Available online: July 31, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 2, Pages 2298–2312 (2019) DOI: 10.31801/cfsuasmas.000000 ISSN 1303-5991 E-ISSN 2618-6470

$http://communications.science.ankara.edu.tr/index.php?series{=}A1$

[1,2]-COMPLEMENTARY CONNECTED DOMINATION NUMBER OF GRAPHS-III

G.MAHADEVAN AND K.RENUKA

ABSTRACT. A set $S \subseteq V(G)$ in a graph G is said to be [1,2]-complementary connected dominating set if for every vertex $v \in V - S$, $1 \leq |N(v) \cap S| \leq 2$ and $\langle V-S \rangle$ is connected. The minimum cardinality of [1,2]-complementary connected dominating set is called [1,2]-complementary connected domination number and is denoted by $\gamma_{[1,2]cc}(G)$. In this paper, we investigate 3-regular graphs on twelve vertices for which $\gamma_{[1,2]cc}(G) = \chi(G) = 3$.

1. INTRODUCTION

Let G(V, E) be simple and connected graph. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [2]. In [6], V.R.Kulli and B.Janakiraman introduced the concept of nonsplit domination number of graph and characterized its bounds. In [3], Mustapha Chellali et.al, first studied the concept of [1,2]-sets. In [7], Xiaojing Yang and Baoyindureng Wu, extended to the study of this parameter. In [4, 5], G.Mahadevan et.al, introduced the concept of [1,2]-complementary connected domination and investigate 3-regular graphs of order $n \leq 10$, whose [1,2]-complementary connected domination number equals chromatic number equals three. In this paper, we investigate 3-regular graphs on twelve vertices for which $\gamma_{[1,2]cc}(G) = \chi(G) = 3$.

2. 3-Regular graphs on twelve vertices

Let G be a connected cubic graph on twelve vertices for which $\chi(G) = \gamma_{[1,2]cc}(G) = 3$. Let $S = \{x, y, z\}$ be a [1, 2]cc-set. Since G is cubic, clearly $\langle S \rangle \neq K_3, K_2 \cup$

Received by the editors: February 05, 2018; Accepted: June 25, 2018.

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. Complementary connected domination, [1,2]-sets, [1,2]-domination, [1,2]-complementary connected domination.

Submitted via International Conference on Current Scenario in Pure and Applied Mathematics [ICCSPAM 2018].

This research work was supported by Departmental Special Assistance, University Grants Commission, New Delhi and UGC-BSR Research fellowship in Mathematical Sciences- 2014-2015.

^{©2019} Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

 K_1, P_3 . Hence $< S > = \bar{K_3}$. Let $S_1 = \{v_1, v_2, v_3\}, S_2 = \{v_4, v_5, v_6\}$ and $S_3 =$ $\{v_7, v_8, v_9\}$. The following are only possible cases $\langle S_i \rangle$, where $1 \leq i \leq 3$. Let $\begin{array}{l} \langle V_7, V_8, V_9 f \rangle. \text{ The following are only possible cases } \langle S_i \rangle, \text{ where } 1 \leq i \leq 5. \text{ Let } \\ \langle S_1 \rangle = \langle S_2 \rangle = \langle S_3 \rangle = P_3; \langle S_1 \rangle = \langle S_2 \rangle = P_3, \langle S_3 \rangle = K_2 \cup K_1; \\ \langle S_1 \rangle = \langle S_2 \rangle = P_3, \langle S_3 \rangle = \bar{K}_3; \langle S_1 \rangle = P_3, \langle S_2 \rangle = \langle S_3 \rangle = K_2 \cup K_1; \\ \langle S_1 \rangle = P_3, \langle S_2 \rangle = K_2 \cup K_1, \langle S_3 \rangle = \bar{K}_3; \langle S_1 \rangle = P_3, \langle S_2 \rangle = \langle S_3 \rangle = \bar{K}_3; \\ \langle S_1 \rangle = \langle S_2 \rangle = \langle S_3 \rangle = K_2 \cup K_1; \langle S_1 \rangle = \langle S_2 \rangle = K_2 \cup K_1, \langle S_3 \rangle = \bar{K}_3; \\ \langle S_1 \rangle = \langle S_2 \rangle = \langle S_3 \rangle = K_2 \cup K_1; \langle S_1 \rangle = \langle S_2 \rangle = K_2 \cup K_1, \langle S_3 \rangle = K_3; \\ \langle S_1 \rangle = K_2 \cup K_1, \langle S_2 \rangle = \langle S_3 \rangle = \bar{K}_3; \langle S_1 \rangle = \langle S_2 \rangle = \langle S_3 \rangle = \bar{K}_3. \end{array}$ Graphs G_i , where $1 \le i \le 32$

Prepositon 2.1. If $\langle S \rangle = \bar{K_3}$ and $\langle S_1 \rangle = \langle S_2 \rangle = \langle S_3 \rangle = P_3$, then $G \cong G_1$

Proof. Let $\langle S_1 \rangle = P_3 = (v_1, v_2, v_3), \langle S_2 \rangle = P_3 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = P_3 = (v_7, v_8, v_9)$. Let v_1 be adjacent to any one of $\{v_4, v_6, v_7, v_9\}$. Without loss of generality, let v_1 be adjacent to v_4 . Now v_3 is adjacent to v_6 or v_7 (or equivalently to v_9). If v_3 is adjacent to v_6 , then no new graph exists. If v_3 is adjacent to v_7 , then $G \cong G_1$.

Prepositon 2.2. If $< S >= \bar{K_3}$ and $< S_1 >= < S_2 >= P_3$ and $< S_3 >= K_2 \cup K_1$, then $G \cong G_2$

Proof. Let $\langle S_1 \rangle = P_3 = (v_1, v_2, v_3), \langle S_2 \rangle = P_3 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = P_3 = (v_7, v_8, v_9)$, where $v_7v_8 \in E(S_3)$. Let v_1 be adjacent to any one of $\{v_4, v_6\}$ or any one of $\{v_7, v_8\}$ or v_9 .

