[1,2]-COMPLEMENTARY CONNECTED DOMINATION NUMBER OF GRAPHS-III

G.MAHADEVAN AND K.RENUKA

Abstract

A set $S \subseteq V(G)$ in a graph G is said to be [1,2]-complementary connected dominating set if for every vertex $v \in V-S, 1 \leq|N(v) \cap S| \leq 2$ and $\langle V-S\rangle$ is connected. The minimum cardinality of [1,2]-complementary connected dominating set is called $[1,2]$-complementary connected domination number and is denoted by $\gamma_{[1,2] c c}(G)$. In this paper, we investigate 3 -regular graphs on twelve vertices for which $\gamma_{[1,2] c c}(G)=\chi(G)=3$.

1. Introduction

Let $G(V, E)$ be simple and connected graph. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [2]. In [6], V.R.Kulli and B.Janakiraman introduced the concept of nonsplit domination number of graph and characterized its bounds. In [3, Mustapha Chellali et.al, first studied the concept of $[1,2]-$ sets. In [7, Xiaojing Yang and Baoyindureng Wu, extended to the study of this parameter. In [4, 5], G.Mahadevan et.al, introduced the concept of $[1,2]$-complementary connected domination and investigate 3 -regular graphs of order $n \leq 10$, whose [1, 2]-complementary connected domination number equals chromatic number equals three. In this paper, we investigate 3 -regular graphs on twelve vertices for which $\gamma_{[1,2] c c}(G)=\chi(G)=3$.

2. 3-REGULAR GRAPHS ON TWELVE VERTICES

Let G be a connected cubic graph on twelve vertices for which $\chi(G)=\gamma_{[1,2] c c}(G)=$ 3. Let $S=\{x, y, z\}$ be a $[1,2] c c$-set. Since G is cubic, clearly $<S>\neq K_{3}, K_{2} \cup$

[^0]K_{1}, P_{3}. Hence $<S>=\bar{K}_{3}$. Let $S_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, S_{2}=\left\{v_{4}, v_{5}, v_{6}\right\}$ and $S_{3}=$ $\left\{v_{7}, v_{8}, v_{9}\right\}$. The following are only possible cases $\left\langle S_{i}\right\rangle$, where $1 \leq i \leq 3$. Let $<S_{1}>=<S_{2}>=<S_{3}>=P_{3} ;<S_{1}>=<S_{2}>=P_{3},<S_{3}>=K_{2} \cup K_{1} ;$ $<S_{1}>=<S_{2}>=P_{3},<S_{3}>=\bar{K}_{3} ;<S_{1}>=P_{3},<S_{2}>=<S_{3}>=K_{2} \cup K_{1} ;$ $<S_{1}>=P_{3},<S_{2}>=K_{2} \cup K_{1},<S_{3}>=\bar{K}_{3} ;<S_{1}>=P_{3},<S_{2}>=<S_{3}>=\bar{K}_{3} ;$ $<S_{1}>=<S_{2}>=<S_{3}>=K_{2} \cup K_{1} ;<S_{1}>=<S_{2}>=K_{2} \cup K_{1},<S_{3}>=K_{3}$; $<S_{1}>=K_{2} \cup K_{1},<S_{2}>=<S_{3}>=\bar{K}_{3} ;<S_{1}>=<S_{2}>=<S_{3}>=\bar{K}_{3}$.

Graphs G_{i}, where $1 \leq i \leq 32$

G_{1}

G_{5}

G_{2}

G_{3}

G_{4}

G_{6}

G_{7}

Gs

G_{9}

G_{10}

G_{11}

G_{12}

G_{13}

G_{14}

G_{15}

G_{16}

Prepositon 2.1. If $<S>=\bar{K}_{3}$ and $<S_{1}>=<S_{2}>=<S_{3}>=P_{3}$, then $G \cong G_{1}$
Proof. Let $<S_{1}>=P_{3}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=P_{3}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=$ $P_{3}=\left(v_{7}, v_{8}, v_{9}\right)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{6}, v_{7}, v_{9}\right\}$. Without loss of generality, let v_{1} be adjacent to v_{4}. Now v_{3} is adjacent to v_{6} or v_{7} (or equivalently to v_{9}). If v_{3} is adjacent to v_{6}, then no new graph exists. If v_{3} is adjacent to v_{7}, then $G \cong G_{1}$.

Prepositon 2.2. If $<S>=\bar{K}_{3}$ and $<S_{1}>=<S_{2}>=P_{3}$ and $<S_{3}>=K_{2} \cup K_{1}$, then $G \cong G_{2}$

Proof. Let $<S_{1}>=P_{3}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=P_{3}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=$ $P_{3}=\left(v_{7}, v_{8}, v_{9}\right)$, where $v_{7} v_{8} \in E\left(S_{3}\right)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{6}\right\}$ or any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}.
Case $1 v_{1} v_{4} \in E(G)$
Let v_{3} be adjacent to v_{6} or v_{7} (or equivalently to v_{8}) or v_{9}. If v_{3} is adjacent to v_{6}, then no graph exists.

If v_{3} is adjacent to v_{7}, then either v_{6} is adjacent to v_{8} or v_{9}. If v_{6} is adjacent to v_{8}, then no new graph exists. If v_{6} is adjacent to v_{9}, then no graph exists.

If v_{3} is adjacent to v_{9}, then either v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{6} is adjacent to v_{7} or v_{8} or v_{9}, then no graph exists.
Case $2 v_{1} v_{7} \in E(G)$
Let v_{3} be adjacent to any one of $\left\{v_{4}, v_{6}\right\}$ or v_{8} or v_{9}. Let v_{3} be adjacent to v_{4}. Then v_{6} is adjacent to any one of v_{8} or v_{9} and hence no graph exists.

Let v_{3} be adjacent to v_{8}. Then v_{9} is adjacent to v_{4} and v_{6}. In this case, $\langle V-S\rangle$ is disconnected and hence no graph exists.

