Kayaçlarda Doku Katsayısı ile Kesilebilirlik Özellikleri Arasındaki Bağıntıların İncelenmesi

Dilara HİÇYILMAZ GÜZEL*1 💿, Kamil YILMAZ² 💿

^{1,2}Süleyman Demirel Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü, 32260, Isparta, Türkiye

(Alınış / Received: 05.12.2018, Kabul / Accepted: 12.04.2019, Online Yayınlanma / Published Online: 30.08.2019)

Anahtar Kelimeler Özet: Kayaçların kesilebilirlik özelliklerini etkileyen en önemli faktör kayaçların Doku katsayısı, dayanımlarıdır. Kayac dayanımı ise kayacın doku özellikleri ve kayac olusturan mineral tanelerinin kayaç içinde bulunma durumuna bağlıdır. Verimi yüksek kesimler yapabilmek adına kesilecek kayaçların mineralojik içeriğinin bilinmesi gerekmektedir. Bu sebeple, doku ve mineral tanelerinin geometrik şekillerinin bir bütün olarak ele alındığı doku katsayısı parametresi (TC) ile birim hacim başına harcanan enerji miktarı olarak tanımlanan spesifik enerji (SE) arasındaki ilişki araştırılmıştır. Çalışmalarda Afyon ve İsparta bölgelerinden alınan 7 farklı türde toplamda 41 adet numune kullanılmıştır. Numuneler ilgili standartlara bağlı olarak fiziksel ve mekanik deneylere tabi tutulmuştur. Her numunenin mineralojik ve petrografik özellikleri mikroskop altında incelenmiştir. Görüntü analiz programı kullanılarak bilgisayar ortamında mikroskop görüntüleri üzerinden partikül analizi yapılmıştır. Çalışma sonucunda spesifik enerji ile doku katsayısı arasında anlamlı bir ilişki elde edilmiştir. Böylece kayaçların doku özelliklerinin sayısallaştırılması için doku katsayısının kullanılabileceği gözlenmiştir. Buna ek olarak, mineral tanelerin geometrik şekilleri, büyüklükleri, idiomorf veya hipidiyomorf mineraller, kayadaki minerallerin varlığı ve mineraller arasındaki artan sınır ilişkilerinin kayaç mukavemetini ve özgül enerji kullanımını etkilediği gösterilmistir.

Investigation of the Relationship Between the Texture Coefficient with Rock Cuttability Features

Keywords

Spesifik enerji,

Mineraloji

Texture coefficient. Specific energy, Mineralogy

Abstract: The most important factor affecting the cuttability properties of rocks is the strength of the rocks. Rock strength depends on the rock characteristics and the presence of rock-forming mineral grains. The mineralogical content of the rocks need to be known in order to make high yields cuttings. For this reason, the relationship between the tissue coefficient parameter, where the geometric shapes of the textures and mineral grains were considered as a whole, and the specific energy defined as the amount of energy spent per unit volume was investigated. A total of 41 samples were collected from seven different species from Afyon and Isparta. The samples were subjected to physical and mechanical experiments depending on the relevant standards. Mineralogical and petrographical properties of each sample were examined under a microscope. Particle analysis was performed by using microscope images in computer environment using image analysis program. As a result of the study, a significant relationship was found between specific energy and tissue coefficient. Thus, it was observed that the coefficient of tissue coefficient can be used for digitizing the textural properties of the rocks. In addition, geometric shapes of mineral grains, size, idiomorph or hypidiomorphic minerals, the presence of minerals in the rock and increased boundary relationships between minerals have been shown to affect rock strength and specific energy use.

1. Giriş

Maden sektörünün vazgeçilmez unsuru dairesel testereler ile verimli kesimler yapabilmek için kesilecek kayacın dayanımını belirleyen kesilebilirlik önemli bir unsurdur. Verimli kesim; kayacın istenilen boyutlarda mümkün olduğunca az enerji, kısa süre ve kırık-çatlak gibi olumsuz etmenlerin olmamasıyla elde edilir.