Case 1 $v_1v_4 \in E(G)$

Let v_3 be adjacent to v_6 or $v_7(or equivalently to <math>v_8)$ or v_9 . If v_3 is adjacent to v_6 , then no graph exists.

If v_3 is adjacent to v_7 , then either v_6 is adjacent to v_8 or v_9 . If v_6 is adjacent to v_8 , then no new graph exists. If v_6 is adjacent to v_9 , then no graph exists.

If v_3 is adjacent to v_9 , then either v_6 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_6 is adjacent to v_7 or v_8 or v_9 , then no graph exists.

Case 2 $v_1v_7 \in E(G)$

Let v_3 be adjacent to any one of $\{v_4, v_6\}$ or v_8 or v_9 . Let v_3 be adjacent to v_4 . Then v_6 is adjacent to any one of v_8 or v_9 and hence no graph exists.

Let v_3 be adjacent to v_8 . Then v_9 is adjacent to v_4 and v_6 . In this case, $\langle V-S \rangle$ is disconnected and hence no graph exists.

Let v_3 be adjacent to v_9 . Then v_4 is adjacent to v_8 or v_9 . If v_4 is adjacent to v_8 , then v_9 is adjacent to v_6 and hence $G \cong G_2$. If v_4 is adjacent to v_9 , then v_6 is adjacent to v_8 and hence $G \cong G_2$.

Case 3 $v_1v_9 \in E(G)$

Let v_3 be adjacent to any one of $\{v_4, v_6\}$ or any one of $\{v_7, v_8\}$ or v_9 . If v_3 is adjacent to v_4 , then no new graph exists.

If v_3 is adjacent to v_7 , then v_8 is adjacent to v_4 (or equivalently to v_6). If v_8 is adjacent to v_6 , then v_9 is adjacent to v_4 , so that $G \cong G_2$.

If v_3 is adjacent to v_9 , then v_7 is adjacent to v_4 and v_8 is adjacent to v_6 . In this case $\langle V - S \rangle$ is disconnected and hence no graph exists.

Prepositon 2.3. If $\langle S \rangle = \bar{K}_3$ and $\langle S_1 \rangle = \langle S_2 \rangle = P_3$ and $\langle S_3 \rangle = \bar{K}_3$, then no graph exists.

Proof. Let $\langle S_1 \rangle = P_3 = (v_1, v_2, v_3), \langle S_2 \rangle = P_3 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = \overline{K_3} = (v_7, v_8, v_9)$. Let v_1 be adjacent to any one of $\{v_4, v_6\}$ or $\{v_7, v_8, v_9\}$

Case 1 Let v_1 be adjacent to v_4 . Since G is cubic, v_3 cannot be adjacent to v_6 and hence v_3 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_3 is adjacent to v_7 , then no new graph exists.

Case 2 Let v_1 be adjacent to v_7 and v_3 is adjacent to any one of $\{v_4, v_6\}$ or any one of $\{v_8, v_9\}$ or v_7 . In all the above cases, no graph exists.

Prepositon 2.4. If $\langle S \rangle = \bar{K_3}$ and $\langle S_1 \rangle = P_3$ and $\langle S_2 \rangle = \langle S_3 \rangle = K_2 \cup K_1$, then $G \cong G_i$, where i = 3, 4.

Proof. Let $\langle S_1 \rangle = P_3 = (v_1, v_2, v_3), \langle S_2 \rangle = K_2 \cup K_1 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = K_2 \cup K_1 = (v_7, v_8, v_9)$, where $v_4v_5, v_7v_8 \in E(G)$. Let v_1 be adjacent to $\{v_4, v_5, v_7, v_8\}$ or $\{v_6, v_9\}$.

Case 1 $v_1v_4 \in E(G)$.

In this case, v_3 must be adjacent to v_5 or v_6 , $\{v_7, v_8\}$ or v_9 .

Let v_3 be adjacent to v_5 . Then v_6 is adjacent to either $\{v_7 \text{ and } v_8\}$ or $\{v_7 \text{ and } v_9\}$. If v_6 is adjacent to v_7 and v_8 , then no graph exists. If v_6 is adjacent to v_7 and v_9 , then no graph exists.

If v_3 is adjacent to v_6 , then v_5 is adjacent to either v_9 or any one of $\{v_7, v_8\}$. If v_5 is adjacent to v_9 , then no graph exists. If v_5 is adjacent to v_7 , then no graph exists.

Case 2 $v_1v_6 \in E(G)$.

Let v_3 be adjacent to either v_9 or any one of $\{v_4, v_5\}$ or any one of $\{v_7, v_8\}$.

If v_3 is adjacent to v_9 , then v_4 is adjacent to any one of $\{v_7, v_8\}$ or v_9 . If v_4 is adjacent to v_9 and v_5 is adjacent to v_7 , then v_6 is adjacent to v_8 and hence $G \cong G_3$. If v_4 is adjacent to v_7 , then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 , and v_6 is adjacent to v_9 , then $\langle V - S \rangle$ is disconnected. If v_5 is adjacent to v_9 , and v_6 is adjacent to v_8 , then $G \cong G_3$. Let v_4 be adjacent to v_7 . Then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 , then v_6 is adjacent to v_9 and $\langle V - S \rangle$ is disconnected. If v_5 is adjacent to v_9 and v_6 is adjacent to v_8 , then $G \cong G_3$.

Let v_3 be adjacent to v_4 . Then v_5 is adjacent to any one of $\{v_7, v_8\}$ or v_9 . If v_5 is adjacent ot v_7 , then v_6 is adjacent to v_8 or v_7 . If v_6 is adjacent to v_8 , then no graph exists. If v_5 is adjacent to v_9 , then v_6 is adjacent to any one of $\{v_7, v_8\}$ or v_9 . If v_6 is adjacent to v_7 , then no graph exists. If v_6 is adjacent to v_9 , then no graph exists. If v_6 is adjacent to v_9 , then no graph exists.

