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ABSTRACT. Let (M, mpr, gar) and (N, 7N, gn) be two Poisson manifolds, with
gnr and gy are The Riemanniann metric of M and N respectively. Let (M x
N, g Dgn) be their product manifold equipped with the Poisson tensor 7 @
7y and the product Riemannian metric gypyxn = gy D gn- In this paper,
we discuss the Poisson structure of the product Riemannian manifold and we
describe all its geometric properties of the product in terms of each Poisson
Riemannian manifold of the basis. Some interesting consequences are also
given.

1. INTRODUCTION

Let M be a Poisson manifold with Poisson tensor . A pseudo-metric of signature
(p,q) on the cotangent bundle T*M is a smooth symmetric contravariant 2-form
g on M such that, at each point z € M, g, is non degenerate on T* M with sig-
nature (p, q). For vector bundles, the corresponding operational of a contravariant
derivative had been introduced by I.Vaisman ([7]).

The contravariant connection D™, in the sense of Fernandes [3] and Vaisman, is
defined by formula (4) (see below) for any pseudo-metric g on T*M. The notion
of Poisson manifolds with compatible pseudo-metric, introduced by M. Boucetta in
[2], is called a pseudo-Riemannian Poisson manifold (for more details the reader is
referred to [1]).

The purpose of this work is to study the geometry of product Poisson manifold
(M x N,mpxn = 7y @ wy) with a Riemannian metric. We calculate their Lie
bracket, Schouten-Nijenhuis bracket, contravariant connection and several curva-
tures on product manifold endowed with the natural class of Riemannian metric
gumxN = gu D gy - This leads to some interesting relation between the geome-
try of the Poisson manifolds (M, 7as, gr) and (N, 7, gn) where gy and gy are
the Riemannian metrics of T*M and T*N respectively, and its product Poisson
(M x N,mpxn, guxn) endowed with a Riemannian metric on T%(M x N).
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2. PRELIMINARIES

We start by giving the basic tools needed to prove the main results in this
paper. We also assume the reader is familiar with definitions and results about
the Riemannian geometry of Poisson. In the second subsection we present also
some recent general results concerning product Poisson manifolds. These results
are important for us in what is left in our work. We will also express the product
of Poisson manifolds in terms of bivector fields ma;«y which satisfy some special
conditions. Some general references are [3], [4] and [7].

2.1. Riemannian Poisson manifold. Let M be a manifold equipped with the
Riemannian metric g5 and a bivector field 75,. We associate with the bivector field
7wy (in a natural way) a sharp map #r,, : T*M — TM defined by S(t:,, () =
(e, 8) and a Poisson bracket on the 1-forms defined by

(2.1) [, Blny = Lﬁ"]ﬂ ()8 — Lﬁ"]ﬂ (B — d(ma (e, 8))

The Schouten-Nijenhuis bracket [mps,mas]g is the obstruction so that f,, be
a homomorphism between Q!(M) endowed with the bracket [-,],,, and X'(M)
endowed with the Lie bracket. We have (see [1])

(2'2) [7TM7 7TM]S(OQ ﬁa ’Y) = 7(ﬁﬂnl ([aa 6}#1\4) - [ﬁTrM (Oz), ﬁ?rM (6)])

The bivector field 7y, defines a Poisson structure on M if and only if
(2.3) [TFM,T&'M]S =0.

Let #,”' : TM — T*M be the bundle isomorphism defined by (4,7 (X))(Y)
and g : T"M — TM its inverse. We can then define the metric § on the bundle
cotangent by (o, 8) = g(#y(a),t4(8)). This latter is a non-degenerate definie
positive symmetric bilinear form.

For each Riemannian metric on 7% M, one considers the contravariante connec-
tion introduced in the sense of Fernandes [3] by

2G(DafB3,7) = G (2).(8,7) + faps (8)-9(, 7) — B, (7)-G(c, B)
+§([O‘7ﬂ]m\/177) + g([’}/?a]ﬂkl?ﬂ) - g([v:ﬂ]m\/na)

where «a, 8,7 € Q' (M) and the Lie bracket [-,].,, is given by (2.1).
D will be called the Levi-Civita Contravariante connection associated with the
couple (mar,g). Further, D satisfies:
(1) Doff — Dga = [a, B, ; (Torsion-free).
(2) e (@)-9(8,7) = G(Dafsy) + §(B, Day); (D compatible with g).
With the notation above, the triplet (M, 7y, §) is called a Riemannian Poisson
manifold if, for any «, 3,y € QY(M)