Kayaçlarda doku ise kayacı oluşturan kayaç yapıcı mineral taneleri, mikrolitler, varsa damarlar ve tanelerin birbirine bağlanmasını sağlayan matriks malzemesinden oluşur. Mineral tanelerinin birbiriyle olan ilişkileri, aralarındaki mesafe, bu mesafe arasını dolduran matriks, kavacın bilesimindeki mineral vüzdeleri vb. özellikler kavacın dayanımını yükselmesi belirlemektedir. Dayanımın mermercilikte doğaltaşlar üzerinde ebatlama yapabilmek için kullanılan makinalar ile kesim yapılırken kesimin verimsiz olmasına. kesim isleminde kullanılacak olan makinaların zorlanmasına, fazla kullanmasına veva güç bozulmasına neden olur. Bu da kullanılacak kayaçların istenmeyen şekilde kırılması, çatlaması gibi üretimin verimini düşüren ve zaman kaybına sebep olan büyük bir nedendir. Bu nedenle dayanım kavacların davanımları kesimi etkileyen en önemli unsurlardan biridir. Bu sebeple kayacın dokusal özelliklerinin belirlenmesi ile kayaca ait kesilebilirlik iliskinin özellikleri arasındaki tanımlanması önemlidir.

Kayaç tane özellikleri ile kesilebilirlik ilişkisini incelemek adına Şengün [1] dairesel testereler kullanarak birçok kayaç kesimi gerçekleştirmiş ve bunların özgül enerjilerini hesaplamıştır. Ayrıca dairesel testerelerle kesme işleminde kayaca bağlı faktörlerde sert mineral tane boyutu, sertlik, dayanım gibi malzeme özellikleri ile numunelerin kesilebilirlik özelliklerini araştırmıştır. Kayaçların sert mineral tane boyutu büyüdükçe, sertlik ve dayanım değerleri arttıkça kesilebilirliklerinin azaldığını vurgulamıştır.

Şengün ve diğerleri [2] bazı doğal taşların kesilebilirliklerini incelemek amacıyla almış oldukları örneklerden ilgili deney standartlarına göre numuneler hazırlayarak kayaçların fiziksel ve mekanik özellikleri ile kesilebilirlik özelliklerini belirlemiştir. Kesim parametrelerini sabit tutarak ölçülen verileri kullanarak her kayaç türü için spesifik enerji hesaplamıştır. Çalışma sonucunda numunelerin fiziksel özelliklerinden gözeneklilik derecesi ve sertliğinin, mekanik özelliklerden ise kayaç basınç dayanımının kayaçların kesilebilirlikleri üzerinde etkisinin olduğunu vurgulamıştır.

Öztürk [3] kayaçların dayanımlarının malzeme özelliklerine bağlı olduğunu ve mineral kompozisyonlarından etkilendiğini buna bağlı olarak da malzemelerin dayanımlarının, kayacı oluşturan minerallere, bu minerallerin bulunduğu dokuya ve dokunun kompozisyonuna bağlı olarak değiştiğini vurgulamıştır. Bu nedenle agrega numuneleri üzerinde fiziksel ve mekanik deneyleri yaparak doku katsayısı ile ilişkilerini araştırmıştır. Doku katsayısı ile fiziksel-mekanik özellikler arasında bir ilişkinin var olduğunu ve doku katsayısının kullanılabilir bir parametre olduğu sonucuna ulaşmıştır.

Kesilebilirlik özelliklerinin araştırılması yanı sıra kayacı ve kayacı oluşturan minerallerin özelliklerini tanımlamaya ihtiyaç duyulmaktadır.

Farklı kayaç türlerinde kullanılacak enerji değerlerini sayısal olarak belirlemek adına Howarth ve Rowlands [4] tarafından doku katsayısı parametresini belirlemistir. Kavaclara ait minerallerin geometrik özellikleri ve bulundukları kayaca ait dokusal tüm özelliklerinin bir arada incelenerek kavac dayanımlarının sayısallaştırılmasını sağlayan bu parametre ile kesim esnasında dairesel testerelerin kullanmış olduğu birim hacim için harcanan enerji miktarı olan spesifik enerji arasındaki ilişki arastırılmıstır.

Öztürk ve diğerleri [5] kayaçların doku katsayıları ile fiziko-mekanik özellikleri arasındaki ilişkileri incelemiştir. Kayaçlara ait doku katsayısı değerinin artmasıyla kayaç dayanımının yükseldiğini yani kaya sağlamlığını olumlu yönde etkileyen parametrelerin artışının doku katsayısı değerinin artışına sebep olduğunu ifade etmiştir.

Kumtaşı örnekleri üzerinde mineralojik-petrografik analizler, kaya ve kazı mekaniği deneyleri yapan Tiryaki ve diğerleri [6] doku katsayısı ve paketlenme yoğunluğunun, spesifik enerji ile istatiksel açıdan bir ilişkisinin varlığını vurgulamışlardır.