Let v_3 be adjacent to v_7 . Then v_4 is adjacent to v_8 or v_9 . If v_4 is adjacent to v_8 , then v_9 is adjacent to v_5 and v_6 . Hence $G \cong G_4$. If v_4 is adjacent to v_9 , then v_5 is adjacent to v_8 or v_9 . Without loss of generality, let v_5 is adjacent to v_8 , then v_6 is adjacent to v_9 . Hence $G \cong G_4$. If v_5 is adjacent to v_9 , then v_6 is adjacent to v_8 . In this case $\langle V - S \rangle$ is disconnected and hence no graph exists.

Prepositon 2.5. If $\langle S \rangle = \langle S_2 \rangle = \bar{K_3}$ and $\langle S_1 \rangle = P_3$ and $\langle S_3 \rangle = K_2 \cup K_1$, then $G \cong G_{14}$.

Proof. Let $\langle S_1 \rangle = P_3 = (v_1, v_2, v_3), \langle S_2 \rangle = \overline{K_3} = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = K_2 \cup K_1 = (v_7, v_8, v_9)$, where $v_7v_8 \in E(G)$. Let v_1 be adjacent to any one of $\{v_4, v_5, v_6\}$ or $\{v_7, v_8\}$ or v_9 .

Case 1 Let v_1 be adjacent to v_4 . Then v_3 is adjacent to any one of $\{v_5, v_6\}$ or any one of $\{v_7, v_8\}$ or v_9 or v_4 .

Let v_3 be adjacent to v_5 . Then v_6 is adjacent to any one of $\{v_7, v_9\}$ or any one of $\{v_9, v_7\}$. If v_6 is adjacent to v_7 and v_8 . Then v_9 is adjacent to v_4 and v_5 . Hence $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_6 is adjacent to v_7 and v_9 , then v_8 is adjacent to v_4 and v_9 is adjacent to v_5 . Hence $G \cong G_{14}$.

Let v_3 be adjacent to v_7 . Then v_8 is adjacent to any one of v_7 or $\{v_5, v_6\}$. If v_8 is adjacent to v_4 , then v_9 must be adjacent to v_5 and v_6 . Hence no graph exists. If v_8 is adjacent to v_5 , then v_9 must be adjacent to $\{v_4, v_5\}$ or $\{v_4, v_6\}$. In both cases, no graph exists.

Let v_3 be adjacent to v_9 . Then v_9 is adjacent to v_4 or any one of $\{v_5, v_6\}$. If v_9 is adjacent to v_4 , then either v_5 or v_6 is adjacent to v_7 and v_8 or v_5 is adjacent to v_7 and v_6 is adjacent to v_8 . In both cases no graph exists. If v_7 is adjacent to v_5 and v_8 is adjacent to $\{v_4 \text{ and } v_5\}$ or $\{v_5 \text{ and } v_6\}$. In both cases no graph exists.

Let v_3 be adjacent to v_4 . Then v_9 is adjacent to v_5 and v_6 , v_7 is adjacent to any one of $\{v_5, v_6\}$. In this case $\langle V - S \rangle$ is disconnected and hence no graph exists. **Case 2** Let v_1 be adjacent to v_7 . Then v_3 is adjacent to any one of $\{v_4, v_5, v_6\}$ or v_8 or v_9 .

Let v_3 be adjacent to v_4 . Then v_4 is adjacent to any one of v_8 or v_9 . If v_4 is adjacent to v_8 , then v_9 is adjacent to v_5 and v_6 and no graph exists. If v_4 is adjacent to v_9 , then v_9 is adjacent to any one of $\{v_5, v_6\}$. If v_9 is adjacent to v_5 or v_6 , then no new graph exists.

Let v_3 be adjacent to v_8 . Then v_9 is adjacent to any two of $\{v_4, v_5, v_6\}$ and hence no new graph exists. Let v_3 be adjacent to v_9 . Then no graph exists.

Case 3 Let v_1 be adjacent to v_9 . Then v_3 is adjacent to any one of $\{v_4, v_5, v_6\}$ or any one of $\{v_7, v_8\}$ or v_9 .

Let v_3 be adjacent to v_4 . Then v_4 must be adjacent to any one of $\{v_7, v_8\}$ or v_9 . In both cases, no graph exists.

Let v_3 be adjacent to v_7 . Then v_4 is adjacent to v_8 and v_9 . Hence no graph exists. Let v_3 be adjacent to v_9 . In this case, $\langle V - S \rangle$ is disconnected and hence no graph exists.

Prepositon 2.6. If $\langle S \rangle = \bar{K_3}$ and $\langle S_1 \rangle = P_3$ and $\langle S_2 \rangle = \langle S_3 \rangle = \bar{K_3}$, then $G \cong G_5$.

Proof. Let $\langle S_1 \rangle = P_3 = (v_1, v_2, v_3), \langle S_2 \rangle = \bar{K}_3 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = \bar{K}_3 = (v_7, v_8, v_9)$. Let v_1 be adjacent to any one of $\{v_4, v_5, v_6, v_7, v_8, v_9\}$. Without loss of generality, let v_1 be adjacent to v_4 . Then v_3 is adjacent to any one of $\{v_5, v_6\}$ or any one of $\{v_7, v_8, v_9\}$ or v_4 .

Case 1 Let v_3 be adjacent to v_4 . Then v_5 is adjacent to any two of $\{v_7, v_8, v_9\}$. In this case, $\langle V - S \rangle$ is disconnected and hence no graph exists.

Case 2 Let v_3 be adjacent to v_5 . Then v_4 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_4 is adjacent to v_7 , then v_5 is adjacent to v_7 or $\{v_8, v_9\}$.

If v_5 is adjacent to v_7 , then v_6 is adjacent to v_8 and v_9 . Hence no graph exists. If v_5 is adjacent to v_8 , then v_6 is adjacent to any one of $\{v_7, v_8\}$ or any one of $\{v_7, v_9\}$. In both cases, no graph exists.

Case 3 Let v_3 be adjacent to v_7 . Then v_4 is adjacent to any one of $\{v_8, v_9\}$ or v_7 .

Let v_4 be adjacent to v_8 . Then v_5 is adjacent to any one of $\{v_7, v_8\}$ or any one of $\{v_8, v_9\}$. Let v_5 be adjacent to v_7 and v_8 . Then v_6 is adjacent to v_9 and hence

no graph exists. If v_5 is adjacent to v_7 and v_9 , then v_6 is adjacent to v_8 and v_9 . Hence $G \cong G_5$.