(2.5) Dry(a, B,y = ey (@) 7ar(8,7) — (7 (DaB,7) — 7 (B, Day) = 0

(7 is compatible with §).
By R™ ™M g™ (g) and K™ (V,,) we denote respectively the Riemannian cur-
vature tensor, the Ricci tensor, the scalar curvature and the sectional curvature of m

(2.4)
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dimensional Riemannian manifold (M, g). Then R™ v™ o™ (g) and K™ (V)
are defined by

(2.6) R™ (a, )y =DoDpy — DgDay — Dio g7y

(2.7) r™ (a, B) =Tr(y = R™ (o, B)m) = > §(R™ (Ey, )8, E;)
=1
(2.8) o™ () = Z ™ (B, By () with Bi(z) = e
and
K™ (V ) — g(RTrM (alaﬁl)alaﬂl)

glai,a1).g(B1, 81) — gla, £1)?

where {E1, Es, ..., B, } is an orthogonal basis in T*M, «, 8,y € T*M and a1, /1
are two linearly independent forms at a point x € w!(M). V, is the plane section
spanned by a7 and (.

2.2. Product of Poisson manifolds. Let (M, gps) and (N, gn) be two Riemann-
ian manifolds with the dimensions m and n respectively. M x N is the product
manifold of M and N.

Let m and o be the projections mappings C*° of M x N to M and N respectively

Lemma 2.1 ([6]). The tangent space of M x N at a point (z,y) is the direct sum
of subspaces T( )M x {y} and T, y{x} x N, i.e.

T(Z7y)M X N = T(m,y)M X {y} D T(Z7y){x} x N

Proposition 2.1. The cotangent bundle of M x N at a point (z,y) is the direct

sum of subspaces T, \M x {y} and T7, {x} x N, i.e.

Proof.
(1) Let my = ¥ om and 0, = ¢” o7 be the mappings from M x N into
M x {y} and {z} x N respectively. Set P = d(; .7, and Q = d(; )0
According to the previous lemma, P and @ are projections of T(, ,yM x N
into Ty )M x {y} and T, ,){x} x N respectively. We then have

P+Q=1,PoP=PQoQ=Q, P, (e3xNn =0,Q1, smxn =0
For a € T}, ,M x N,W € T yyM x N with W = Wy + Wy = P(W) +
Q(W), we have
a(W)=a(Wy)+a(W) =ao PW)+aoQ(W) = (a1 +az)(W)
where a1 € T(’;’y)MxN and as € T(*;’

0 and (a2)/T(z,y)M><{y} = 0.
Setting H = {w € T, \M x N/(w)/7, , {s3xn = 0} and G = {w €
T(’;y)M X N/(W)/T(z,wa{y} = 0}, we can easily see H ~ T(*;,y)M x {y}
and G ~ 17, {x} x N.
(2) The dimension dim(T(,, ,\M x N) = dim(T¢, M x {y}) —&—dz’m(T(*r,y){x} X

N), establishing the desired formula.

M x N such that (1) /1, (e} xN =
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]
Remark 2.1. Let a € QY(M x N), a(z,y) € 17, M x N for any (z,y) € M x N.

From Proposition (1), we have
a(r,y) = a(r,y) o dg )Ty + a(r,y) ody o € HOG =Ty M @ Ty N

If we put (P* o a)(z,y) = a(z,y) o dg,)my € Ty M and (Q* o a)(x, y) = a(z,y) o
d(z,y)0: € T, N, then we can easily see that P* and )* are the projection mapping
of T*(M x N) into T*M and T*N respectively.
Remark 2.2. P and @ satisfy
(2.10) P +Q*=I,P*oP* =P Q" 0Q* =Q* P oQ" =Q o P =0
We Put J* = P* — Q*. It is easy to see that
(2.11) JoJ* =[P o] =J 0P =P Q" cJ = J 0 Q" = —Q*

Now, let (M, gy, 7n) and (N, gn,7n) be two m and n dimensional Poisson

manifolds respectively. We define a Riemannian metric and Poisson tensor of M x N
respectively by

(2.12) guxn(@, B) = gu (P e, P*B) + gn (Q", Q)

such that

o (Guxn(P*a, P*B)) = gu(P*a, P*f3).
® Guxn(QF aaQ*ﬂ)) N (Q*Of Q*ﬁ)
am

and
(213) WMXN(aaﬂ) :WM(P*O(,P*ﬂ)+7TN(Q*Oé,Q*6)
such that

o TyxnN(P*a, P*B) = mp (P e, P*3).