Günaydın [7] andezit, traki andezit, trakit ve kumtaşı numunelerini kullanarak doku katsayıları tespit etmiştir. Ayrıca bu numunelerin fiziksel ve mekanik özelliklerini inceleyerek doku katsayısı ile ilişkilerinin olup olmadığını araştırmıştır. Doku katsayısının fiziko-mekanik özellikleri etkilediğini ifade etmiştir.

Bu çalışmada doku katsayısı parametresi ile dairesel testerelerin kesim esnasında kullandıkları özgül kesme enerjisi (spesifik enerji) arasındaki ilişkiler araştırılmıştır. Çalışmada amaç kayaçların mineral içerikleri ve dokusal özelliklerinin kesilebilirliklerine ve buna bağlı olarak dairesel testerelerle yapılan kesimlerde verime etkisinin araştırılmasıdır Afyon ve Isparta illerine ait formasyonlar da baskın olarak bulunan 7 farklı kavac türüne ait toplam 41 numune kullanılarak kayacların spesifik enerjilerine olumlu va da olumsuz olarak etki edebilecek fiziksel ve mekanik özellikleri ile dokusal özellikleri deneylerle tespit edilerek ilişkileri araştırılmıştır. Buna bağlı olarak çıkan sonuçlar doğrultusunda kayaçların kesim parametrelerinden olan spesifik enerji değerinin üzerinde doku katsayısı etkileri gözlemlenmiş olup, ilişkilere dair tüm veri ve analizlere çalışmada yer verilmiştir.

Bunların yanı sıra her numune için görüntü analiz programında ince kesitlere ait görüntüler kullanılarak partikül analizleri yapılmış ve çıkan değerler yardımıyla doku katsayıları belirlenmiştir. Tüm deney sonuçları ve doku katsayısı değerleriyle kayaçların kesilebilirlik özellikleri ile doku katsayıları arasındaki ilişkiler irdelenmiştir.

2. Materyal ve Metot

Çalışma kapsamında Tablo 1'de belirtilen numuneler üzerinde standartlara uygun olarak bazı fiziksel ve mekanik özellikler ile ilgili deneyler yapılmıştır. Ayrıca her numune için ince kesit yapılarak mineralojik ve petrografik tayinler yapılıp, mikroskop altındaki görüntüler üzerinden görüntü analiz programı yardımıyla partikül analizleri yapılmıştır.

Tablo 1. Kullanılan numuneler ve kodları

Grup	Kayaç	Kayaç	Grup	Kayaç	Kayaç
Kodu	Kodu	Adı	Kodu	Kodu	Adı
	Is-1A		1	Af-2	
IS-1	Is-1B	Trakiandezit	AF-1	Af-5	
	Is-1C			Af-10	
	Is-2A		1	Af-12	Lösitit
IS-2	Is-2B		AF-2	Af-13	Andezitik
	Is-2C			Af-14	Bazalt
	Is-2D	Kumtaşı		Af-4	
	Is-3A		1	Af-6	
	Is-3B			A-7	
	Is-3C		AF-3	Af-8	
	Is-3D			Af-9	
	Is-4A			Af-11	Bazaltik
	Is-4B			Af-15	Trakiandezit
IS-3	Is-6A			Af-3	
	Is-6B		AF-4	Af-16	Trakiandezit
	Is-6C			Af-17	
	Is-6D	Trakit			
	Is-4C		1		
	Is-5A				
IS-4	Is-5B	Bazaltik			
	Is-5C	Trakiandezit			
	Is-7A		1		
IS-5	Is-7B		1		
	Is-7C		1		
	Is-7D	Fonolit	1		

2.1. Mineralojik ve petrografik özelliklerin belirlenmesi

Petrografik özellikleri belirlenen numunelere ait ince kesitler polarizan mikroskop yardımıyla incelenerek kayaç adlandırılmaları (Tablo 1) ve mineralojik içerikleri irdelenmiştir (Tablo 2,3).