Prepositon 2.7. If $\langle S \rangle = \bar{K_3}$ and $\langle S_1 \rangle = \langle S_2 \rangle = K_2 \cup K_1$ and $\langle S_3 \rangle = \bar{K_3}$, then $G \cong G_i$, where $6 \le i \le 13$.

Proof. Let $\langle S_1 \rangle = K_2 \cup K_1 = (v_1, v_2, v_3), \langle S_2 \rangle = K_2 \cup K_1 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = \bar{K_3} = (v_7, v_8, v_9)$. Let v_1 be adjacent to any one of $\{v_4, v_5\}$ or v_6 or any one of $\{v_7, v_8, v_9\}$.

Case 1 Let v_1 be adjacent to v_4 . Then v_2 is adjacent to v_5 or v_6 or any one of $\{v_7, v_8, v_9\}$. If v_2 is adjacent to v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists in this case.

Subcase 1 Let $v_2v_6 \in E(G)$

Let v_3 be adjacent to $\{v_5, v_7\}$ or $\{v_6, v_7\}$ or $\{v_7, v_8, v_9\}$. If v_3 is adjacent to v_5 and v_6 . Then $\langle V - S \rangle$ is disconnected and hence no graph exists.

Let v_3 be adjacent to v_5 and v_7 . Then v_6 is adjacent to any one of $\{v_7, v_8, v_9\}$ and hence no graph exists. If v_3 is adjacent to v_6 and v_4 , v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$, then no graph exists in this case.

Let v_3 be adjacent to v_7 and v_8 . Then v_5 is adjacent to any one of $\{v_7, v_8\}$ or v_9 . If v_5 is adjacent to v_7 , then v_6 is adjacent to v_8 . In both cases no graph exists.

If v_5 is adjacent to v_9 , then v_6 is adjacent to any one of $\{v_7, v_8, v_9\}$. Hence no graph exists for this case.

Subcase 2 Let $v_2v_7 \in E(G)$

Let v_3 be adjacent to both of $\{v_5, v_6\}$ or $\{v_5, v_7\}$ or $\{v_5, v_8\}$ or $\{v_6, v_7\}$ or $\{v_6, v_8\}$ or $\{v_7, v_8\}$ or $\{v_8, v_9\}$.

If v_3 is adjacent to v_5 and v_6 , then v_6 is adjacent to any one of $\{v_7, v_8, v_9\}$. In this case, no graph exists. If v_3 is adjacent to v_5 and v_7 , then v_6 is adjacent to any one of v_8 and v_9 . Hence no graph exists.

If v_3 is adjacent to v_5 and v_8 , then v_6 is adjacent to any two of $\{v_7, v_8, v_9\}$. Hence no graph exists. If v_3 is adjacent to v_6 and v_7 , then v_5 is adjacent to any one of $\{v_8, v_9\}$. Hence no graph exists.

If v_3 is adjacent to v_6 and v_8 , then v_5 is adjacent to any one of $\{v_8, v_7\}$ or v_9 . In both cases no graph exists.

If v_3 is adjacent to v_7 and v_8 , then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 , then v_6 is adjacent to v_9 and hence no graph exists. If v_5 is adjacent to v_9 , then v_6 is adjacent to v_8 and v_9 . Hence $G \cong G_6$.

If v_3 is adjacent to v_8 and v_9 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_5 is adjacent to v_7 , then v_6 is adjacent to v_8 and v_9 . Hence $G \cong G_7$.

Case 2 Let v_1 be adjacent to v_6 . Then v_2 is adjacent to any one of $\{v_4, v_5\}$ or $\{v_7, v_8, v_9\}$ or v_6 . If v_2 is adjacent to v_6 , then $\langle V - S \rangle$ is disconnected and hence no graph exists.

Subcase 1 Let $v_2v_4 \in E(G)$

Let v_3 be adjacent to v_5, v_6 or v_5, v_7 or v_6, v_7 or v_7, v_8 or v_7, v_9 .

If v_3 is adjacent to v_5 and v_6 , then $\langle V-S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_5 and v_7 , then v_6 is adjacent to any one of $\{v_7, v_8, v_9\}$. Hence no graph exists.

If v_3 is adjacent to v_6 and v_7 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$. In this case, no graph exists. If v_3 is adjacent to v_7 and v_8 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$ and hence no graph exists.

Subcase 2 Let $v_2v_7 \in E(G)$

Let v_3 be adjacent to both of $\{v_5, v_4\}$ or $\{v_4, v_6\}$ or $\{v_4, v_7\}$ or $\{v_4, v_8\}$ or $\{v_7, v_6\}$ or $\{v_6, v_8\}$.

If v_3 is adjacent to v_4 and v_5 , then $\langle V-S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_6 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$. In all the cases, no graph exists.

If v_3 is adjacent to v_4 and v_7 , then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 , then v_6 is adjacent to v_9 or v_8 and hence no graph exists.

If v_3 is adjacent to v_4 and v_8 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$ and hence no graph exists for this case. If v_3 is adjacent to v_6 and v_7 , then $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_6 and v_8 , then v_4 is adjacent to v_7 or v_9 . If v_4 is adjacent to v_7 , then v_5 is adjacent to v_8 and hence no graph exists. If v_4 is adjacent to v_8 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$. In all the above cases, no graph exists.

Case 3 Let v_1 be adjacent to v_7 . Then v_2 is adjacent to any one of $\{v_4, v_5\}$ or any one of $\{v_8, v_9\}$ or v_6 or v_7 .

Subcase 1 Let $v_2v_4 \in E(G)$

Let v_3 be adjacent to both of $\{v_5, v_6\}$ or $\{v_5, v_7\}$ or $\{v_5, v_8\}$ or $\{v_6, v_7\}$ or $\{v_6, v_8\}$ or $\{v_8, v_9\}$.

