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Abstract: Wheat (T. aestivum) is the world’s most widely cereal crop and is a staple 
food for a over 50 % world’s population. Soils contaminated with heavy metals may 
cause deleterious effects on human health. However, humic substances (humic acid 
and fulvic acid) might benefit plant growth by improving nutrient uptake and the 
activation of biomass production. Hence, the objective of the current study was to 
investigate the effects of humic acid (HA) on photosynthetic pigment and 
malondialdehyde content (MDA) against chromium stress in Triticum aestivum L. cv. 
Delabrad-2. For this purpose, four Cr treatments (0.10, 0.20, 0.30, 0.50 mM) were 
applied to wheat seedlings and the liquid humic acid sprayed on the leaves at 1.5 mg 
L-1 dose alone or in combination with chromium stress for 21 days. According to our 
results, the higher concentration of Cr was found in the leaves in comparison with 
roots and stems of wheat plants. The treatment with 0.6 mM Cr concentration was the 
most effective for wheat. Total carotenoid, total chlorophyll, chlorophyll a and b 
contents decreased in groups only chromium compared to HA+Cr groups depending 
on the increased chromium dose. However, the application of HA increased the 
chlorophyll a/b ratio and MDA content in plants as compared with Cr treatment alone. 
We conclude that HA application eliminated the toxicity of Cr stress by modulating 
the photosynthetic activities in wheat. 
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Introduction 

In recent years, rapid grown in the agricultural and industrial sectors has also led to an increase in 
the levels of various heavy metals in soil and aquatic environment (Sohail et al., 2016). Soils polluted 
with heavy metals have threatened living organisms including plants and animals (Ali et al., 2015; 
Adrees et al., 2015). Chromium (Cr) is one of the 18 core hazardous air pollutants and causes serious 
environmental contamination in soil and groundwater (Shankar et al., 2005). In plants, Cr is found in 
the forms of trivalent and hexavalent and Cr (III) is relatively stable and less toxic than Cr (IV) 
(Chattopadyay et al., 2010; Oliveira, 2012). This toxicity of Cr(IV) includes reduced plant growth and 
development, the inhibition of photosynthesis and enzymatic activities, chlorosis and ultimately plant 
death (Gill et al., 2015; Bukhari et al., 2016). 

Bioaccumulation and toxicity of Cr has been reported in various crops (Mishra et al., 1997; Singh, 
2001; Shanker, 2003). It is known that Cr is toxic to most higher plants at about 0.5 to 5.0 mg mL-1 in 
nutrient solution and 5 to 100 mg g-1 in soil (Davies et al., 2002; Oliveira, 2012). Chromium eventually 
accumulates in crops from contaminated soils and is mainly retained in the root tissues(Ahmed et al., 
2016; Jaison and Muthukumar, 2016). Studies also reported that Cr stress affects photosynthesis in terms 
of carbon assimilation, electron transport and photophosphorylation in plants (Barbosa et al., 2007; 
Rodriguez et al., 2012). Decrease in photosynthetic pigments by chromium can be ascribed to the 
inhibition of the electron transport processes and to the disorder of ultrastructure of chloroplasts (Pandey 
and Sharma, 2003; Shanker et al., 2005). Moreover, it was found that Cr toxicity caused the 
ultrastructural changes in the form of lamellar system (Ali et al., 2013). The reduction in the content of 
photosynthetic pigments due to Cr toxicity has been reported in many plants (Sharma and Sharma, 1996; 
Nichols et al, 2000; Shanker, 2003). 

Exposure of plants to high levels of Cr also leads to enhanced production of reactive oxygen species 
(ROS) (Islam et al, 2014; Gill et al., 2015). Lipid peroxidation is the most deleterious influence caused 
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by Cr and heavy metals induced ROS (Mithofer et al., 2004). Malondialdehyde (MDA) is one of the 
cytotoxic products of lipid peroxidation and an indicator of free radical production and tissue damage 
(Ohkawa et al., 1979). It was also reported that over production of ROS in plants under stress conditions 
can damage in selective permeability of biological membrane structure. Absorption of Cr is facilitated 
by a carrier membrane, the cell membrane stability are very important (Maiti et al., 2012). 

Humic substances (fulvic acid and humic acid) are the main components of soil organic matter 
(Chen and Aviad, 1990). Humic acids (HA) are characterized as having high molecular weight and a 
heterogenous natural resource (Larcher, 2003). It has been reported that humic substances in the soil 
caused to increase the uptake of mineral elements and the weights of crop plants (Kauser et al., 1985; 
Chen et al., 2004). Eyheraguibel et al. (2008) showed that humic acid application increased the length 
and dry weight of maize plant roots. Furthermore, it was reported that humic acid leads to increased 
biological yield through increasing nitrogen content of the plant (Ayas and Gülser, 2005). According to 
Tufail et al. (2014), humic acid stimulated the growth of root and shoot of wheat plants. Studies on the 
effects of humic substances on plant growth showed that the promoting effects of humic acid was 
associated with increasing cell membrane permeability, oxygen and phosphate uptake, respiration and 
photosynthesis and root cell elongation (Tan, 2003; Türkmen et al., 2004). Recently, it has been reported 
that humic substances is used for effectively removal of heavy metals from aqueous media. (Tang et al., 
2014). However, little information is available on the effects of humic acid against Cr stress. The aim 
of this study was to determine the effects of humic acid in terms of photosynthetic pigments and 
malondialdehyde content against Cr stress on wheat plants. 