2.2. Numunelerin doku katsayısı değerlerinin belirlenmesi

Kayaçların dayanımlarının kesime etkisini öngörebilmek amacıyla kayaç içerisindeki mineral tanelerinin geometrik özellikleri ve içerisinde bulunduğu kayacın dokusal özelliklerini sayısallaştırılmış şekilde bir arada inceleyebilmek amacıyla doku katsayısı hesabı yapılmıştır. Doku katsayısı için gereken değerler; mineral tanesine ait geometrik özellikler; tanenin uzunluğu (maksimum feret çapı), tanenin genişliği (minimum feret çapı), tanenin çevresi, tanenin açısı (tane oryantasyonu) ve hesaplama yapmak için seçilen sınır içerisindeki matriks malzemesinin alanıdır. Her bir numuneye ait ince kesitin mikroskop altındaki görüntüsü android telefonla fotoğraflar büyütme yapılmadan (1X) çekildi ve bilgisayar ortamına aktarıldı. Her numuneye ait doku katsayısı değerini bulabilmek adına minerallerin gerekli geometrik parametreleri hesaplandı. Bu değerleri elde edebilmek için ImageJ adlı sürüm 2.1.4.7 görüntü analizi programında tamamen otomatik olarak, ölçekli fotoğraflar üzerinden partikül analizi yapıldı.

Şekil 1. Af-12 Lösitit numunesine ait mikroskop ve partikül analizi yapılmış görüntüsü

Analiz sonuçları program tarafından otomatik olarak Excel dosyasına kaydedildi.

$$TC = AW\left[\left(\frac{N_0}{N_0 + N_1} \times \frac{1}{FF_0}\right) + \left(\frac{N_1}{N_0 + N_1} \times AR_1 \times AF_1\right)\right]$$
(1)

Eşitlik (1) ile hesaplanan doku katsayısına ait parametreler [2] burada;

AW, Tane yığılma ağırlığı,

N_o,Görünüm oranı (AR) 2,0' dan küçük olan tane sayısı,

N₁, AR değeri 2.0' dan büyük olan tane sayısı, FF₀, AR değeri 2.0' dan küçük olan tanelerin sekil

faktörü (FF) değerlerinin aritmetik ortalaması, AR₁, AR değeri 2.0' dan büyük olan tanelerin AR

değerlerinin aritmetik ortalaması,

AF₁, Açı faktörünü ifade etmektedir.

AR parametresi ile sapmayı gözlemlemek mümkün olmaktadır. AR değeri, tanenin uzunluğunun genişliğine oranı olarak tanımlanmaktadır. AR değerinin 2.0 olduğu durum sınır olarak kabul edilmesiyle (Howarth ve Rowlands, 1987) sapmış ve sapmamış taneler ayırt edilir. FF değeri ise tanenin yuvarlaklıktan ne derece sapmış olduğunu tanımlamaya yarayan bir parametredir. Bu sayede FF değeri kullanılarak, tanenin ne derece pürüzlü olduğu hakkında yorum yapmak mümkün olmaktadır. FF değeri Eşitlik (2) yardımıyla hesaplanmaktadır.

$$FF = 4 \times \pi \times \frac{Alan}{(\zeta evre)^2}$$
(2)

AF; açı faktörü sapmış tanelerin yatay eksenle yapmış olduğu dar açıdır. Hesabı Eşitlik 3 yardımıyla yapılır.

$$Q_{L} = \sum_{i=1}^{n} \left(\frac{x_{i}}{\frac{N_{1}(N_{1}-1)}{2}} \right) x_{i}$$
(3)

Burada; N_1 , sapmış (AR<2.0) tane sayısı, i, ağırlık katsayısı ve x_i , iki açı arasındaki farkın mutlak değerinin dar açı cinsinden değeridir.

Parametrelerin sonuncusu olan AW yani yığılma ağırlığı değeri Eşitlik (4) yardımıyla bulunur.

$$AW = \frac{Toplam \ tane \ alanı}{Referans \ alanı} \tag{4}$$

Son olarak tüm bu parametreler yardımıyla her bir numuneye ait doku katsayısı Eşitlik (1) ile hesaplanır.

2.3. Fiziksel ve mekanik özelliklerin belirlenmesi

Alınan numuneler Süleyman Demirel Üniversitesi Maden Mühendisliği Bölümü Doğal Taşlar Teknolojisi Laboratuvarın da TSE ve ISRM'ye göre belirlenen fiziksel özelliklerinin elde edilebilmesi için yapılan deneylerle numunelerin birim hacim ağırlığı (TS EN 1936) [8], görünür porozitesi (TS EN 13755)[9], kütlece su emme oranı (TS EN 13755)[9], sismik hız (TS EN 14579)[10], Schmidt sertliği (ISRM 1981)[11] gibi, mekanik özellik olarak ise nokta yükü dayanım indeksi (ISRM 1981)[11] özellikleri belirlenmiştir.