If v_3 is adjacent to v_5 and v_6 , then v_6 is adjacent to any one of $\{v_7, v_8, v_9\}$. Hence no graph exists. If v_3 is adjacent to v_5 and v_7 , then in this case $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_5 and v_8 , then v_6 is adjacent to any two of $\{v_7, v_8, v_9\}$. Hence no graph exists. If v_3 is adjacent to v_6 and v_7 , then no graph exists. If v_3 is adjacent to v_6 and v_8 , then no graph exists in this case.

If v_3 is adjacent to v_9 and v_8 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_5 is adjacent to v_7 , then v_6 is adjacent to v_9 and v_8 . Hence $\langle V - S \rangle$ is disconnected and no graph exists. If v_5 is adjacent to v_8 , then v_6 is adjacent to v_9 and v_7 . Hence $G \cong G_8$.

Subcase 2 Let $v_2v_8 \in E(G)$

Let v_3 be adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_6\}$ or $\{v_4, v_7\}$ or $\{v_4, v_9\}$ or $\{v_6, v_7\}$ or $\{v_6, v_9\}$ or $\{v_7, v_8\}$ or $\{v_7, v_9\}$.

If v_3 is adjacent to v_4 and v_5 , then in this case $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_6 , then no graph exists in this case.

If v_3 is adjacent to v_4 and v_5 , then v_5 cannot be adjacent to v_8 . Therefore v_5 is adjacent to v_9 and v_6 is adjacent to v_8, v_9 . Hence $G \cong G_9$.

If v_3 is adjacent to v_4 and v_9 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_5 is adjacent to v_7 , then v_6 is adjacent to v_8 and v_9 . Hence $G \cong G_{10}$.

If v_3 is adjacent to v_6 and v_7 , then v_4 is adjacent to v_8 or v_9 . If v_4 is adjacent to v_8 , then v_9 is adjacent to v_5 and v_6 . Hence $G \cong G_9$. If v_4 is adjacent to v_9 , then v_5 is adjacent to v_8 and v_6 is adjacent to v_9 . Hence $G \cong G_9$.

If v_3 is adjacent to v_6 and v_9 , then v_4 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_4 is adjacent to v_7 , then v_5 is adjacent to v_8 and v_6 is adjacent to v_9 . Hence $G \cong G_{11}$.

If v_3 is adjacent to v_7 and v_8 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_7 and v_9 , then v_4 is adjacent to v_8 and v_5 is adjacent to v_9 and hence no graph exists in this case.

Subcase 3 Let $v_2v_6 \in E(G)$

Let v_3 be adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_6\}$ or $\{v_4, v_7\}$ or $\{v_4, v_8\}$ or $\{v_6, v_7\}$ or $\{v_6, v_8\}$ or $\{v_7, v_8\}$ or $\{v_8, v_9\}$.

If v_3 is adjacent to v_4 and v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_6 , then v_5 is adjacent to any one of $\{v_8, v_9\}$ or v_7 . In both cases, no graph exists.

If v_3 is adjacent to v_4 and v_7 , then v_5 is adjacent to any one of $\{v_8, v_9\}$. If v_5 is adjacent to v_8 , then no graph exists.

If v_3 is adjacent to v_4 and v_8 , then v_5 is adjacent to any one of $\{v_8, v_7\}$ or v_9 . In both cases no graph exists. If v_3 is adjacent to v_6 and v_7 , then in this case $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_6 and v_8 , then v_4 is adjacent to any one of $\{v_8, v_7\}$ or v_9 . In both cases no graph exists.

If v_3 is adjacent to v_7 and v_8 , then v_4 is adjacent to v_8 or v_9 . If v_4 is adjacent to v_8 , then v_9 is adjacent to v_5 and v_6 . Hence $G \cong G_{12}$. If v_4 is adjacent to v_9 , then v_5 is adjacent to v_8 and v_6 is adjacent to v_9 . Hence $G \cong G_{12}$.

If v_3 is adjacent to v_9 and v_8 , then v_4 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_4 is adjacent to v_7 , then v_5 is adjacent to any one of $\{v_8, v_9\}$. Without loss of generality, let v_5 be adjacent to v_8 and v_6 be adjacent to v_9 . Hence $G \cong G_{13}$. **Subcase 3** $v_2v_7 \in E(G)$

Let v_2 be adjacent to v_7 . In this case, $\langle V - S \rangle$ is disconnected and hence no graph exists.

Prepositon 2.8. If $\langle S \rangle = \bar{K}_3$ and $\langle S_1 \rangle = \langle S_2 \rangle = \langle S_3 \rangle = K_2 \cup K_1$, then $G \cong G_i$, where $15 \le i \le 21$.

Proof. Let $\langle S_1 \rangle = K_2 \cup K_1 = (v_1, v_2, v_3), \langle S_2 \rangle = K_2 \cup K_1 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = K_2 \cup K_1 = (v_7, v_8, v_9)$ and $v_1v_2, v_4v_5, v_7v_8 \in E(G)$. Let v_1 be adjacent to any one of $\{v_4, v_5, v_7, v_8\}$ or $\{v_6, v_9\}$.

Case 1 Let v_1 be adjacent to v_4 . Then v_2 is adjacent to any one of $\{v_7, v_8\}$ or v_5 or v_6 or v_9 .

Subcase 1 Let $v_2v_7 \in E(G)$

Let v_3 be adjacent to both of $\{v_5, v_6\}$ or $\{v_5, v_8\}$ or $\{v_6, v_9\}$. If v_3 is adjacent to v_5 and v_6 , then no graph exists. If v_3 is adjacent to v_5 and v_8 , then no graph exists.

If v_3 is adjacent to v_6 and v_9 , then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 , then v_6 is adjacent to v_9 . In this case $\langle V - S \rangle$ is disconnected hence no graph exists. If v_5 is adjacent to v_9 , then v_6 is adjacent to v_8 and hence $G \cong G_{15}$. **Subcase 2** Let $v_2v_5 \in E(G)$

In this case, $\langle V - S \rangle$ is disconnected hence no graph exists.

Subcase 3 Let $v_2v_6 \in E(G)$

Let v_3 be adjacent to both of $\{v_5, v_6\}$ or $\{v_5, v_7\}$ or $\{v_5, v_9\}$ or $\{v_6, v_7\}$ or $\{v_6, v_9\}$ or $\{v_7, v_8\}$ or $\{v_7, v_9\}$.