 
Materials and Methods 
Plant Material and Experimental Design 

The wheat seedings (Triticum aestivum cv. Delabrad-2), which grown as bread wheat in Amasya 
(Suluova), were used in this study. Germinated wheat seedlings were transferred to plastic pots each 
containing sand and soil and were grown under controlled conditions (light/dark regime of 16/8 h at 25 
C0, relative humidity of 70 %). The seedlings were grown for four weeks and 2.0 mg/L humic acid were 
treated alone or in combination with various concentrations chromium stress (0.20, 0.40 and 0.60mM). 

 
Determination of Pigment and Malondialdehyde Content (MDA) 

Carotenoid and chlorophyll contents were extracted from the uppermost leaves of wheat plants. 
Concentrations of chlorophyll a, chlorophyll b and carotenoids were calculated using the method of 
Lichtenthaler and Welburn (1983). MDA content was determined spectrophotometrically as described 
by Heath and Packer (1968). The absorbance of supernatant was recorded at 532, 600 and 450 nm. The 
MDA content was calculated by using its molar extinction coefficient of 155 mM-1 cm-1. 

 
Determination of Cr Contents 

After washing, the samples were divided into root, stem and leaves. Then all samples are washed 
with 2% HCl and with tap and distilled water. The samples were dried in an oven at 105 ° C. This 
process was continued until a constant weight was reached. Plant samples (1/2 g dry weight) were 
transferred to pyrex tubes. Heavy metals were digested for (7.5 mL) 65% HNO3 and (2.5 mL) 36% HCl 
at 25 °C for 12 hours. Then, the samples were heated at 105 °C in the incubator for 2 hours. Chromium 
contents in samples were determined by using atomic absorption spectrometry (Thermo scientific ice 
3000 series) using the method by Lamhamdi et al. (2013). 

 
Statistical Analysis 

All values in results are mean of at least three replicates±standard deviation (SD). The data were 
analysed using SPSS version 12.0. Tukey’s post-test (at a significance level of p< 0.05) was used to 
compare the treatment groups. 

 
Results and Discussion 
Effect of HA on Cr Uptake by Wheat Plants 

In this study, the amount of Cr in the root, stem and leaf parts increased significantly with increasing 
Cr levels (Figures 1-3). The higher concentration of Cr was found in the leaves in comparison with roots 
and stems of wheat plants. The treatment with 0.6 mM Cr concentration was the most effective for wheat 
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(Figure 3). However, it was found that the Cr toxicity is more predominant in root compared to leaf and 
shoot in many plant species such as wheat in the previous study (Ali et al., 2013; Dotaniya et al., 2014; 
Gill et al., 2015). Ali et al. (2018) also reported that the accumulation of Cr in roots was significantly 
higher than both stem and leaves in wheat plants. In this study, higher Cr amounts in leaves might be 
due to fast translocation and more accumulation of Cr in leaves compared to root and stem. 
 

 
Figure 1. Effects of HA on Cr accumulation in root of wheat plants under Cr stress. Values are means of 
three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
 

 
 
Figure 2. Effects of HA on Cr accumulation in stem of wheat plants under Cr stress. Values are means of 
three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
 

 
 
Figure 3. Effects of HA on Cr accumulation in leaves of wheat plants under Cr stress. Values are means 
of three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
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Application of HA markedly (p<0.05) decreased Cr toxicity compared to Cr-treated groups only. 
(Figures 1-3). The role of humic acid in reducing heavy metal stress in soil has been reported earlier by 
some researchers (Harter and Naidu, 2001; Billingham, 2015). Chen and Aviad (1990) reported that 
humic substances have more profound effects in growth, plant height and dry weight. Similarly, root 
and shoot weight were increased in response to foliar application of humic acid to tomato plants 
(Yildirim, 2007).A remarkable reduction in Cr uptake was reported in the treatment with fulvic acid 
(FA) in Triticum aestivum L (Ali et al., 2015).Decreased Cr uptake with FA might be caused by 
competition between other essential nutrients and Cr in the soil (Matysiak et al., 2011; Ali et al., 2013). 