° WMXN(Q*aaQ*ﬂ) = WN(Q*OC,Q*ﬁ)'

o Tuxn(P e, Q" B) = Tuxn(Q"a, P*3) = 0.
We will also denote the Poisson bracket by mayrxn: {f, 9} mxn = marxn(df,dg).
By direct calculations we obtain

(2.14) {f, 9 mxn (@ y) = {fy, 99301 (@) + {fo, 9235 ()
where f,g € C°(M x N),gm,Jn, are Riemannian metrics on the cotangent bun-

dle T*M and T*N respectively, and 7y, my are Poisson tensors of M and N
respectively.
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Remark 2.3. (see [5])
e Let X, Y be two vectors in T(M x N). If for any o € T*(M x N), P*a(X) =
Y and Q*(X) =0, then X =Y.
e We can easily verify that this tensor is indeed a Poisson tensor on M x N.
e With respect to this product Poisson structure, the projection maps 7 :
M x N — M and o0 : M x N — N are Poisson maps.
For any f € C*°(M x N),

Az [ = df (z,y) = df () + dfs(y) = do fy + dy fo-

The formula (13) is equivalent to
frmxn (@) = rmxn (Pra) + rvx v (@ ).

Proposition 2.2. Let (M, wy), (N, mn) be Poisson manifolds and let ¢ : M — N
be a Poisson map which is a diffeomorphism. Then for any f,g € C>°(N) and
a, 3 € QYN), we have

(1) @7 (Bry (@) = ¢* (fry () = fry (¢70)

(2) Ly, (0+p)bnn (97 ) = ¢" Ly (p)hry (@)

(3) ¢)* [a,ﬁ]ﬂ'N = [d)*anS*ﬁ]ﬂ'M
Proof. Using the fact that ¢ is a Poisson map and seeing that ¢.(X) = dpo X o
e Lt (Y) = dpTt oY o, 0u(X)(f) = X(fop) o™ o '(Y)(h) = X(ho

') o @, p*(dg) = d(p*g) and (¢*())(Y) = ap.Y) 0o, 1), 2) and 3) follow
immediately. (]

3. ON THE CONNECTION OF PRODUCT POISSON MANIFOLDS
We will now prove the first results of this paper.

Proposition 3.1. Let (M X N, myxn = Tpm + 7N, GuxN = gum + dn) be a product
Riemannian manifold of the Poisson manifolds (M, war, gar) and (N, wn,gn). Then
for any o, B,y € T*(M x N), we have

( ) ﬁTI'MXN(P* ) = ﬁ‘er(P*a)
2 ﬁﬂ'l\/IXN(Q* ) = ﬁﬂM (Q* )
3 ﬁT"MxN(P Oé)(ﬂ-MXN(Q*KLQ* )) =0

2)

3)

(4) Brnr s v (P a)(P /8) = LﬁwaN(P*ﬁ)(P*a) =0
(5) Plev, Blnrsun = [P, P* Bl = [P*a, P* By,
(6) Q*[a, Blrriun = (@7, Q" Blapn = [Q%, Q" Blry
(7) [P*a, Q*ﬁ]ﬂ'MxN =0

(8) [J* e, Blrrrin = Tt Blanrsn

9) [T, J*Blarn = 10 Blarsrn

Proof. For any € T*(M x N), we have P*B({r,,, n (P*a)) = mypxn(P*a, P*() =
7wy (P*a, P*B) = P*B(#x,, (P*a)) and Q*B(tr,, . v (P*®)) = 0. This combined with
Remark 1 now yield the first three assertions.

The fourth statement follows directly from the definition of the Lie derivative
and from (1) and (2).

The last five points follow directly from the definition of the Lie bracket in
T*(M x N) and also from (1) and (2).