If v_3 is adjacent to v_5 and v_6 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_5 and v_7 , then v_6 must be adjacent to any one of $\{v_7, v_8, v_9\}$. Hence no graph exists.

If v_3 is adjacent to v_5 and v_9 , then v_6 must be adjacent to any one of $\{v_7, v_8, v_9\}$. Hence no graph exists. If v_3 is adjacent to v_6 and v_7 , then v_5 must be adjacent to any one of v_8 or v_9 . In both cases no graph exists.

If v_3 is adjacent to v_6 and v_9 , then v_5 must be adjacent to any one of $\{v_7, v_8, v_9\}$. Hence no graph exists. If v_3 is adjacent to v_7 and v_8 , then $\langle V-S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_7 and v_9 , then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 and v_6 is adjacent to v_9 , then $G \cong G_{17}$. If v_5 is adjacent to v_9 and v_6 is adjacent to v_8 , then $G \cong G_{18}$.

Subcase 4 Let $v_2v_9 \in E(G)$

Let v_3 be adjacent to both of $\{v_5, v_6\}$ or $\{v_5, v_7\}$ or $\{v_5, v_9\}$ or $\{v_6, v_7\}$ or $\{v_6, v_9\}$ or $\{v_7, v_8\}$ or $\{v_7, v_9\}$.

If v_3 is adjacent to v_5 and v_6 , then v_6 is adjacent to any one of $\{v_7, v_8, v_9\}$ and hence no graph exists. If v_3 is adjacent to v_5 and v_7 , then v_6 is adjacent to v_8 and v_9 and hence $G \cong G_{18}$.

If v_3 is adjacent to v_5 and v_9 , then $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_6 and v_7 , then v_5 is adjacent to any one of v_8 or v_9 . If v_5 is adjacent to any one of v_8 , then v_6 is adjacent to v_9 . Hence $G \cong G_{15}$. If v_5 is adjacent to any one of v_9 , then v_6 is adjacent to v_8 . In this case, $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_6 and v_9 , then v_5 is adjacent to v_7 and v_6 is adjacent to v_8 . Hence $G \cong G_{19}$. If v_3 is adjacent to v_7 and v_8 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_7 and v_9 , then no graph exists.

Case 2 Let v_1 be adjacent to v_6 . Then v_2 is adjacent to $\{v_4, v_5\}$ or v_6 or $\{v_7, v_8\}$ or v_9 . If v_2 is adjacent to v_6 , then $\langle V - S \rangle$ is disconnected and hence no graph exists in this case.

Subcase 1 Let $v_2v_4 \in E(G)$

Let v_3 be adjacent to both of $\{v_5, v_6\}$ or $\{v_5, v_7\}$ or $\{v_5, v_9\}$ or $\{v_6, v_7\}$ or $\{v_6, v_9\}$ or $\{v_7, v_8\}$ or $\{v_7, v_9\}$.

If v_3 is adjacent to v_5 and v_6 , then $\langle V - S \rangle$ is disconnected and hence no graph exists in this case. If v_3 is adjacent to v_5 and v_7 , then no graph exists. If v_3 is adjacent to v_5 and v_9 , then no graph exists.

If v_3 is adjacent to v_6 and v_7 , then no graph exists. If v_3 is adjacent to v_6 and v_9 , then no graph exists. If v_3 is adjacent to v_8 and v_7 , then < V - S > is disconnected and hence no graph exists.

If v_3 is adjacent to v_9 and v_7 , then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 , then v_6 is adjacent to v_9 . Hence $G \cong G_{19}$. If v_5 is adjacent to v_9 , then v_6 is adjacent to v_8 and hence $G \cong G_{20}$.

Subcase 2 Let $v_2v_7 \in E(G)$

Let v_3 be adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_6\}$ or $\{v_4, v_8\}$ or $\{v_4, v_9\}$ or $\{v_6, v_8\}$ or $\{v_6, v_9\}$ or $\{v_8, v_9\}$.

If v_3 is adjacent to v_4 and v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_6 , then v_5 is adjacent to v_8 or v_9 . Hence no graph exists. If v_3 is adjacent to v_4 and v_8 , then v_9 is adjacent to v_5 or v_6 . Hence $G \cong G_{20}$.

If v_3 is adjacent to v_4 and v_9 , then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 , v_6 is adjacent to v_9 . Hence $G \cong G_{15}$. If v_5 is adjacent to v_9 and v_6 is adjacent to v_8 , then in this case $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_6 and v_8 and v_9 is adjacent to v_4 or v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_6 and v_9 , then v_8 is adjacent to any one of $\{v_4, v_5\}$. If v_8 is adjacent to v_4 and v_9 is adjacent to v_5 , then $G \cong G_{21}$. If v_3 is adjacent to v_8 and v_9 , then no graph exists.

Subcase 3 Let $v_2v_9 \in E(G)$

Let v_3 be adjacent to any two of $\{v_4, v_5, v_7, v_8\}$ or both of $\{v_4, v_6\}$ or both of $\{v_6, v_9\}$.

If v_3 is adjacent to v_4 and v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_6 , then no graph exists. If v_3 is adjacent to v_6 and v_9 , then $\langle V - S \rangle$ is disconnected and hence no graph exists in this case.

Prepositon 2.9. If $\langle S \rangle = \bar{K}_3$ and $\langle S_1 \rangle = K_2 \cup K_1$ and $\langle S_3 \rangle = \langle S_2 \rangle = \bar{K}_3$, then $G \cong G_i$, where i = 22, 23.

Proof. Let $\langle S_1 \rangle = K_2 \cup K_1 = (v_1, v_2, v_3), \langle S_2 \rangle = K_2 \cup K_1 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = \bar{K_3} = (v_7, v_8, v_9)$, where $v_1v_2 \in E(G)$. Let v_1 be adjacent to any one of $\{v_4, v_5, v_6, v_7, v_8, v_9\}$.