Let v_{3} be adjacent to v_{9}. Then v_{4} is adjacent to v_{8} or v_{9}. If v_{4} is adjacent to v_{8}, then v_{9} is adjacent to v_{6} and hence $G \cong G_{2}$. If v_{4} is adjacent to v_{9}, then v_{6} is adjacent to v_{8} and hence $G \cong G_{2}$.
Case $3 v_{1} v_{9} \in E(G)$
Let v_{3} be adjacent to any one of $\left\{v_{4}, v_{6}\right\}$ or any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}. If v_{3} is adjacent to v_{4}, then no new graph exists.

If v_{3} is adjacent to v_{7}, then v_{8} is adjacent to v_{4} (or eqivalently to v_{6}). If v_{8} is adjacent to v_{6}, then v_{9} is adjacent to v_{4}, so that $G \cong G_{2}$.

If v_{3} is adjacent to v_{9}, then v_{7} is adjacent to v_{4} and v_{8} is adjacent to v_{6}. In this case $\langle V-S\rangle$ is disconnected and hence no graph exists.

Prepositon 2.3. If $<S>=\bar{K}_{3}$ and $<S_{1}>=<S_{2}>=P_{3}$ and $<S_{3}>=\bar{K}_{3}$, then no graph exists.

Proof. Let $<S_{1}>=P_{3}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=P_{3}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=$ $\bar{K}_{3}=\left(v_{7}, v_{8}, v_{9}\right)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{7}, v_{8}, v_{9}\right\}$
Case 1 Let v_{1} be adjacent to v_{4}. Since G is cubic, v_{3} cannot be adjacent to v_{6} and hence v_{3} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{3} is adjacent to v_{7}, then no new graph exists.
Case 2 Let v_{1} be adjacent to v_{7} and v_{3} is adjacent to any one of $\left\{v_{4}, v_{6}\right\}$ or any one of $\left\{v_{8}, v_{9}\right\}$ or v_{7}. In all the above cases, no graph exists.

Prepositon 2.4. If $<S>=\bar{K}_{3}$ and $<S_{1}>=P_{3}$ and $<S_{2}>=<S_{3}>=K_{2} \cup K_{1}$, then $G \cong G_{i}$, where $i=3,4$.

Proof. Let $<S_{1}>=P_{3}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=K_{2} \cup K_{1}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<$ $S_{3}>=K_{2} \cup K_{1}=\left(v_{7}, v_{8}, v_{9}\right)$, where $v_{4} v_{5}, v_{7} v_{8} \in E(G)$. Let v_{1} be adjacent to $\left\{v_{4}, v_{5}, v_{7}, v_{8}\right\}$ or $\left\{v_{6}, v_{9}\right\}$.
Case $1 v_{1} v_{4} \in E(G)$.
In this case, v_{3} must be adjacent to v_{5} or $v_{6},\left\{v_{7}, v_{8}\right\}$ or v_{9}.
Let v_{3} be adjacent to v_{5}. Then v_{6} is adjacent to either $\left\{v_{7}\right.$ and $\left.v_{8}\right\}$ or $\left\{v_{7}\right.$ and $\left.v_{9}\right\}$.
If v_{6} is adjacent to v_{7} and v_{8}, then no graph exists. If v_{6} is adjacent to v_{7} and v_{9}, then no graph exists.

If v_{3} is adjacent to v_{6}, then v_{5} is adjacent to either v_{9} or any one of $\left\{v_{7}, v_{8}\right\}$. If v_{5} is adjacent to v_{9}, then no graph exists. If v_{5} is adjacent to v_{7}, then no graph exists.
Case $2 v_{1} v_{6} \in E(G)$.
Let v_{3} be adjacent to either v_{9} or any one of $\left\{v_{4}, v_{5}\right\}$ or any one of $\left\{v_{7}, v_{8}\right\}$.
If v_{3} is adjacent to v_{9}, then v_{4} is adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}. If v_{4} is adjacent to v_{9} and v_{5} is adjacent to v_{7}, then v_{6} is adjacent to v_{8} and hence $G \cong G_{3}$. If v_{4} is adjacent to v_{7}, then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8}, and v_{6} is adjacent to v_{9}, then $\langle V-S\rangle$ is disconnected. If v_{5} is adjacent to v_{9}, and v_{6} is adjacent to v_{8}, then $G \cong G_{3}$. Let v_{4} be adjacent to v_{7}. Then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8}, then v_{6} is adjacent to v_{9} and $<V-S>$ is disconnected. If v_{5} is adjacent to v_{9} and v_{6} is adjacent to v_{8}, then $G \cong G_{3}$.

Let v_{3} be adjacent to v_{4}. Then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}. If v_{5} is adjacent ot v_{7}, then v_{6} is adjacent to v_{8} or v_{7}. If v_{6} is adjacent to v_{8}, then no graph exists. If v_{5} is adjacent to v_{9}, then v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}. If v_{6} is adjacent to v_{7}, then no graph exists. If v_{6} is adjacent to v_{9}, then no graph exists.

Let v_{3} be adjacent to v_{7}. Then v_{4} is adjacent to v_{8} or v_{9}. If v_{4} is adjacent to v_{8}, then v_{9} is adjacent to v_{5} and v_{6}. Hence $G \cong G_{4}$. If v_{4} is adjacent to v_{9}, then v_{5} is adjacent to v_{8} or v_{9}. Without loss of generality, let v_{5} is adjacent to v_{8}, then v_{6} is adjacent to v_{9}. Hence $G \cong G_{4}$. If v_{5} is adjacent to v_{9}, then v_{6} is adjacent to v_{8}. In this case $\langle V-S\rangle$ is disconnected and hence no graph exists.

Prepositon 2.5. If $<S>=<S_{2}>=\bar{K}_{3}$ and $<S_{1}>=P_{3}$ and $<S_{3}>=K_{2} \cup K_{1}$, then $G \cong G_{14}$.