O
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Proposition 3.2. Let (M x N,mypwn = 7p + 7N, sy = gu + Gn) be a prod-
uct Poisson manifold of the Poisson manifolds (M, 7, ganr) and (N, 7N, Gn) with
Gumx N the product metric of M x N and gy, Gy are the Riemannian metric of M, N
respectively. By D™ xN D™ qnd D™ we denote the Levi-Civita connection of the
metric gux N, du and gy respectively. Then for any o, 8,7 € QY (M x N), we have

( ) P* 7TM><N/3 DTFIWXNP*IB D P*/ﬁ
(2) Q"DE*¥3 = D" Q"B = D, Q"8
(3) DR Q B = D P'3 =0
(1) DJ~ 20 = D
(5) DI 7 = J* DI 5
Proof. Using the equation (4), we obtain
2Gr1xn (Dpry ™ P*B, P*y) =
Brnn (P70).Grarsn (P78, P*y) + fray o (P B)-Grnixn (P, Py)
— traren (P7)-Grnrx v (PP, P*B) + Grarsn ([P0, PT By, P7)
+ Gartx N ([P*Y, P oy s P7B) = Gurax N ([P77, P Blcson s PR )
= brn (P7Q).Grns (P73, P™y) + by (P B).-Grra (P v, Py)
— brar (P™9)-Grra (PP, P*B3) + Grna ([P, P* ]y, P*)
+ Gt ([P*y, P 0y, P*B) = Gura ([P*, P* By PP )
= 20-m (DY, P* 3, P*y)
and
2xmx N (DpY; N P, P*y) = 0,

establishing the first statement.
Now we prove (2). We have

20xmxN (DG Y Q7 3,Q ) =
Brarn (Q7).Grnix N (Q7 B, Q™) + Brps o (QFB)-Grmrx v (@, Q™)
— Brarn (@) -Gt N (@, @ B) + Grnix N ([Q v, @ By » @)
+ Gamrx N ([Q™Y, Q Ay s @7B) = Gurarx N([Q™Y, Q" Bl v @7 ¥)
= 2g-n (DY, Q"B, Q")

and

20xmxN DG QY B, Q) =
proving (2).
In the same way we can prove D3N Q* 3 = DWMXNP*B =0.
We can say that D3 P*3 and D”’XNQ*ﬁ are also the Levi-Civita con-
travariant connection introduced in the sense of Fernandes of the Poisson manifolds
(M, mar,gur) and (N, 7n, GN)-

Using Equation (4), we find

Gt (DREN PB,Q) = bimygon (Q70)-Gry (PB, Q%) — sy (P8, DN Q%)
=0.
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Then we have
Q (DTFI\/IXNP*ﬁ) — 0

and
P*(Dgf;NP*ﬁ) = Dg?;NP*,B.
Similarly
PH(DEG Q™) =0
and
Q (DR Q*B) = DRry " Q*p.
Since
P*D””Nﬂ D“’J\lpr*ﬂ + DﬂMxNP*/B + D7r1\4><NQ B+ D'“']MxNQ*ﬁ
= (DR P'B) + (DG PB),
we have

Dg}waP*ﬁ — P*DngNﬁ_

For the same reason D3N Q*8 = Q*Da >N 3.
As J* = P* — Q*, then we have

Dg]vaNJ*ﬁ — J*DngNﬁ
Then from Theorem (1) and the fact that D™xN ig torsion free, we have
7TM><NJ*ﬁ J* 7|'M><N
- J*(DWMXNJ*O‘ + [J o ﬁ]'ﬂ'I\/IXN)
- J*(J* WMXNQ + J*[ /B]WMXN)

- DEMXNOZ + [a7ﬂ}ﬂ'M><N
= DTMxN 3
o .

4. ON THE CURVATURE TENSOR OF PRODUCT POISSON MANIFOLDS

We denote the Poisson curvature tensor of product Riemannian Poisson manifold
(M x N,myxn = Ty + TN, GuxN = Gu + gn) by R™ >N, Then we have the
following

Theorem 4.1. Let (M X N,mpyxn = T + TN, dMxN = gu + gn) be a prod-
uct Poisson manifold of the Poisson manifolds (M, 7, gar) and (N, 7N, gn) with
gumxnN the product metric of M x N and gy, gn are the Riemannian metric of
M, N respectively. Then for any o, 3,7 € QY (M x N), R™x~ satisfies the follow-
ing properties:

(1) R™9x~(a, §)P*y = P*R™<~ (a, B)y € Q1 (M)

(2) R~ (o, B)Q*y = Q" R~ (a, B)y € QL(N)

(8) R™x (a, B)J*y = J*R™< (a, B)y € Q1 (M x N)
(4) Rmvxn (T, J*B)y = R™0x (o, B)y

(5) R (J*a, By = R™< (a, J*B)y

(6) (

R™xN (v, B)y = Ry (P*a, P*B)P*y 4+ Ra(Q*a, Q*B)Q*~
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where