If v_1 is adjacent to v_4 , then v_2 is adjacent to any one of $\{v_5, v_6\}$ or any one of $\{v_7, v_8, v_9\}$ or v_4 . If v_2 is adjacent to v_4 , then in this case $\langle V - S \rangle$ is disconnected and hence no graph exists.

Case 1 If v_2 is adjacent to v_5 , then v_3 is adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_6\}$ or $\{v_4, v_7\}$ or $\{v_6, v_7\}$ or $\{v_7, v_8\}$.

If v_3 is adjacent to v_4 and v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_6 , then no graph exists in this case.

If v_3 is adjacent to v_4 and v_7 , then v_5 is adjacent to any one of $\{v_8, v_9\}$ or v_7 . If v_5 is adjacent to v_7 , then no graph exists. If v_5 is adjacent to v_8 , then no graph exists.

If v_3 is adjacent to v_6 and v_7 , then v_4 is adjacent to v_7 or any one of $\{v_8, v_9\}$. If v_4 is adjacent to v_7 , then v_5 is adjacent to v_8 and v_6 is adjacent to v_9 . Hence no graph exists. If v_4 is adjacent to v_8 , then v_5 is adjacent to any one of $\{v_7, v_8\}$ or v_9 . In both cases no graph exists.

If v_3 is adjacent to v_7 and v_8 , then v_4 is adjacent to any one of v_9 or $\{v_7, v_8\}$. If v_4 is adjacent to v_7 , then v_5 is adjacent to v_8 or v_9 . If v_5 is adjacent to v_8 , then no graph exists. If v_5 is adjacent to v_9 , then v_6 is adjacent to v_8 or v_9 . Hence $G \cong G_{22}$.

If v_4 is adjacent to v_9 , then v_5 is adjacent to any one of $\{v_7, v_8, v_9\}$. If v_5 is adjacent to v_7 , then v_6 is adjacent to v_8 and v_9 , then $G \cong G_{23}$. Case 2

If v_2 is adjacent to v_7 , then v_3 is adjacent to both of $\{v_4, v_7\}$ or $\{v_4, v_5\}$ or $\{v_5, v_6\}$. If v_3 is adjacent to v_4 and v_7 , then $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_4 and v_5 , then v_5 is adjacent to v_7 or any one of $\{v_8, v_9\}$. If v_5 is adjacent to v_7 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_5 is adjacent to v_8 , then no graph exists.

If v_3 is adjacent to v_5 and v_6 , then v_4 is adjacent to v_7 or any one of $\{v_8, v_9\}$. If v_4 is adjacent to v_7 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_4 is adjacent to v_8 , then no graph exists.

Prepositon 2.10. If $\langle S \rangle = \langle S_1 \rangle = \langle S_2 \rangle = \langle S_3 \rangle = \bar{K}_3$, then $G \cong G_i$, where $24 \le i \le 32$.

Proof. Let $\langle S_1 \rangle = \bar{K}_3 = (v_1, v_2, v_3), \langle S_2 \rangle = \bar{K}_3 = (v_4, v_5, v_6)$ and $\langle S_3 \rangle = \bar{K}_3 = (v_7, v_8, v_9)$. Let v_1 be adjacent to any one of $\{v_4, v_5\}$ or any one of $\{v_6, v_7\}$. **Case 1** Let v_1 be adjacent to v_4 and v_5 . Then v_2 is adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_5\}$ or $\{v_4, v_5\}$ or $\{v_4, v_7\}$ or $\{v_6, v_7\}$ or $\{v_7, v_8\}$.

Subcase 1 $v_2v_4, v_2v_5 \in E(G)$

Let v_2 be adjacent to v_4 and v_5 . In this case, $\langle V - S \rangle$ is disconnected and hence no graph exists.

Subcase 2 $v_2v_4, v_2v_6 \in E(G)$

If v_2 is adjacent to v_4 and v_6 , then v_3 is adjacent to both of $\{v_5, v_6\}$ or $\{v_5, v_7\}$ or $\{v_7, v_8\}$. If v_3 is adjacent to v_5 and v_6 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_5 and v_7 , then no graph exists. If v_3 is adjacent to v_8 and v_7 , then no graph exists.

Subcase 3 $v_2v_4, v_2v_7 \in E(G)$

Let v_3 be adjacent to both of $\{v_6, v_5\}$ or $\{v_5, v_7\}$ or $\{v_5, v_8\}$ or $\{v_6, v_7\}$ or $\{v_6, v_8\}$ or $\{v_7, v_8\}$ or $\{v_8, v_9\}$.

If v_3 is adjacent to v_5 and v_6 , then no graph exists. If v_3 is adjacent to v_5 and v_7 , then $\langle V - S \rangle$ is disconnected and hence no graph exists.

If v_3 is adjacent to v_5 and v_8 , then no graph exists. If v_3 is adjacent to v_6 and v_7 , then no graph exists. If v_3 is adjacent to v_6 and v_8 , then no graph exists.

If v_3 is adjacent to v_7 and v_8 . Since G is cubic, v_5 cannot be adjacent to v_8 . Hence v_5 is adjacent to v_9 and v_6 is adjacent to v_9 and v_8 . Hence $G \cong G_{24}$.

If v_3 is adjacent to v_9 and v_8 , then v_5 is adjacent to v_7 and v_6 is adjacent to v_8 and v_9 . In this case, $\langle V - S \rangle$ is disconnected and hence no graph exists. **Subcase 4** $v_2v_6, v_2v_7 \in E(G)$

Let v_3 be adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_7\}$ or $\{v_7, v_8\}$ or $\{v_8, v_9\}$.

If v_3 is adjacent to v_4 and v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_7 , then no graph exists.

If v_3 is adjacent to v_7 and v_8 , then v_4 must be adjacent to v_8 or v_9 . If v_4 is adjacent to v_8 , then v_9 is adjacent to v_5 and v_6 . Hence $G \cong G_{25}$. If v_4 is adjacent to v_9 , then v_5 is adjacent to v_8 and v_6 . Hence $G \cong G_{26}$.

If v_3 is adjacent to v_9 and v_8 , then v_4 must be adjacent to v_7 , v_5 is adjacent to v_8 and v_6 is adjacent to v_9 . Hence $G \cong G_{27}$.