Proof. Let $<S_{1}>=P_{3}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=\bar{K}_{3}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=$ $K_{2} \cup K_{1}=\left(v_{7}, v_{8}, v_{9}\right)$, where $v_{7} v_{8} \in E(G)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{5}, v_{6}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or v_{9}.
Case 1 Let v_{1} be adjacent to v_{4}. Then v_{3} is adjacent to any one of $\left\{v_{5}, v_{6}\right\}$ or any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9} or v_{4}.

Let v_{3} be adjacent to v_{5}. Then v_{6} is adjacent to any one of $\left\{v_{7}, v_{9}\right\}$ or any one of $\left\{v_{9}, v_{7}\right\}$. If v_{6} is adjacent to v_{7} and v_{8}. Then v_{9} is adjacent to v_{4} and v_{5}. Hence $<V-S>$ is disconnected and hence no graph exists. If v_{6} is adjacent to v_{7} and v_{9}, then v_{8} is adjacent to v_{4} and v_{9} is adjacent to v_{5}. Hence $G \cong G_{14}$.

Let v_{3} be adjacent to v_{7}. Then v_{8} is adjacent to any one of v_{7} or $\left\{v_{5}, v_{6}\right\}$. If v_{8} is adjacent to v_{4}, then v_{9} must be adjacent to v_{5} and v_{6}. Hence no graph exists. If v_{8} is adjacent to v_{5}, then v_{9} must be adjacent to $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{6}\right\}$. In both cases, no graph exists.

Let v_{3} be adjacent to v_{9}. Then v_{9} is adjacent to v_{4} or any one of $\left\{v_{5}, v_{6}\right\}$. If v_{9} is adjacent to v_{4}, then either v_{5} or v_{6} is adjacent to v_{7} and v_{8} or v_{5} is adjacent to v_{7} and v_{6} is adjacent to v_{8}. In both cases no graph exists. If v_{7} is adjacent to v_{5} and v_{8} is adjacent to $\left\{v_{4}\right.$ and $\left.v_{5}\right\}$ or $\left\{v_{5}\right.$ and $\left.v_{6}\right\}$. In both cases no graph exists.

Let v_{3} be adjacent to v_{4}. Then v_{9} is adjacent to v_{5} and v_{6}, v_{7} is adjacent to any one of $\left\{v_{5}, v_{6}\right\}$. In this case $\langle V-S\rangle$ is disconnected and hence no graph exists. Case 2 Let v_{1} be adjacent to v_{7}. Then v_{3} is adjacent to any one of $\left\{v_{4}, v_{5}, v_{6}\right\}$ or v_{8} or v_{9}.

Let v_{3} be adjacent to v_{4}. Then v_{4} is adjacent to any one of v_{8} or v_{9}. If v_{4} is adjacent to v_{8}, then v_{9} is adjacent to v_{5} and v_{6} and no graph exists. If v_{4} is adjacent to v_{9}, then v_{9} is adjacent to any one of $\left\{v_{5}, v_{6}\right\}$. If v_{9} is adjacent to v_{5} or v_{6}, then no new graph exists.

Let v_{3} be adjacent to v_{8}. Then v_{9} is adjacent to any two of $\left\{v_{4}, v_{5}, v_{6}\right\}$ and hence no new graph exists. Let v_{3} be adjacent to v_{9}. Then no graph exists.
Case 3 Let v_{1} be adjacent to v_{9}. Then v_{3} is adjacent to any one of $\left\{v_{4}, v_{5}, v_{6}\right\}$ or any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}.

Let v_{3} be adjacent to v_{4}. Then v_{4} must be adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}. In both cases, no graph exists.

Let v_{3} be adjacent to v_{7}. Then v_{4} is adjacent to v_{8} and v_{9}. Hence no graph exists. Let v_{3} be adjacent to v_{9}. In this case, $\langle V-S\rangle$ is disconnected and hence no graph exists.

Prepositon 2.6. If $<S>=\bar{K}_{3}$ and $<S_{1}>=P_{3}$ and $<S_{2}>=<S_{3}>=\bar{K}_{3}$, then $G \cong G_{5}$.

Proof. Let $<S_{1}>=P_{3}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=\bar{K}_{3}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=$ $\bar{K}_{3}=\left(v_{7}, v_{8}, v_{9}\right)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$. Without loss of generality, let v_{1} be adjacent to v_{4}. Then v_{3} is adjacent to any one of $\left\{v_{5}, v_{6}\right\}$ or any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$ or v_{4}.
Case 1 Let v_{3} be adjacent to v_{4}. Then v_{5} is adjacent to any two of $\left\{v_{7}, v_{8}, v_{9}\right\}$. In this case, $\langle V-S\rangle$ is disconnected and hence no graph exists.
Case 2 Let v_{3} be adjacent to v_{5}. Then v_{4} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{4} is adjcent to v_{7}, then v_{5} is adjacent to v_{7} or $\left\{v_{8}, v_{9}\right\}$.

If v_{5} is adjacent to v_{7}, then v_{6} is adjacent to v_{8} and v_{9}. Hence no graph exists. If v_{5} is adjacent to v_{8}, then v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or any one of $\left\{v_{7}, v_{9}\right\}$. In both cases, no graph exists.
Case 3 Let v_{3} be adjacent to v_{7}. Then v_{4} is adjacent to any one of $\left\{v_{8}, v_{9}\right\}$ or v_{7}.
Let v_{4} be adjacent to v_{8}. Then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or any one of $\left\{v_{8}, v_{9}\right\}$. Let v_{5} be adjacent to v_{7} and v_{8}. Then v_{6} is adjacent to v_{9} and hence
no graph exists. If v_{5} is adjacent to v_{7} and v_{9}, then v_{6} is adjacent to v_{8} and v_{9}. Hence $G \cong G_{5}$.

Prepositon 2.7. If $<S>=\bar{K}_{3}$ and $<S_{1}>=<S_{2}>=K_{2} \cup K_{1}$ and $<S_{3}>=\bar{K}_{3}$, then $G \cong G_{i}$, where $6 \leq i \leq 13$.