2.4. Numunelerin spesifik enerjilerinin belirlenmesi

Numuneler yapılan diğer deneylere ait standart deney boyutlardan farklı olarak 5-10-20 cm boyutlarında kullanılmıştır. Dairesel testereyle, bilgisayara bağlı bir düzenek kullanılarak (Şekil 1), ilerleme hızı, çevresel hız, testere çapı, kesme derinliği ve kesim süresi sabit tutularak numunelerin kesimleri esnasında kullanılan güç ve süre değerleri ölçülmüştür.

Her numune üzerinde 3 kez tekrarlanan işlem için güç-süre grafiği hazırlanarak bulunan değerlerin ortalaması hesaplanmıştır.

Burada güç; kayacın kesimi esnasında dairesel testerenin keski ucunun tamamıyla kayaca temas ederek aşındırmaya başladığı andan itibaren makinenin harcamış olduğu güç, süre ise keski ucunun tamamen kayaca temasının başladığı ve bittiği zaman arasındaki süredir (Şekil 2). Dairesel testerenin bağlanmış olduğu bilgisayar üzerinden tüm numunelerin kayaç kesimlerine ait gerilim (V), frekans ve akım (I) değerleri salt metin dosyaları halinde alınmıştır. Daha sonra Microsoft Excel programı formatına dönüştürülen değerler bir deney için anlık olarak kaydedilen akım ve gerilim değerleri çarpılarak kesim esasında oluşan anlık güç değerleri hesaplanmıştır [4].

Şekil 2. Deneyin yapılmış olduğu düzenek

Şekil 3. Is-2D numunesi 1.kesimi için güç-süre grafiği

Bulunan değerler yardımıyla her numuneye ait spesifik enerji değerleri Eşitlik (5) ve Eşitlik (6) ile hesaplanmıştır.

$$P = V \times I \tag{5}$$

Burada;

P, anlık çekilen güç (watt),

V, anlık gerilim değeri (volt),

I, anlık akım değerini (amper) ifade etmektedir.

$$P_{\rm net} = P_{\rm k} - P_{\rm b} \tag{6}$$

Burada;

Pnet, kesim için harcanan net güç değeri (watt), Pk, testere tam kesimde iken çekilen güç değeri (watt),

Pb, testere boşta iken çekilen güç değerini (watt) ifade eder.

3. Bulgular

3.1. Mineralojik ve petrografik bulgular

Tüm mineralojik ve petrografik incelemeler sonucunda Afyon ve Isparta olarak ayrılan kayaçlar adlandırma kodları ve mineralojik özellikleriyle tablolar halinde verilmiştir (Tablo 2,3).

3.2. Numunelerin doku katsayısı değerleri

Numunelere ait doku katsayısı değerleri belirlenirken ilgili parametreler hesaplanmıştır. Her numune için ayrı ayrı hesaplanan doku katsayısı hesap tablosu Tablo 4 de, tüm numuneler için hesaplanmış olan parametre değerleri Tablo 5 de verilmiştir.

G NO			FI	ENO	KRIST	FALLEF	2	•	TALİ	MİNERA	LLER	ÖZELLİKLER					
0.110	14.140	prx	fel	mi	plj	amf	san	q	ар	o.m	ru	k.k	MATRİKS	DOKU	KAYAÇ ADI		
	ls-1A	v		v	v	v			v	v							
15-1				,						·			plajioklas+	norfirik	Trakiandezit		
10 1	ls-1B	V		V	V	V			V	V			alkalı feldispat+	pormit	Takianaczit		
	ls-1C	٧		٧	٧	٧			٧	٧			piroksen				
	ls-2A		٧	٧				٧				Kireçtaşı					
16.2	ls-2B		٧					٧				Kuvarsit+ Kumtaşı	karbanat	dotritile	Kumtasi		
13-2	le_2C		v		v			v				Kuvarsit+	Karbonat	uethtik	Kullitaşı		
	13-20		v		v			v				Kuvarsit+					
	ls-2D		٧		٧			٧			٧	Kumtaşı					
	ls-3A	٧		٧	٧		v		v	٧							
	ls-3B	٧		٧	٧		v		v	٧	٧		plajioklas+ sanidin				
	ls-3C	v		v	v		v		v	v			mikrolitleri+				
	Is-3D	v		v	v		v		v	v v	v		Calli	porfirik			
	13 30	•							v	•	v		plaijoklas.mika				
IS-3	ls-4A			V	V		V						ve sanidin		Trakit		
	ls-4B			٧	٧		٧		٧	٧			mikrolitleri		Πάκιι		
	ls-6A	v		v	v		v							afanitik porfirik			
														afanitik			
	ls-6B	v		v	v		v						volkan camı	mikrolitik			
		v		, v	v v		v							ofonitik			
	13-00	v		v	v		v							porfirik			
	ls-6D	٧		٧	٧		٧						nlaiiaklas mika				
													ve sanidin				
	ls-4C	٧		٧	٧		٧						mikrolitleri	porfirik			
IS-4	ls-5A	٧		٧			v		v	٧			piroksen,	glomera porfirik	Bazaltik Trakiandezit		
	ls-5B	٧		٧	٧		v			v			sanidin, mika ve volkan camı	porfirik			
	ls-5C	v		v	v		v			N			mikrolitleri	intersertal			
	ls_7A	, ,/		v 1/	v 1		۰ ۷				۷			intersertai			
	15-7A	v		v	v		v				v						
IS-5	Is-7B	V		V	V		V				۷		sanidin mikrolitleri	intergranüler	Fonolit		
	ls-7C	V		V	V		V				٧						
	ls-7D	V		V	V		V				V						