Subcase 5 $v_2v_7, v_2v_8 \in E(G)$

Let v_3 be adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_6\}$ or $\{v_4, v_7\}$ or $\{v_6, v_9\}$.

If v_3 is adjacent to v_4 and v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_6 , then no graph exists.

Let v_3 is adjacent to v_4 and v_7 . Since G is cubic, v_5 cannot be adjacent to v_8 . If v_5 is adjacent to v_9 , then v_6 is adjacent to v_8 and v_9 . Hence $G \cong G_{24}$.

If v_3 is adjacent to v_6 and v_9 , then v_4, v_5, v_6 are adjacent to v_7, v_8, v_9 . Hence $\langle V - S \rangle$ is disconnected and hence no graph exists.

Case 2 If v_1 is adjacent to v_6 and v_7 , then v_2 is adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_6\}$ or $\{v_6, v_7\}$ or $\{v_6, v_8\}$. If v_2 is adjacent to v_6 and v_7 , then $\langle V - S \rangle$ is disconnected and hence no graph exists.

Subcase 1 $v_2v_4, v_2v_5 \in E(G)$

Let v_3 be adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_7\}$ or $\{v_4, v_8\}$ or $\{v_7, v_8\}$ or $\{v_8, v_9\}$. If v_3 is adjacent to v_4 and v_5 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_7 , then no graph exists.

If v_3 is adjacent to v_4 and v_8 , then no graph exists. If v_3 is adjacent to v_7 and v_8 , then v_4 is adjacent to v_8 and v_9 is adjacent to v_5 and v_6 . Hence $G \cong G_{28}$.

If v_3 is adjacent to v_9 and v_8 , then v_4 is adjacent to v_7 and v_5 is adjacent to v_8 and v_6 . Hence $G \cong G_{29}$.

Subcase:2 $v_2v_4, v_2v_6 \in E(G)$

Let v_3 be adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_7\}$ or $\{v_4, v_8\}$ or $\{v_5, v_7\}$ or $\{v_8, v_5\}$ or $\{v_7, v_8\}$ or $\{v_8, v_9\}$.

If v_3 is adjacent to v_4 and v_5 , then no graph exists. If v_3 is adjacent to v_4 and v_7 , then $\langle V - S \rangle$ is disconnected and hence no graph exists. If v_3 is adjacent to v_4 and v_8 , then no graph exists.

If v_3 is adjacent to v_7 and v_5 , then no graph exists. If v_3 is adjacent to v_8 and v_5 , then no graph exists. Let v_3 be adjacent to v_7 and v_8 . Since G is cubic v_4 cannot be adjacent to v_8 . Hence v_4 is adjacent to v_9 and v_5 is adjacent to v_8, v_9 . Hence $G \cong G_{24}$.

If v_3 is adjacent to v_8 and v_9 , then v_4 is adjacent to v_7 , v_5 is adjacent to v_8 and v_9 . Hence $G \cong G_{30}$.

Subcase:3 $v_2v_6, v_2v_8 \in E(G)$

Let v_3 be adjacent to both of $\{v_4, v_5\}$ or $\{v_4, v_7\}$ or $\{v_4, v_9\}$ or $\{v_7, v_8\}$ or $\{v_7, v_9\}$. If v_3 is adjacent to v_4 and v_5 , then no graph exists. Let v_3 be adjacent to v_4 and v_7 . Since G is cubic, v_4 cannot be adjacent to v_8 . Hence v_4 is adjacent to v_9 and v_5 is adjacent to v_8 and v_9 . Hence $G \cong G_{31}$.

If v_3 is adjacent to v_4 and v_9 , then v_4 is adjacent to v_8 and v_9 . Hence $G \cong G_{32}$. If v_3 is adjacent to v_7 and v_8 , then no graph exists. If v_3 is adjacent to v_7 and v_9 , then no graph exists.

Theorem 2.1. Let G be a 3-regular graph of order twelve. Then $\chi(G) = \gamma_{[1,2]cc}(G) = 3$ if and only if $G \cong G_i$, where $1 \le i \le 32$.

Proof. If G is any one of the graphs G_i , where $1 \le i \le 32$ as in the figure 1, then clearly verified that $\chi(G) = \gamma_{[1,2]cc}(G) = 3$. Conversely, assume that $\chi(G) = \gamma_{[1,2]cc}(G) = 3$. Then the proof follows from proposition 2.1 to 2.10.

Conclusion. In this paper we investigated 3–regular graphs of order 12, whose [1,2]–Complementary connected domination and chromatic number are equal to three.

References

- Chartrand, G.and Lesniak, L., Graphs and Digraphs, Fourth Edition CRC Press, Boca Raton, 2005.
- [2] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [3] Chellali, Mustapha, Haynes, Teresa W., Hedetniemi, Stephen T. and McRae, Alice, [1, 2]-Sets in graphs, Discrete Applied Mathematics, 161, (2013), 2885 – 2893.
- [4] Mahadevan, G., Renuka, K. and Sivagnanam, C., [1,2]-Complementary connected domination number of graphs, International Journal of Computational and Applied Mathematics, 12(1), (2017), 281-288.
- [5] Mahadevan, G., Renuka, K. and Sivagnanam, C., [1,2]-Complementary connected domination number of graphs-II, International Journal of Pure and Applied Mathematics, 117(11), (2017), 165 - 175.
- [6] Kulli, V.R. and Janakiraman, B., The nonsplit domination number of a graph, Indian Journal of Pure and Applied Math, Vol. 31, No. 5, (2000), 545 – 550.
- Yang, Xiaojing and Wu, Baoyindureng, [1,2]-domination in graphs, Discrete Applied Mathematics, 175, (2014), 79 86.

Current address: G.Mahadevan: Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul-624302, India.

E-mail address: drgmaha2014@gmail.com

ORCID Address: http://orcid.org/0000-0002-1471-1626

Current address: K.Renuka: Department of Mathematics, Department of Science and Humanities, Vignan University, Andhra Pradesh, India

E-mail address: math.renuka@gmail.com

ORCID Address: http://orcid.org/0000-0001-7573-2191