (12) leads to

lim
q→1

ρq

(
z
√

1− q2
)

= lim
q→1

(
(1− q2)z2; q2

)
∞

1− (1− q2)z2 = e−z
2

= ρ(z)

which is the weight function for the Hermite polynomials. �

Theorem 3. Let x = z
√

1− q2. Then, Rodrigues formula given in (3) for the dis-
crete q-Hermite I polynomials tends to Rodrigues formula for the classical Hermite
polynomials in the limit case as q → 1.
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Proof. Applying the transformation to the Rodrigues formula (3) for the discrete
q-Hermite I polynomials leads to

hn

(
z
√

1− q2; q
)

= (1− q−1)nq(
n
2)
Dn
q−1 [ρq(x)]

∣∣∣
x=z
√
1−q2

ρq

(
z
√

1− q2
) .

Using the fact that

Dn
q−1f(x)

∣∣∣
x=αz

= α−nDq−1f(αz),

and dividing both sides of the last expression by (1− q2)n/2, one obtains

hn

(
z
√

1− q2; q
)

(1− q2)n/2 =
(−1)nq(

n
2)−n

(1 + q)n

Dn
q−1ρq

(
z
√

1− q2
)

ρq

(
z
√

1− q2
) .

Taking the limit of both sides as q → 1 and using (11), we see that

Hn(z) = (−1)nez
2 dn

dzn

(
e−z

2
)

which is the Rodrigues formula for Hermite polynomials. �

Theorem 4. Let x = z
√

1− q2. Then, the three-term recurrence relation given
in (5) for the discrete q-Hermite I polynomials tends to the three-term recurrence
relation for the classical Hermite polynomials as q → 1.

Proof. For the three-term recurrence relation OF the discrete q-Hermite I polyno-
mials given by (5), using the transformation and dividing the resulting equation by
(1− q2)n+12 , one derives

hn+1

(
z
√

1− q2; q
)

(1− q2)n+12
− z

hn

(
z
√

1− q2; q
)

(1− q2)n2
+
qn−1[n]q

1 + q

hn−1

(
z
√

1− q2; q
)

(1− q2)n−12
= 0.

Taking the limit as q → 1, and multiplying both sides by 2n+1, we obtain

Hn+1(z)− 2zHn(z) + 2nHn−1(z) = 0,

which is the three-term recurrence relation for Hermite polynomials. �

Theorem 5. Let x = z
√

1− q2. Then, the generating function (6) for the discrete
q-Hermite I polynomials satisfies the following limit relation

lim
q→1

(t2; q2)∞
xt; q)∞

= e2zt−t
2

where e2zt−t
2

is the generating function for the classical Hermite polynomials.
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Proof. In (13), replacing x by (1− q2)zt and taking the limit as q → 1, result in

lim
q→1

1

((1− q2)zt; q)∞
= e2zt.

Also, from (14), we have

lim
q→1

(
(1− q2)t2; q2

)
∞ = e−t

2

.

Now, using the transformation x = z
√

1− q2 and replacing t by
√

1− q2t in the
generating function relation (6) for the discrete q-Hermite I polynomials, we get(

(1− q2)t2; q2
)
∞

((1− q2)zt; q)∞
=

∞∑
n=0

hn

(
z
√

1− q2; q
)

(q; q)n

(
t
√

1− q2
)n

=

∞∑
n=0

hn

(
z
√

1− q2; q
)

(1− q2)n/2
(1− q)n
(q; q)n

[(1 + q)t]n.

Taking the limit of both sides as q → 1, we obtain

e2zt−t
2

=

∞∑
n=0

Hn(z)

2n
(2t)n

n!
=

∞∑
n=0

Hn(z)

n!
tn

which is the generating function relation for Hermite polynomials. �

Theorem 6. Let x = z
√

1− q2. Then, the hypergeometric representation (7) of
the discrete q-Hermite I polynomials tends to the hypergeometric representation of
the classical Hermite polynomials as q → 1.

Proof. Note that the hypergeometric representation (7) of the discrete q-Hermite I
polynomials is

hn(x; q) = xn
∞∑
k=0

(
q−n; q2

)
k

(
q−n+1; q2

)
k

(q2; q2)k

(
(−1)kq(

k
2)
)−1(q2n−1

x2

)k
.