Proof. Let $<S_{1}>=K_{2} \cup K_{1}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=K_{2} \cup K_{1}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=\bar{K}_{3}=\left(v_{7}, v_{8}, v_{9}\right)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{5}\right\}$ or v_{6} or any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$.
Case 1 Let v_{1} be adjacent to v_{4}. Then v_{2} is adjacent to v_{5} or v_{6} or any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{2} is adjacent to v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists in this case.
Subcase 1 Let $v_{2} v_{6} \in E(G)$
Let v_{3} be adjacent to $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{3} is adjacent to v_{5} and v_{6}. Then $\langle V-S>$ is disconnected and hence no graph exists.

Let v_{3} be adjacent to v_{5} and v_{7}. Then v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$ and hence no graph exists. If v_{3} is adjacent to v_{6} and v_{4}, v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$, then no graph exists in this case.

Let v_{3} be adjacent to v_{7} and v_{8}. Then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}. If v_{5} is adjacent to v_{7}, then v_{6} is adjacent to v_{8}. In both cases no graph exists.

If v_{5} is adjacent to v_{9}, then v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. Hence no graph exists for this case.
Subcase 2 Let $v_{2} v_{7} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{5}, v_{6}\right\}$ or $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{5}, v_{8}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{8}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{8}, v_{9}\right\}$.

If v_{3} is adjacent to v_{5} and v_{6}, then v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. In this case, no graph exists. If v_{3} is adjacent to v_{5} and v_{7}, then v_{6} is adjacent to any one of v_{8} and v_{9}. Hence no graph exists.

If v_{3} is adjacent to v_{5} and v_{8}, then v_{6} is adjacent to any two of $\left\{v_{7}, v_{8}, v_{9}\right\}$. Hence no graph exists. If v_{3} is adjacent to v_{6} and v_{7}, then v_{5} is adjacent to any one of $\left\{v_{8}, v_{9}\right\}$. Hence no graph exists.

If v_{3} is adjacent to v_{6} and v_{8}, then v_{5} is adjacent to any one of $\left\{v_{8}, v_{7}\right\}$ or v_{9}. In both cases no graph exists.

If v_{3} is adjacent to v_{7} and v_{8}, then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8}, then v_{6} is adjacent to v_{9} and hence no graph exists. If v_{5} is adjacent to v_{9}, then v_{6} is adjacent to v_{8} and v_{9}. Hence $G \cong G_{6}$.

If v_{3} is adjacent to v_{8} and v_{9}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{5} is adjacent to v_{7}, then v_{6} is adjacent to v_{8} and v_{9}. Hence $G \cong G_{7}$.
Case 2 Let v_{1} be adjacent to v_{6}. Then v_{2} is adjacent to any one of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{7}, v_{8}, v_{9}\right\}$ or v_{6}. If v_{2} is adjacent to v_{6}, then $\langle V-S\rangle$ is disconnected and hence no graph exists.
Subcase 1 Let $v_{2} v_{4} \in E(G)$
Let v_{3} be adjacent to v_{5}, v_{6} or v_{5}, v_{7} or v_{6}, v_{7} or v_{7}, v_{8} or v_{7}, v_{9}.

If v_{3} is adjacent to v_{5} and v_{6}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{5} and v_{7}, then v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. Hence no graph exists.

If v_{3} is adjacent to v_{6} and v_{7}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. In this case, no graph exists. If v_{3} is adjacent to v_{7} and v_{8}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$ and hence no graph exists.
Subcase 2 Let $v_{2} v_{7} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{5}, v_{4}\right\}$ or $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{4}, v_{8}\right\}$ or $\left\{v_{7}, v_{6}\right\}$ or $\left\{v_{6}, v_{8}\right\}$.

If v_{3} is adjacent to v_{4} and v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{6}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. In all the cases, no graph exists.

If v_{3} is adjacent to v_{4} and v_{7}, then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8}, then v_{6} is adjacent to v_{9} or v_{8} and hence no graph exists.

If v_{3} is adjacent to v_{4} and v_{8}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$ and hence no graph exists for this case. If v_{3} is adjacent to v_{6} and v_{7}, then $<V-S>$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{6} and v_{8}, then v_{4} is adjacent to v_{7} or v_{9}. If v_{4} is adjacent to v_{7}, then v_{5} is adjacent to v_{8} and hence no graph exists. If v_{4} is adjacent to v_{8}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. In all the above cases, no graph exists.
Case 3 Let v_{1} be adjacent to v_{7}. Then v_{2} is adjacent to any one of $\left\{v_{4}, v_{5}\right\}$ or any one of $\left\{v_{8}, v_{9}\right\}$ or v_{6} or v_{7}.
Subcase 1 Let $v_{2} v_{4} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{5}, v_{6}\right\}$ or $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{5}, v_{8}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{8}\right\}$ or $\left\{v_{8}, v_{9}\right\}$.

If v_{3} is adjacent to v_{5} and v_{6}, then v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. Hence no graph exists. If v_{3} is adjacent to v_{5} and v_{7}, then in this case $<V-S>$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{5} and v_{8}, then v_{6} is adjacent to any two of $\left\{v_{7}, v_{8}, v_{9}\right\}$. Hence no graph exists. If v_{3} is adjacent to v_{6} and v_{7}, then no graph exists. If v_{3} is adjacent to v_{6} and v_{8}, then no graph exists in this case.

If v_{3} is adjacent to v_{9} and v_{8}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{5} is adjacent to v_{7}, then v_{6} is adjacent to v_{9} and v_{8}. Hence $\langle V-S\rangle$ is disconnected and no graph exists. If v_{5} is adjacent to v_{8}, then v_{6} is adjacent to v_{9} and v_{7}. Hence $G \cong G_{8}$.
Subcase 2 Let $v_{2} v_{8} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{4}, v_{9}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{9}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{7}, v_{9}\right\}$.

If v_{3} is adjacent to v_{4} and v_{5}, then in this case $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{6}, then no graph exists in this case.

If v_{3} is adjacent to v_{4} and v_{5}, then v_{5} cannot be adjacent to v_{8}. Therefore v_{5} is adjacent to v_{9} and v_{6} is adjacent to v_{8}, v_{9}. Hence $G \cong G_{9}$.