Effect of HA on Photosynthetic pigments and MDA 
Total Chlorophyll, total carotenoid, chlorophyll a and chlorophyll b, concentrations were decreased 

with the application of Cr alone. This reduction in photosynthetic pigments was more higher especially 
under highest Cr stress (Figures 4- 8). Decreased chlorophyll content associated with Cr stress in various 
plant was also previously reported by some researchers (Sharma and Sharma, 1993; Nichols et al., 2000; 
Zengin and Munzuroğlu, 2006). The reduction of photosynthetic pigments induced by Cr was attributed 
to disorganizations in the chloroplast membranes and to the inhibition of gas exchange parameters and 
electron transport (Vazquez et al., 1987; Ali et al., 2011; Gill et al., 2015). Ehsan et al. (2013 ) was also 
reported that ROS generation under metal stress caused reduction in chlorophyll pigments. In earlier 
studies, chromium also caused a reduction in the chlorophyll concentration of wheat plants (Sharma et 
al., 1995; Subrahmanyam, 2008). In our study, increase in chlorophyll a/b ratio indicates that chlorophyll 
b is more sensitive to Cr toxicity than chlorophyll a in Triticum aestivum cv. Delabrad-2 (Figure 6). 
These findings are in agreement with the findings of Zengin and Munzuroğlu (2005) and Subrahmanyam 
(2008). 
 

 
 
Figure 4. Effects of HA on the content of chlorophyll a of wheat plants under Cr stress. Values are means 
of three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
 

 
Figure 5. Effects of HA on the content of chlorophyll b of wheat plants under Cr stress. Values are means 
of three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
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Figure 6. Effects of HA on the content of Chlorophyll a/b of wheat plants under Cr stress. Values are means 
of three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
 

 
Figure 7. Effects of HA on the content of total chlorophyll of wheat plants under Cr stress. Values are means 
of three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
 

 
Figure 8. Effects of HA on the content of total carotenoid of wheat plants under Cr stress. Values are means 
of three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
 

Zhang et al. (2013) and Lotfi et al. (2015) were also reported that the HA application caused to 
increase chlorophyll content and photosynthesis rate in heavy metals treated plants. It was also 
determined that humic acid maintained water content and water uptake by cadmium stress in wheat 
leaves (Konakçı et al., 2018). In a similar study, humic substances caused a positive role on chlorophyll 
contents in wheat under Cr stress (Ali et al., 2015). It could be connected with the decrease in chlorophyll 
degradation and chloroplast damage (Shahid et al., 2012). In addition, absorption of free Cr ions by HA 
may cause an increase in chlorophyll content (Ali et al., 2015). As shown in Figures 4- 8, a significant 
decrease in chlorophyll a, chlorophyll b, total chlorophyll and carotenoid pigments was observed at 0.4 
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and 0.6 mM Cr plus HA as compared to the control. These findings are consistent with the results of 
Gill et al. (2015) and Ali et al. (2015). Previous studies showed that carotenoid content decreased in 
wheat and other crops exposed to heavy metal stress. (Ali et al., 2013; Yadav and Singh, 2013). In our 
study, it was determined a reduction of carotenoid content after Cr stress application. This reduction of 
carotenoid may be result of a production of ROS (Ghnaya et al., 2009). 

MDA is commonly an indicator of lipid peroxidation and oxidative damage to a membrane under 
heavy metal stress (Chaoui et al., 1997; Dhir et al., 2004). Our study showed that MDA content were 
significantly enhanced compared to control in wheat plants after exposure to different Cr concentrations 
(Figure 9). Moreover, the MDA content also increased with increasing doses of Cr. Similar results have 
already been reported in many earlier studies (Singh et al., 2013; Liu et al., 2014; Gonzales et al., 2017). 
It was also determined that MDA amounts were increased in wheat and rice under lead stress (Aziz et 
al., 2015). Furthermore, a similar increase in malondialdehyde content in the maize plants under heavy 
metal stress was reported (Rizvi and Khan, 2018). In the present study, application of HA reduced the 
MDA content under Cr stress in wheat seedlings. In addition, the MDA content was reduced with 
application of HA in wheat plants under Cr stress as compared with Cr alone. This effect might be due 
to reduction in membrane damage by adsorption of free radicals by humic substances (Ali et al., 2018). 
 

 
Figure 9. Effects of HA on the content of MDA of wheat plants under Cr stress. Values are means of 
three replicates. Different letters indicate significant difference at p<0.05 (Tukey’s multiple range test). 
 
Conclusion 
This study shows the significant effect of HA on the amount of Cr taken by wheat seedlings. 
Photosynthetic pigments decreased under Cr stress. However, MDA content were significantly 
enhanced compared to control in wheat plants after exposure to different Cr concentrations. The HA can 
reduce the adverse effects of Cr by restricting its uptake and transport by wheat plants. Chromium 
concentration was larger in leaves and shoots of wheat plants with Cr treatments. From these 
observations, it was concluded that HA application can improve the Cr stress in the important crops 
such as wheat. In addition, further studies on the different metal types and tolerance mechanisms of HA 
should be performed.  
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