Rﬂ']\{xN(P*a7 P*ﬁ)P*'Y, Rﬂ'MxN(Q*a, Q*ﬁ>Q*'Y =R, (P*Oé7 P*ﬁ)P*,y’ R2(Q*a7 Q*ﬁ>Q*’Y

Proof. Tt follows directly from Proposition 3 and the definition of curvature tensor
in T*(M x N) that

RWMXN(O[,ﬂ)P*’Y — DgMXNDgMXNP*’}/ _ DZ;MXNDQMXNP*’Y _ D7TM><N P*’Y

(Blmnrw

— DgMXNP*DgMXN’Y_ D;MXNP*DngN,y_ P*DWMXN ol

(0Bl ng

= P*DjM*N DEM*Ny — P*DRMN DIMxNy — P*DIYAY

(CHEIESV.

:P*(DgMXNDgMXN’Y—DgMXNDTrZMXN’y DETAf/éi:AlXN"Y)
= P*R™xN (a, B)7.
The proof of the second statement is similar to the one of (1).

To prove (3), we note that from J* = P* — Q*, Propositions 2 and 3, and direct
calculations, we have that

Rﬂ—MxN(J*a7 J*ﬁ)’)/ DWA{XND'/TIMBXN,‘Y _ Dﬂiv[xNDWi\/IaxN,Y _ DET]N*I;IE ﬁ]“'MXN’Y
= DR DNy = DY DRy DY

— DngND;IWXN,y _ D;MXNDngN7 _ DfroéjtlﬁﬁfoN
= RN (a, B).

The other points are treated with similar calculations as above. ([

5. ON THE RICCI TENSOR OF PRODUCT POISSON MANIFOLDS

By r™x~N we denote the poisson curvature tensor of product Riemannian Poisson
manifold (M XN, mprxny = Tar+7N, Gux Ny = gu+gn ). Then we have the following

Theorem 5.1. Let (M X N,mpxn = T + TN, dMxN = gu + gn) be a prod-
uct Poisson manifold of the Poisson manifolds (M, 7, gar) and (N, 7N, gn) with
gumx N the product metric of M x N and gpr, gy are the Riemannian metric of M, N
respectively. Then for any o, 8,7 € QY (M x N), the following hold
(1) r™Mx~(P*a, P*(3) = r™ (P*a, P*(3)
)T (Q"a,Q"B) = r™(Q"a, Q" 3)
) PN (T, JB) = PN o, )
4) 7TM><N(P* Q*ﬁ) — rTl'IvIXN(Q* P*ﬁ> -0
) 77 () = P (Pra, ) T (@10, Q°)

TM X N

Proof. We choose a local form of adapted orthonormal frames {dxz1, dzs, .....dxm,}
and {dy1,dys, .....dy,} in T*M and T*N respectively. Then {e; = n*dz1,e0 =
T*dxe, ...y, = T Ty, €my1 = 0 dy1, 0" dys....., €min = 0*dy, } is an orthonormal
frame in T*M x N.
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‘We have

3
+
3

rTMXN(P*o P*3) = g(R™xN (e;, P*a)P* 3, e;)

<.
Il

3
3 [l

g(P*R™N (e, P*a) B, €4)

I
i

3
+
3

g(R™xN(P*e; P*a)P* 3, €;)

I
i

3
+
3

g(R™ N (P*e;, P*a)P* 3, P*e;)
i=1

-
Il

I
Eﬂs

M(RTFMXN(CZ.’EZ‘,P*Q)P*ﬁ,dl'i)
1

.
Il

3
3

=r

(Pra, P* ).

The proof of formulae (2), (3), (4) and (5) is akin to the foregoing one. O

6. ON THE CONTRAVARIANT DERIVATIVE OF THE CURVATURE TENSOR OF
PRODUCT POISSON MANIFOLDS

Let (M XN, TN = Tm+7N, s N = Gu+Jn) be a product Poisson manifold
of the Poisson manifolds (M, gar) and (N, 7w, gn) with garxn the product
metric of M x N and g, gy are the Riemannian metric of M, N respectively.