If v_{3} is adjacent to v_{4} and v_{9}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{5} is adjacent to v_{7}, then v_{6} is adjacent to v_{8} and v_{9}. Hence $G \cong G_{10}$.

If v_{3} is adjacent to v_{6} and v_{7}, then v_{4} is adjacent to v_{8} or v_{9}. If v_{4} is adjacent to v_{8}, then v_{9} is adjacent to v_{5} and v_{6}. Hence $G \cong G_{9}$. If v_{4} is adjacent to v_{9}, then v_{5} is adjacent to v_{8} and v_{6} is adjacent to v_{9}. Hence $G \cong G_{9}$.

If v_{3} is adjacent to v_{6} and v_{9}, then v_{4} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{4} is adjacent to v_{7}, then v_{5} is adjacent to v_{8} and v_{6} is adjacent to v_{9}. Hence $G \cong G_{11}$.

If v_{3} is adjacent to v_{7} and v_{8}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{7} and v_{9}, then v_{4} is adjacent to v_{8} and v_{5} is adjacent to v_{9} and hence no graph exists in this case.
Subcase 3 Let $v_{2} v_{6} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{4}, v_{8}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{8}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{8}, v_{9}\right\}$.

If v_{3} is adjacent to v_{4} and v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{6}, then v_{5} is adjacent to any one of $\left\{v_{8}, v_{9}\right\}$ or v_{7}. In both cases, no graph exists.

If v_{3} is adjacent to v_{4} and v_{7}, then v_{5} is adjacent to any one of $\left\{v_{8}, v_{9}\right\}$. If v_{5} is adjacent to v_{8}, then no graph exists.

If v_{3} is adjacent to v_{4} and v_{8}, then v_{5} is adjacent to any one of $\left\{v_{8}, v_{7}\right\}$ or v_{9}. In both cases no graph exists. If v_{3} is adjacent to v_{6} and v_{7}, then in this case $<V-S>$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{6} and v_{8}, then v_{4} is adjacent to any one of $\left\{v_{8}, v_{7}\right\}$ or v_{9}. In both cases no graph exists.

If v_{3} is adjacent to v_{7} and v_{8}, then v_{4} is adjacent to v_{8} or v_{9}. If v_{4} is adjacent to v_{8}, then v_{9} is adjacent to v_{5} and v_{6}. Hence $G \cong G_{12}$. If v_{4} is adjacent to v_{9}, then v_{5} is adjacent to v_{8} and v_{6} is adjacent to v_{9}. Hence $G \cong G_{12}$.

If v_{3} is adjacent to v_{9} and v_{8}, then v_{4} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{4} is adjacent to v_{7}, then v_{5} is adjacent to any one of $\left\{v_{8}, v_{9}\right\}$. Without loss of generality, let v_{5} be adjacent to v_{8} and v_{6} be adjacent to v_{9}. Hence $G \cong G_{13}$.
Subcase $3 v_{2} v_{7} \in E(G)$
Let v_{2} be adjacent to v_{7}. In this case, $\langle V-S\rangle$ is disconnected and hence no graph exists.

Prepositon 2.8. If $<S>=\bar{K}_{3}$ and $<S_{1}>=<S_{2}>=<S_{3}>=K_{2} \cup K_{1}$, then $G \cong G_{i}$, where $15 \leq i \leq 21$.
Proof. Let $<S_{1}>=K_{2} \cup K_{1}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=K_{2} \cup K_{1}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=K_{2} \cup K_{1}=\left(v_{7}, v_{8}, v_{9}\right)$ and $v_{1} v_{2}, v_{4} v_{5}, v_{7} v_{8} \in E(G)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{5}, v_{7}, v_{8}\right\}$ or $\left\{v_{6}, v_{9}\right\}$.
Case 1 Let v_{1} be adjacent to v_{4}. Then v_{2} is adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or v_{5} or v_{6} or v_{9}.
Subcase 1 Let $v_{2} v_{7} \in E(G)$

Let v_{3} be adjacent to both of $\left\{v_{5}, v_{6}\right\}$ or $\left\{v_{5}, v_{8}\right\}$ or $\left\{v_{6}, v_{9}\right\}$. If v_{3} is adjacent to v_{5} and v_{6}, then no graph exists. If v_{3} is adjacent to v_{5} and v_{8}, then no graph exists.

If v_{3} is adjacent to v_{6} and v_{9}, then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8}, then v_{6} is adjacent to v_{9}. In this case $\langle V-S\rangle$ is disconnected hence no graph exists. If v_{5} is adjacent to v_{9}, then v_{6} is adjacent to v_{8} and hence $G \cong G_{15}$. Subcase 2 Let $v_{2} v_{5} \in E(G)$

In this case, $\langle V-S\rangle$ is disconnected hence no graph exists.
Subcase 3 Let $v_{2} v_{6} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{5}, v_{6}\right\}$ or $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{5}, v_{9}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{9}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{7}, v_{9}\right\}$.

If v_{3} is adjacent to v_{5} and v_{6}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{5} and v_{7}, then v_{6} must be adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. Hence no graph exists.

If v_{3} is adjacent to v_{5} and v_{9}, then v_{6} must be adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. Hence no graph exists. If v_{3} is adjacent to v_{6} and v_{7}, then v_{5} must be adjacent to any one of v_{8} or v_{9}. In both cases no graph exists.

If v_{3} is adjacent to v_{6} and v_{9}, then v_{5} must be adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. Hence no graph exists. If v_{3} is adjacent to v_{7} and v_{8}, then $\langle V-S\rangle$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{7} and v_{9}, then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8} and v_{6} is adjacent to v_{9}, then $G \cong G_{17}$. If v_{5} is adjacent to v_{9} and v_{6} is adjacent to v_{8}, then $G \cong G_{18}$.
Subcase 4 Let $v_{2} v_{9} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{5}, v_{6}\right\}$ or $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{5}, v_{9}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{9}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{7}, v_{9}\right\}$.