Tablo 2. Isparta numuneleri mineralojik tablosu

 Is-7D
 V
 V
 V
 V
 V
 V

 (prx: Piroksen, fel: Feldispat, mi: Mika, plj: Plajiyoklas, amf: Amfibol, san: Sanidin, q: Kuvars, ap: Apatit, o.m: Opak Mineral, ru: Rutil, k.k: Kayaç Kırıntısı)

		FE	NOKR	İSTALI	ER		TAL	İ MİNEF	ALLER		ÖZELLİKLER					
G. NO	N.NO	prx	mi	plj	lö	ol	ар	nef	san	o.m	MATRİKS	DOKU	KAYAÇ ADI			
	Af-2	٧			v			v		v	opak mineral + piroksen mikrolitleri					
											karbonat + sanidin					
AF-1	Af-5	V			٧			V	٧		mikrolitleri porfirik		Lösitit			
	Af-10	V			V			V			karbonatlaşma +					
	Af-12	V			V			V			kloritleşme					
AF-2	Af-13	V	V			V					piroksen mikrolitleri + hiyalo mikrolitik					
	Af-14	V	V								volkan camı	porfirik	Andezitik Bazalt			
											piroksen+ piroksen,					
											plajioklas ve mika					
	At-4	v	v	v		v	v				mikrolitleri mikrolitik porfirik					
											piroksen, sanidin ve					
						.,				.,	mika mikrolitleri +	hiyalo mikrolitik				
	AT-6	v	v			v			v	v		рогтігік				
	A 4 7		.,				.,		./		piroksen ve sanidin mikrolitlorit volkan camu bivalo mikro porfirik					
	AI-7	v	v				v		v			піўаю тікто рогітік	Dozaltik			
AE 2	ΛfQ	1	1								piroksen ve sanidin mikrolitlori	glomonorfirik	Bazallik Trakiandozit			
Ar-5	AI-0	v	v				v		v		nirokson vo sanidin	giomopornink	Takianuezh			
											mikrolitleri+ vesiküler					
	Δf-9	v	v						v		kalsit	norfirik				
	Δf-11	v	v						v		niroksen+ vesiküler	portinik				
	/	•	•						, i		kalsit+ piroksen.					
											plaijoklas ve mika	hivalo mikrolitik				
	Af-15	v	v						v		mikrolitleri	porfirik				
											piroksen ve plajioklas					
	Af-3	V	v	V						v	mikrolitleri+ volkan camı					
										piroksen mikrolitleri+ mikrolitik porfirik						
AF-4	Af-17	V	V						V		volkan camı		Trakiandezit			
											piroksen, mika ve					
										sanidin mikrolitleri+						
	Af-16	V	V				V		V		volkan camı	porfirik				

Tablo 3	Afvon	numunel	eri n	nineral	ojik tak	locu
1 auto 5.	AIVUII	nununei	enn	iiiiieiai	Ulik lal	nosu

(prx: Piroksen, mi: Mika, plj: Plajiyoklas, lö: Lösit, ol: Olivin, ap: Apatit, nef: Nefelin, san: Sanidin, o.m: Opak Mineral)