For R™ =~ which is a tensor of type (3.1), we define its contravariant derivative,
denoted by D™ xN RTMxN ' ag follows

DgMXNRTrJ\lXN(/B’pY’S) :DgIWXN(RT"IVIXN(ﬂ’pY)(S) _ RWMXN(DZAIxNﬂ’,-}/)(S
_ RWMXN(IB’DZMXN,\/)é _ RWMXN(ﬁ7,y)DgM><N6

Then we have the following

Theorem 6.1. under the same assumptions as those of Theorem 2 and for any
a, 3,7,8 € QY (M x N), the following hold

) P*( WMXNRWMXN(B v, )) D;JLIXNRTFMXN(P*/B,P*’Y) P*5)

) [ WNIXNRTFMxN(ﬁ v, )} Dg:IXNRTrMXN(Q*B7Q*'Y,Q*5)

3) 7TM><NR7TM><N(Q*5 v, ) = ﬂMxNRWMXN(ﬂaQ*’Yaé) =0

4) DN R0 (8,7, Q6) = D R™xx (PB,7,8) = 0

5) D‘ITIMXNRT(}WXN(ﬁ7P ~, ) = Dgy;NRﬂMXN(Bv%P*é) =0

6) 7"M><NR7TM><N DRJQRKP*@P*%P*(;) + DgﬁlaR2(Q*ﬁvQ*77Q*5)

2

(1
(
(
(
(
(
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Proof. From Formula (12), Propositions 3&4 and the previous theorem, we obtain

(DR R ) (P8, Py, P*6) =
DR (BP0 (P8, Py)P*8) = R (DR P B, P*) P
— R™1xN (P*B, DEMN | P*y)P*§ — R™*N (P*3, P*) DN P*§
=D (YR (8,7)8) = R™Y (P D~ , ') P's
— R™MxN (P* 3, P*DIM*Ny) P*§ — RT™MXN (P* 3, P*y) P*DIM*N §
=P D (R (8,9)0) = PR (D3 6,7)8
— PTRON (8, D)3 = PURTY (B,4) D
=P [D N (R (8,7)8) — R (DF 8,9)3
— RPN (8, D)8 — R7 (8,9) D)
=P (DR ™) (8,7,0)]

The proof of (2) is similar to the previous one while the proofs of (3), (4), (5) and
(6) are based on Propositions 4&3 and on Theorem 1. O

7. ON THE CONTRAVARIANT DERIVATIVE OF THE POISSON TENSOR 7jp;xnN OF
PRODUCT POISSON MANIFOLDS

The contravariant derivative of the Poisson tensor ms « v is denoted by D™ >Ny,
which is defined for any a, 3,7 € Q}(M x N) by

DWA{XNWMXN(a’ﬁ,/‘}/) = ﬁﬂ.MxN(oz).ﬂ'MxN(ﬂ,’Y)*WMxN(DgNIxNﬂ7,Y)
—Tarx N (B, DM N ).

Theorem 7.1. Under the same assumptions of Theorem 3, D™ >N, N verifies
the following

(1) DTNy n (P, P*B3, P*y) = D™ my (P, P*3, P*y)

(2) DTN (Q7 e, Q7 B, Q) = D™y (Q7 e, @5, Q™)

(8) D™y (PF0, Q*B,7) = D™xN g (P B, Q%) = 0

(4) DTN N (QF e, P*B,y) = D™IN e v(Q e, 3,Q%) =0

(5) D77M><N7-‘—M><N(a’ﬁ7,y) = DWMXNW]\/[)(N(P*O(,P*67 P*’Y)-FDWMXNWMXN(Q*OQQ*ﬂ,Q*’y)

Proof. From Propositions 2&3&4, we have

D™y N(Pray P*B, P*y) = B (PFQ) arse v (P68, P*y) — marxn (DY XN P* 3, P*)
— marxn (P B, DEYN Pry)
= trp (PP ). (P* 3, P*y) — ma (DEY, B, P*y)
— 7 (P*3, DRY, P*)
= D™y (P, P*3, P*),
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establishing (1). We also have

DN N(QF e, QF B, QFY) =lmpn (QF ) arse v (Q7 5, Q) — marsn (DEYL N 8, Q%)
— Tarxn (Q° B, DN Q)
=ty (Q7 ) 7N (QB, Q%) — 7N (DY, 58, Q™)
— 78 (Q*B, DFN,Q*)
= D™y (Q%a, Q" B,Q"Y),

proving (2). Lastly,

DN N (Pra Q% B,7) =t (PFQ) Tarse v (Q* B, 7) — Tarsn (DR N Q* B, )
— Tuxn(DENQ* B, 7)
= frren (Pra). T n(Q73,Q% ) =0,

showing (3).