If v_{3} is adjacent to v_{5} and v_{6}, then v_{6} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$ and hence no graph exists. If v_{3} is adjacent to v_{5} and v_{7}, then v_{6} is adjacent to v_{8} and v_{9} and hence $G \cong G_{18}$.

If v_{3} is adjacent to v_{5} and v_{9}, then $\langle V-S\rangle$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{6} and v_{7}, then v_{5} is adjacent to any one of v_{8} or v_{9}. If v_{5} is adjacent to any one of v_{8}, then v_{6} is adjacent to v_{9}. Hence $G \cong G_{15}$. If v_{5} is adjacent to any one of v_{9}, then v_{6} is adjacent to v_{8}. In this case, $<V-S>$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{6} and v_{9}, then v_{5} is adjacent to v_{7} and v_{6} is adjacent to v_{8}. Hence $G \cong G_{19}$. If v_{3} is adjacent to v_{7} and v_{8}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{7} and v_{9}, then no graph exists.
Case 2 Let v_{1} be adjacent to v_{6}. Then v_{2} is adjacent to $\left\{v_{4}, v_{5}\right\}$ or v_{6} or $\left\{v_{7}, v_{8}\right\}$ or v_{9}. If v_{2} is adjacent to v_{6}, then $\langle V-S\rangle$ is disconnected and hence no graph exists in this case.
Subcase 1 Let $v_{2} v_{4} \in E(G)$

Let v_{3} be adjacent to both of $\left\{v_{5}, v_{6}\right\}$ or $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{5}, v_{9}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{9}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{7}, v_{9}\right\}$.

If v_{3} is adjacent to v_{5} and v_{6}, then $\langle V-S\rangle$ is disconnected and hence no graph exists in this case. If v_{3} is adjacent to v_{5} and v_{7}, then no graph exists. If v_{3} is adjacent to v_{5} and v_{9}, then no graph exists.

If v_{3} is adjacent to v_{6} and v_{7}, then no graph exists. If v_{3} is adjacent to v_{6} and v_{9}, then no graph exists. If v_{3} is adjacent to v_{8} and v_{7}, then $\langle V-S\rangle$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{9} and v_{7}, then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8}, then v_{6} is adjacent to v_{9}. Hence $G \cong G_{19}$. If v_{5} is adjacent to v_{9}, then v_{6} is adjacent to v_{8} and hence $G \cong G_{20}$.
Subcase 2 Let $v_{2} v_{7} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{4}, v_{8}\right\}$ or $\left\{v_{4}, v_{9}\right\}$ or $\left\{v_{6}, v_{8}\right\}$ or $\left\{v_{6}, v_{9}\right\}$ or $\left\{v_{8}, v_{9}\right\}$.

If v_{3} is adjacent to v_{4} and v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{6}, then v_{5} is adjacent to v_{8} or v_{9}. Hence no graph exists. If v_{3} is adjacent to v_{4} and v_{8}, then v_{9} is adjacent to v_{5} or v_{6}. Hence $G \cong G_{20}$.

If v_{3} is adjacent to v_{4} and v_{9}, then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8}, v_{6} is adjacent to v_{9}. Hence $G \cong G_{15}$. If v_{5} is adjacent to v_{9} and v_{6} is adjacent to v_{8}, then in this case $\langle V-S\rangle$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{6} and v_{8} and v_{9} is adjacent to v_{4} or v_{5}, then $<V-S>$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{6} and v_{9}, then v_{8} is adjacent to any one of $\left\{v_{4}, v_{5}\right\}$. If v_{8} is adjacent to v_{4} and v_{9} is adjacent to v_{5}, then $G \cong G_{21}$. If v_{3} is adjacent to v_{8} and v_{9}, then no graph exists.
Subcase 3 Let $v_{2} v_{9} \in E(G)$
Let v_{3} be adjacent to any two of $\left\{v_{4}, v_{5}, v_{7}, v_{8}\right\}$ or both of $\left\{v_{4}, v_{6}\right\}$ or both of $\left\{v_{6}, v_{9}\right\}$.

If v_{3} is adjacent to v_{4} and v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{6}, then no graph exists. If v_{3} is adjacent to v_{6} and v_{9}, then $<V-S>$ is disconnected and hence no graph exists in this case.

Prepositon 2.9. If $<S>=\bar{K}_{3}$ and $<S_{1}>=K_{2} \cup K_{1}$ and $<S_{3}>=<S_{2}>=\bar{K}_{3}$, then $G \cong G_{i}$, where $i=22,23$.

Proof. Let $<S_{1}>=K_{2} \cup K_{1}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=K_{2} \cup K_{1}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=\bar{K}_{3}=\left(v_{7}, v_{8}, v_{9}\right)$, where $v_{1} v_{2} \in E(G)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$.

If v_{1} is adjacent to v_{4}, then v_{2} is adjacent to any one of $\left\{v_{5}, v_{6}\right\}$ or any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$ or v_{4}. If v_{2} is adjacent to v_{4}, then in this case $\langle V-S\rangle$ is disconnected and hence no graph exists.

Case 1 If v_{2} is adjacent to v_{5}, then v_{3} is adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{7}, v_{8}\right\}$.

If v_{3} is adjacent to v_{4} and v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{6}, then no graph exists in this case.

If v_{3} is adjacent to v_{4} and v_{7}, then v_{5} is adjacent to any one of $\left\{v_{8}, v_{9}\right\}$ or v_{7}. If v_{5} is adjacent to v_{7}, then no graph exists. If v_{5} is adjacent to v_{8}, then no graph exists.

If v_{3} is adjacent to v_{6} and v_{7}, then v_{4} is adjacent to v_{7} or any one of $\left\{v_{8}, v_{9}\right\}$. If v_{4} is adjacent to v_{7}, then v_{5} is adjacent to v_{8} and v_{6} is adjacent to v_{9}. Hence no graph exists. If v_{4} is adjacent to v_{8}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}\right\}$ or v_{9}. In both cases no graph exists.