Using the transformation of the independent variable and dividing both sides by
(1− q2)n/2, one obtains

hn

(
z
√

1− q2; q
)

(1− q2)n/2 = zn
∞∑
k=0

(
q−n; q2

)
k

(
q−n+1; q2

)
k

(q2; q2)k

(
(−1)kq(

k
2)
)−1( q2n−1

(1− q2)z2

)k
= zn

∞∑
k=0

(q−n; q2)k
(1− q2)k

(q−n+1; q2)k
(1− q2)k

(1− q2)k
(q2; q2)k

q(2n−1)k−(k2)
(
−1

z2

)k
.

Taking the limit as q → 1, and noting that

lim
q→1

(qα; q)k
(1− q)k = (α)k, α ∈ C,
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where (α)k denotes the Pochammer’s symbol, we get

Hn(z)

2n
= zn

∞∑
k=0

(−n
2

)
k

(−n+1
2

)
k

(1)k

(
−1

z2

)k
or

Hn(z) = (2z)n
∞∑
k=0

(
−n
2

)
k

(
−n+ 1

2

)
k

(
−z−2

)k
k!

= (2z)n 2F0

(
−n
2 ,

1−n
2

−

∣∣∣∣∣− 1

z2

)
which is the hypergeometric representation of the Hermite polynomials. �

Finally, the limit relation of the orthogonality relation (8) for the discrete q-
Hermite I polynomials is given in the next theorem.

Theorem 7. Let x = z
√

1− q2. Then, the orthogonality relation (8) of the discrete
q-Hermite I polynomials tends to the orthogonality relation of the classical Hermite
polynomials as q → 1.

Proof. For the orthogonality relation, we first note that the substitution x =

z
√

1− q2 in (8) leads to∫ 1√
1−q2

− 1√
1−q2

ρq

(
z
√

1− q2
)
hn

(
z
√

1− q2; q
)
hm

(
z
√

1− q2; q
)√

1− q2dqx =M2
n δnm.

Divide both sides by (1− q2)n+m+1
2∫ 1√

1−q2

− 1√
1−q2

ρq

(
z
√

1− q2
) hn (z√1− q2; q

)
(1− q2)n2

hm

(
z
√

1− q2; q
)

(1− q2)m2
dqz =

M2
n

(1− q2)n+m+1
2

δnm.

Take the limit as q → 1 to obtain∫ ∞
−∞

e−z
2

Hn(z)Hm(z) dz = lim
q→1

22nM2
n

(1− q2) 2n+12

δnm. (15)

To complete the proof, we shall evaluate the limit on the right side. Now,

lim
q→1

M2
n

(1− q2) 2n+12

= lim
q→1

q(
n
2)(1− q)(q; q)n(q,−1,−q; q)∞

(1− q2) 2n+12

= lim
q→1

(1− q) (q; q)n
(1− q)n

(q2; q2)∞(−1; q)∞

(1 + q)n
√

1− q2

= lim
q→1

(1− q)[n]q!
(q2; q2)∞ (−1; q)∞

(1 + q)n
√

1− q2
.

Recall the q-gamma function defined by

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x
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which is the q-analogue of the gamma function and satisfies limq→1 Γq(x) = Γ(x).
(See [2].) Since

Γq2

(
1

2

)
=

(q2; q2)∞
(q; q2)∞

√
1− q2,

one has

lim
q→1

M2
n

(1− q2) 2n+12

= lim
q→1

[n]q!
Γq2

(
1
2

)
(q; q2)∞(−1; q)∞

(1 + q)n+1
=
n!

2n
lim
q→1

Γq2

(
1

2

)
(q; q2)∞(−q; q)∞

where we have used the fact that (−1; q)∞ = 2(−q; q)∞. Clearly,

(q; q2)∞(−q; q)∞ =
(q; q2)∞(q2; q2)∞

(q; q)∞
= 1.

Also,

lim
q→1

Γq2

(
1

2

)
= Γ

(
1

2

)
=
√
π.

Hence,

lim
q→1

M2
n

(1− q2) 2n+12

=
n!
√
π

2n
.

As a result, (15) gives us∫ ∞
−∞

e−z
2

Hn(z)Hm(z) dz = 2n n!
√
π δnm

which is the orthogonality relation for the Hermite polynomials. �
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