Table 4. IS-IA munulesine all uoku katsayisi parameti elerine all uegerie	Tablo 4. Is-1A	numunesine ait doku	katsayısı	parametrelerine	ait değerler
--	----------------	---------------------	-----------	-----------------	--------------

											N(N-1)					
Tane No	Alan	Çevre	Max. Feret	Min. Feret	Açı (°)	AR	FF	AW	FF ₀	AR ₁	2	i	1/N	i/N	AF ₁	тс
1	623	308.58	46.95	16.90	78.25	2.78	0.08	0.79	0.17	2.69	21	8	0.14	1.14	1.09	4.04
6	1502	578.91	72.14	26.51	54.22	2.72	0.06	0.79	0.17	2.69	21	6	0.14	0.86	1.09	4.04
9	93342	3077.6	522.18	227.6	1.226	2.29	0.12	0.79	0.17	2.69	21	1	0.14	0.14	1.09	4.04
12	2561	1003.1	90.64	35.98	89.91	2.52	0.03	0.79	0.17	2.69	21	9	0.14	1.29	1.09	4.04
14	671	181.87	49.83	17.14	119.6	2.91	0.25	0.79	0.17	2.69	21	3	0.14	0.43	1.09	4.04
20	4250	677.28	129.08	41.92	173.9	3.08	0.12	0.79	0.17	2.69	21	9	0.14	1.29	1.09	4.04
41	524	223.52	40.89	16.32	101.9	2.51	0.13	0.79	0.17	2.69	21	2	0.14	0.29	1.09	4.04
3	1033	316.52	46.10	28.53	44.8	1.62	0.13	0.79	0.17	2.69						3.99
4	3362	1235.7	80.55	53.15	179.5	1.52	0.03	0.79	0.17	2.69						3.99
7	1144	211.08	51.24	28.43	66.9	1.80	0.32	0.79	0.17	2.69						3.99
13	1506	375.14	59.51	32.22	95.56	1.85	0.13	0.79	0.17	2.69						3.99
16	1699	206.84	54.42	39.75	8.655	1.37	0.50	0.79	0.17	2.69						3.99
17	2332	449.33	73.93	40.16	68.45	1.84	0.15	0.79	0.17	2.69						3.99
21	1092	462.26	49.01	28.37	88.57	1.73	0.06	0.79	0.17	2.69						3.99
24	2644	1004.3	71.90	46.82	37.66	1.54	0.03	0.79	0.17	2.69						3.99
25	8084	547.45	131.04	78.55	139.8	1.67	0.34	0.79	0.17	2.69						3.99
27	1527	748.53	51.85	37.50	177	1.38	0.03	0.79	0.17	2.69						3.99
28	8370	713.56	120.94	88.12	174	1.37	0.21	0.79	0.17	2.69						3.99
29	630	285.02	35.36	22.69	158.4	1.56	0.10	0.79	0.17	2.69						3.99
31	679	244.29	37.15	23.27	68.03	1.60	0.14	0.79	0.17	2.69						3.99
32	548	240.64	31.97	21.82	165	1.47	0.12	0.79	0.17	2.69						3.99
33	9858	676.16	142.06	88.35	106.7	1.61	0.27	0.79	0.17	2.69						3.99
36	28560	1013.8	213.17	170.6	125.6	1.25	0.35	0.79	0.17	2.69						3.99
38	5392	1362.5	92.77	74.00	155	1.25	0.04	0.79	0.17	2.69						3.99
39	1069	544.68	44.37	30.67	102.5	1.45	0.05	0.79	0.17	2.69						3.99
T.Alan	183002													ls-1A	тс	4.02
R. Alan	232718															
No	18															
N ₁	7															

N.KOQU	AW	NO	NI	AF1	FFO	AKI
Is-1A	0.79	18	7	1.09	0.17	2.69
ls-1B	0.88	15	10	0.88	0.17	2.99
ls-1C	0.72	14	11	1.18	0.11	3
Is-2A	0.4	13	12	1.15	0.38	2.34
ls-2B	0.88	21	6	1.1	0.19	2.8
ls-2C	0.73	12	13	1.23	0.36	2.56
ls-2D	0.64	20	5	0.76	0.09	2.92
Is-3A	0.62	15	10	0.8	0.41	2.59
ls-3B	0.92	15	10	0.98	0.12	2.44
ls-3C	0.72	14	11	0.68	0.08	3.18
ls-3D	0.69	19	6	0.97	0.11	2.71
Is-4A	0.62	15	10	0.88	0.07	2.4
ls-4B	0.74	19	6	1.07	0.1	2.76
ls-4C	0.53	15	10	0.66	0.09	2.61
ls-5A	0.45	15	10	1.04	0.13	2.52
ls-5B	0.57	19	6	1.1	0.12	2.21
ls-5C	0.35	11	14	1.07	0.22	2.65
Is-6A	0.98	21	4	0.95	0.22	2.28
ls-6B	0.41	21	4	0.8	0.15	2.22
ls-6C	0.3	13	12	0.83	0.09	2.82
ls-6D	0.53	13	12	0.85	0.2	3.04