If v_{3} is adjacent to v_{7} and v_{8}, then v_{4} is adjacent to any one of v_{9} or $\left\{v_{7}, v_{8}\right\}$. If v_{4} is adjacent to v_{7}, then v_{5} is adjacent to v_{8} or v_{9}. If v_{5} is adjacent to v_{8}, then no graph exists. If v_{5} is adjacent to v_{9}, then v_{6} is adjacent to v_{8} or v_{9}. Hence $G \cong G_{22}$.

If v_{4} is adjacent to v_{9}, then v_{5} is adjacent to any one of $\left\{v_{7}, v_{8}, v_{9}\right\}$. If v_{5} is adjacent to v_{7}, then v_{6} is adjacent to v_{8} and v_{9}, then $G \cong G_{23}$.

Case 2

If v_{2} is adjacent to v_{7}, then v_{3} is adjacent to both of $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{5}, v_{6}\right\}$. If v_{3} is adjacent to v_{4} and v_{7}, then $\langle V-S\rangle$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{4} and v_{5}, then v_{5} is adjacent to v_{7} or any one of $\left\{v_{8}, v_{9}\right\}$. If v_{5} is adjacent to v_{7}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{5} is adjacent to v_{8}, then no graph exists.

If v_{3} is adjacent to v_{5} and v_{6}, then v_{4} is adjacent to v_{7} or any one of $\left\{v_{8}, v_{9}\right\}$. If v_{4} is adjacent to v_{7}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{4} is adjacent to v_{8}, then no graph exists.

Prepositon 2.10. If $<S>=<S_{1}>=<S_{2}>=<S_{3}>=\bar{K}_{3}$, then $G \cong G_{i}$, where $24 \leq i \leq 32$.

Proof. Let $<S_{1}>=\bar{K}_{3}=\left(v_{1}, v_{2}, v_{3}\right),<S_{2}>=\bar{K}_{3}=\left(v_{4}, v_{5}, v_{6}\right)$ and $<S_{3}>=$ $\bar{K}_{3}=\left(v_{7}, v_{8}, v_{9}\right)$. Let v_{1} be adjacent to any one of $\left\{v_{4}, v_{5}\right\}$ or any one of $\left\{v_{6}, v_{7}\right\}$.
Case 1 Let v_{1} be adjacent to v_{4} and v_{5}. Then v_{2} is adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{7}, v_{8}\right\}$.
Subcase $1 v_{2} v_{4}, v_{2} v_{5} \in E(G)$
Let v_{2} be adjacent to v_{4} and v_{5}. In this case, $\langle V-S\rangle$ is disconnected and hence no graph exists.
Subcase $2 v_{2} v_{4}, v_{2} v_{6} \in E(G)$
If v_{2} is adjacent to v_{4} and v_{6}, then v_{3} is adjacent to both of $\left\{v_{5}, v_{6}\right\}$ or $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{7}, v_{8}\right\}$. If v_{3} is adjacent to v_{5} and v_{6}, then $\left.<V-S\right\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{5} and v_{7}, then no graph exists. If v_{3} is adjacent to v_{8} and v_{7}, then no graph exists.
Subcase $3 v_{2} v_{4}, v_{2} v_{7} \in E(G)$

Let v_{3} be adjacent to both of $\left\{v_{6}, v_{5}\right\}$ or $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{5}, v_{8}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{8}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{8}, v_{9}\right\}$.

If v_{3} is adjacent to v_{5} and v_{6}, then no graph exists. If v_{3} is adjacent to v_{5} and v_{7}, then $\langle V-S\rangle$ is disconnected and hence no graph exists.

If v_{3} is adjacent to v_{5} and v_{8}, then no graph exists. If v_{3} is adjacent to v_{6} and v_{7}, then no graph exists. If v_{3} is adjacent to v_{6} and v_{8}, then no graph exists.

If v_{3} is adjacent to v_{7} and v_{8}. Since G is cubic, v_{5} cannot be adjacent to v_{8}. Hence v_{5} is adjacent to v_{9} and v_{6} is adjacent to v_{9} and v_{8}. Hence $G \cong G_{24}$.

If v_{3} is adjacent to v_{9} and v_{8}, then v_{5} is adjacent to v_{7} and v_{6} is adjacent to v_{8} and v_{9}. In this case, $\langle V-S\rangle$ is disconnected and hence no graph exists.
Subcase $4 v_{2} v_{6}, v_{2} v_{7} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{8}, v_{9}\right\}$.
If v_{3} is adjacent to v_{4} and v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{7}, then no graph exists.

If v_{3} is adjacent to v_{7} and v_{8}, then v_{4} must be adjacent to v_{8} or v_{9}. If v_{4} is adjacent to v_{8}, then v_{9} is adjacent to v_{5} and v_{6}. Hence $G \cong G_{25}$. If v_{4} is adjacent to v_{9}, then v_{5} is adjacent to v_{8} and v_{6}. Hence $G \cong G_{26}$.

If v_{3} is adjacent to v_{9} and v_{8}, then v_{4} must be adjacent to v_{7}, v_{5} is adjacent to v_{8} and v_{6} is adjacent to v_{9}. Hence $G \cong G_{27}$.
Subcase $5 v_{2} v_{7}, v_{2} v_{8} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{6}, v_{9}\right\}$.
If v_{3} is adjacent to v_{4} and v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{6}, then no graph exists.

Let v_{3} is adjacent to v_{4} and v_{7}. Since G is cubic, v_{5} cannot be adjacent to v_{8}. If v_{5} is adjacent to v_{9}, then v_{6} is adjacent to v_{8} and v_{9}. Hence $G \cong G_{24}$.