As for the proof of (4), we imitate the proof of (3). Finally, (5) is an immediate
consequence of (1), (2), (3) and (4). The proof of the theorem is over. O

8. ON THE RIEMANNIAN-CHRISTOFFEL CURVATURE TENSOR OF PRODUCT
POISSON MANIFOLDS

Theorem 8.1. Under the same assumptions of Theorem 4, g(R™ >N («, 3,7),9)
verifies the following

(1) ngN(R”MXN(P*a P*B)P*y, P*6) = gar(R™ (P*a, P*3) P*v, P*0)
(2) garsen (BTN (Q 7, Q7 B)Q™, Q70) = g (R™ (Q"a, Q" B)Q", Q76)
(3) garx (R”“N(Q*a B)y, P76) = gn (R™ (Q"a, P*B)7,0) = 0
(4) gnrx N(R“MXN(Q*CM B)P™,Q6) = gn(R™ (P, B)y, Q"0) =
(5) grxn (RN (P~ Q*ﬂ)% 6) = gn(R™ (P, $)Q77,6) =0
(6) garsn (BTN (e, Q*ﬂ) “0) = gn(R™ (a, B)Q™, P*5) = 0
() Garsen (BTN (™ §) " )—gM(R”M(P* , P*3) Py, P*4)

+ g (R™(Q"ar, Q* B)Q", Q76).

Proof. Formula (13), Theorem 1, Proposition 4 and direct calculations yield the
desired formulae. O

9. ON THE SCALAR CURVATURE OF PRODUCT POISSON

Theorem 9.1. Under the same assumptions of Theorem 5, o™ *N (x,y) verifies
the following equation ,

0T (2,9) = o (&) + ()

Proof. We choose a local form of adapted orthonormal frames {dz1, dzs, .....dxm,}
and {dy1,dys, .....dy, } in T*M and T*N respectively.

Then {E; = n*dx1, Es, .....ey, = 7°d2p, Ems1 = 0*dy1, Epyoeeeesy Enpn = 0*dyn }
is an orthonormal frames in T*M x N.
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From theorems (5),(2) and (1), we have

m—+n

g”MXN(a:,y) = Z Tﬂ'MXN(Ei,Ei)(xay)

~
=

TN (B B ) (2, y) + Z N (B, Eipm) (€, Y)
i=1

.

@
Il
-

n

P (B Bi)(w) + Y 1™ (Bigm, i) (1)

i=1

.

s
Il
—

= ™ @)+ 0™ (1)

10. GEOMETRIC CONSEQUENCES

Proposition 10.1. Under the same hypotheses as those of Theorem 2, the product
Poisson manifolds (M X N,y = Tar + TN, Jaxy = gu + gn) i a Riemann-
ian Poisson manifold if and only if (M, 7ar, gar) and (N, 7N, gn) are Riemannian
Poisson manifolds.

Proof. If (M X N,wpxn = Tpr + 7N, GrxN = Gu + gn) is a Riemannian Poisson
manifolds, then for any «, 5 and v € T*(M x N), D™>Ngyr n(8,7,0) = 0. From
Theorem 4, we have

0= D™*Ngp o n(P*B, P*y, P*0) = D™ w5 (P* 3, P*v, P*§)
and
0= DWMXNT‘-MXN(Q*ﬂa Q*77 Q*(S) = DWNTFN(Q*Bv Q*Va Q*é)
The last two displayed equations imply that (M, ms, gar) and (N, 7y, gn) are both
Riemannian Poisson manifolds.
Conversely, if (M, 7, gar) and (N, w, ) are locally Riemannian Poisson man-
ifolds, then
0 = Dﬂ—MTF]\/[(P*ﬁ,P*’}/,P*é) = DWMXN’]TMXN(P*ﬁ, P*’}/, P*(S)
and
0= Dﬂ-NTrN(Q*ﬁa Q*’% Q*(S) = DﬂMXNTrMXN(Q*ﬂv Q*Va Q*é)

Using Theorem 4 again, we see that

DTN T (P*B, Py, PRO)4+ D™ Ny v (QF B, Q7, Q78) = D™ N g (8,7, )

and so (M x N, Ty xN = v + TN, Guxy = Gu + gn) is a Riemannian Poisson
manifold. 0

Proposition 10.2. Under the same hypotheses as those of Theorem 2, the product
(M X Nymprxn = 7 + 7, Gy = gu + Gn) is a locally symmetric Poisson
manifold if and only if (M, 7, gar) and (N, 7w, gn) are locally symmetric Poisson
manifolds.