If v_{3} is adjacent to v_{6} and v_{9}, then v_{4}, v_{5}, v_{6} are adjacent to v_{7}, v_{8}, v_{9}. Hence $<V-S>$ is disconnected and hence no graph exists.
Case 2 If v_{1} is adjacent to v_{6} and v_{7}, then v_{2} is adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{6}\right\}$ or $\left\{v_{6}, v_{7}\right\}$ or $\left\{v_{6}, v_{8}\right\}$. If v_{2} is adjacent to v_{6} and v_{7}, then $<V-S>$ is disconnected and hence no graph exists.
Subcase $1 v_{2} v_{4}, v_{2} v_{5} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{4}, v_{8}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{8}, v_{9}\right\}$.
If v_{3} is adjacent to v_{4} and v_{5}, then $\langle V-S\rangle$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{7}, then no graph exists.

If v_{3} is adjacent to v_{4} and v_{8}, then no graph exists. If v_{3} is adjacent to v_{7} and v_{8}, then v_{4} is adjacent to v_{8} and v_{9} is adjacent to v_{5} and v_{6}. Hence $G \cong G_{28}$.

If v_{3} is adjacent to v_{9} and v_{8}, then v_{4} is adjacent to v_{7} and v_{5} is adjacent to v_{8} and v_{6}. Hence $G \cong G_{29}$.
Subcase: $2 v_{2} v_{4}, v_{2} v_{6} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{4}, v_{8}\right\}$ or $\left\{v_{5}, v_{7}\right\}$ or $\left\{v_{8}, v_{5}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{8}, v_{9}\right\}$.

If v_{3} is adjacent to v_{4} and v_{5}, then no graph exists. If v_{3} is adjacent to v_{4} and v_{7}, then $<V-S>$ is disconnected and hence no graph exists. If v_{3} is adjacent to v_{4} and v_{8}, then no graph exists.

If v_{3} is adjacent to v_{7} and v_{5}, then no graph exists. If v_{3} is adjacent to v_{8} and v_{5}, then no graph exists. Let v_{3} be adjacent to v_{7} and v_{8}. Since G is cubic v_{4} cannot be adjacent to v_{8}. Hence v_{4} is adjacent to v_{9} and v_{5} is adjacent to v_{8}, v_{9}. Hence $G \cong G_{24}$.

If v_{3} is adjacent to v_{8} and v_{9}, then v_{4} is adjacent to v_{7}, v_{5} is adjacent to v_{8} and v_{9}. Hence $G \cong G_{30}$.
Subcase:3 $v_{2} v_{6}, v_{2} v_{8} \in E(G)$
Let v_{3} be adjacent to both of $\left\{v_{4}, v_{5}\right\}$ or $\left\{v_{4}, v_{7}\right\}$ or $\left\{v_{4}, v_{9}\right\}$ or $\left\{v_{7}, v_{8}\right\}$ or $\left\{v_{7}, v_{9}\right\}$.
If v_{3} is adjacent to v_{4} and v_{5}, then no graph exists. Let v_{3} be adjacent to v_{4} and v_{7}. Since G is cubic, v_{4} cannot be adjacent to v_{8}. Hence v_{4} is adjacent to v_{9} and v_{5} is adjacent to v_{8} and v_{9}. Hence $G \cong G_{31}$.

If v_{3} is adjacent to v_{4} and v_{9}, then v_{4} is adjacent to v_{8} and v_{9}. Hence $G \cong G_{32}$. If v_{3} is adjacent to v_{7} and v_{8}, then no graph exists. If v_{3} is adjacent to v_{7} and v_{9}, then no graph exists.

Theorem 2.1. Let G be a 3 -regular graph of order twelve. Then $\chi(G)=\gamma_{[1,2] c c}(G)=$ 3 if and only if $G \cong G_{i}$, where $1 \leq i \leq 32$.
Proof. If G is any one of the graphs G_{i}, where $1 \leq i \leq 32$ as in the figure 1, then clearly verified that $\chi(G)=\gamma_{[1,2] c c}(G)=3$. Conversly, assume that $\chi(G)=$ $\gamma_{[1,2] c c}(G)=3$. Then the proof follows from proposition 2.1 to 2.10 .

Conclusion. In this paper we investigated 3 -regular graphs of order 12, whose [1, 2]-Complementary connected domination and chromatic number are eqaual to three.

References

[1] Chartrand, G.and Lesniak, L., Graphs and Digraphs, Fourth Edition CRC Press, Boca Raton, 2005.
[2] Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[3] Chellali, Mustapha, Haynes, Teresa W., Hedetniemi, Stephen T. and McRae, Alice, [1, 2]-Sets in graphs, Discrete Applied Mathematics, 161, (2013), 2885-2893.
[4] Mahadevan, G., Renuka, K. and Sivagnanam, C., [1, 2]-Complementary connected domination number of graphs, International Journal of Computational and Applied Mathematics, 12(1), (2017), $281-288$.
[5] Mahadevan, G., Renuka, K. and Sivagnanam, C., [1, 2]-Complementary connected domination number of graphs-II, International Journal of Pure and Applied Mathematics, 117(11), (2017), $165-175$.
[6] Kulli, V.R. and Janakiraman, B., The nonsplit domination number of a graph, Indian Journal of Pure and Applied Math, Vol. 31, No. 5, (2000), 545-550.
[7] Yang, Xiaojing and Wu, Baoyindureng, [1, 2]-domination in graphs, Discrete Applied Mathematics, 175, (2014), $79-86$.

Current address: G.Mahadevan: Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul-624302, India.

E-mail address: drgmaha2014@gmail.com
ORCID Address: http://orcid.org/0000-0002-1471-1626
Current address: K.Renuka: Department of Mathematics, Department of Science and Humanities, Vignan University, Andhra Pradesh, India

E-mail address: math.renuka@gmail.com
ORCID Address: http://orcid.org/0000-0001-7573-2191

[^0]: Received by the editors: February 05, 2018; Accepted: June 25, 2018.
 2010 Mathematics Subject Classification. 05C69.
 Key words and phrases. Complementary connected domination, [1,2]-sets, [1,2]-domination, [1,2]-complementary connected domination.

 Submitted via International Conference on Current Scenario in Pure and Applied Mathematics [ICCSPAM 2018].
 This research work was supported by Departmental Special Assistance, University Grants Commission, New Delhi and UGC-BSR Research fellowship in Mathematical Sciences- 2014-2015.