Proof. It (M x N,TpxN = T + 7N, GmxN = gu + gn) is a locally symmetric
manifold, then for any «, 3 and v € T*(M x N), Da"*~ R™x~(3,7,§) = 0. Now,
Theorem 3 gives us

0 = DIMN Rrvxy (P*3, P*y, P*§) = DM R™ (P*3, P*y, P*6)
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and
0= DG/a M R™N(Q*6,Q™y, Q6) = DY R™ (Q* B, Q", Q9).
These last two equations yield (M, s, gar) and (N, 7, gn) are locally symmetric
manifolds (i.e D™ R™ = D™ R™N = ().
Conversely, if (M, 7y, gn) and (N, 7wy, gn) are locally symmetric manifolds,
then

0= DM R™ (P*j3, P*y, P*§) = DY XN R™xN (P*3, P*~, P*§)
and
0= DY, B™(Q"B,Q™,Q"d) = DGy R™N(Q"3,Q, Q"9).
From Theorem 3, we have
DN R™ON (P B, Py, P*0)+ Dol ;N R™N (Q 3, Q™y, Q70) = DM N R™ N (83,,4).

Thus (M X N, TprxN = Tar +7N, v N = v +gn) s a locally symmetric Poisson
manifold. O

Proposition 10.3. Let (M X N,myxn = T + TN, Guxy = Gy + Gn) be a
product Poisson manifold of the Poisson manifolds (M, my, gar) and (N, 7N, GN)
with gyprxn the product metric of M x N and gar, gn are the Riemannian metric
of M, N respectively. Then (M X N,myxn = T + TN, Guxy = gum + gn) is flat
if and only if (M, 7, gar) and (N, 7N, gn) are flats.

Proof. The proof is based upon Theorem 1. O

Proposition 10.4. Let (M X N,mpyxn = T + TN, GuxN = Ju + Gn) be a
product Poisson manifold of the Poisson manifolds (M, war, gar) and (N, 7N, Gn)
with gyrxn the product metric of M x N and gar, gy are the Riemannian metric
of M, N respectively. Then (M X N,Tapsxn = T + TN, GMxN = Gu + gn) @S a
Ricci flat Poisson manifold if and only if (M, 7ar,gy) and (N, wn,gn) are Ricei
flats Poisson manifolds.

Proof. The proof is very similar (with obvious changes) to that of Proposition 6
and it uses Theorems 2&4. O

Theorem 10.1. Let (M X N,mpxn = T + TN, GMxnN = Gu + Gn) be a prod-
uct Poisson manifold of the Poisson manifolds (M, 7y, gar) and (N, 7N, gn) with
gumxnN the product metric of M x N and gy, gn are the Riemannian metric of
M, N respectively. If (M x N, wywn =7Tp + 7N, GvuxN = Gv + Gn) has constant
sectional curvature, then (M, 7y, gar) and (N, 7N, gn) have the same constant sec-
tional curvature.

Proof. Theorem 5 and Formula (13) are used to prove this theorem. Let { P*a, P*3}
and {Q*«a, Q@*B} be two linearly independent forms in M x N. We have
L e (RT5 (Pa, P*B)P*B, Pa)
Grarsn (P*0, P*Q).Gr oy (P8, P*B) = (Grag o (PFev, P* )2
_ Grps (R™ (P*ar, P*3)P* 3, P* 1)
 Gra (P*Q, P*Q).Grey (P*B, P*3) = (ry (P*r, P*[3))?
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and

_ s (BTN (Q7a, Q7 B) P 3, Q" )

G (@, Q7). Gy (Q°B, Q7B) — (Gras i (Q* 0, Q3))?
_ Jry (R™ (@70, Q" B)Q" B, Q" x)

e (Q7, Q70).3ry (Q7B,Q*B) — (Imy (@7, Q*B))?

k

This means that (M, ma, gar) and (N, 7y, gnv) have the same constant sectional
curvature k.

O

Corollary 10.1. With the same assumptions as in the previous theorem and as-
suming that (M, mpr, gar) and (N, 7w, gn) have as constant sectional curvatures k
and k' (k # k') respectively, then (M X N, TpxN = Tar + TN, GMxN = Gm + GN)
does not have constant sectional curvature.
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