Tablo 5. Numunelere ait doku katsayısı parametreleri sonucları

Numunelere ait deney sonuçlarının ortalama ve standart sapma değerlerini incelendiğinde en yüksek doku katsayısı AF-4 kodlu trakiandezit kayaçlarının oluşturduğu grupta, en düşük doku katsayısı değerleri ise AF-1 kodlu lösitit kayaçlarının oluşturduğu grupta gözlenmiştir (Tablo 6).

Tablo 6. Numunelere ait doku katsayısı değerleri

TC ORT.	STD. SP.
2.12	1 27
2.15	1.27
4.48	2.75
2 96	1 01
2.00	1.01
5.14	1.63
-	TC ORT. 2.13 4.48 2.86 5.14

3.3. Numunelerin fiziksel ve mekanik özellikleri

En yüksek birim hacim ağırlık (BHA) değeri kumtaşlarından oluşan IS-2 grubunda gözlenmiştir (Tablo 7). En düşük değer ise IS-3 kodlu trakit numunelerine ait grupta gözlenmiştir (Tablo 7).

Sismik Hız (Vp) deneyi en yüksek değer AF-1 kodlu lösititler oluşan grupta, en düşük değer ise IS-3 kodlu trakitlerden oluşan grupta gözlenmiştir (Tablo 8).

N.Kodu	AW	No	N1	AF1	FFO	AR1
Is-7A	0.8	10	15	1.07	0.12	3.6
ls-7B	0.8	14	11	0.93	0.07	2.27
ls-7C	0.6	17	8	1.03	0.34	2.63
ls-7D	0.6	15	10	0.88	0.17	2.99
Af-2	0.5	17	8	1.13	0.32	2.7
Af-3	0.7	18	7	1	0.09	2.49
Af-4	0.4	13	12	0.8	0.34	3.52
Af-5	0.6	20	5	1.16	0.29	2.66
Af-6	0.6	15	10	1.22	0.14	2.96
Af-7	0.5	16	9	0.89	0.17	2.97
Af-8	0.7	10	15	0.91	0.09	2.77
Af-9	0.6	14	11	1.04	0.23	3.43
Af-10	0.3	20	5	0.84	0.24	3.16
Af-11	0.5	14	11	1.04	0.09	2.89
Af-12	0.9	21	4	0.8	0.2	2.35
Af-13	0.4	14	11	0.82	0.1	2.53
Af-14	0.8	12	13	1.05	0.07	2.52
Af-15	0.3	14	11	1.29	0.07	3.05
Af-16	0.7	13	12	1.08	0.07	2.74
Af-17	0.5	18	7	1.06	0.14	2.57

Tablo 7. Numunelere ait birim hacim ağırlık değerleri

	N.NO	BHA	BHA	STD		N.NO	BHA	BHA	STD.
		g/cm ³	ORT	SP.			g/cm ³	ORT.	SP.
	Is-1A Is-1B Is-1C Is-2A	2.32 2.3 2.36 2.62	2.33	0.03		Af-2 Af-5 Af-10 Af-12	2.5 2.47 2.57 2.57	2.52	0.05
	Is-2B Is-2C Is-2D	2.66 2.6 2.66	2.63	0.03	NO	Af-13 Af-14 Af-4	2.7 2.52 2.42	2.61	0.13
ISPARTA	Is-3A Is-3B Is-3C Is-3D Is-4A Is-4B Is-6A Is-6B Is-6C	2.47 2.49 2.39 2.37 2.36 2.32 1.96 1.96 2.34	2.27	0.2	AFYC	Af-6 Af-7 Af-8 Af-9 Af-11 Af-15 Af-3 Af-16 Af-17	2.49 2.58 2.38 2.59 2.6 2.31 2.55 2.57 2.58	2.48 2.57	0.11
	Is-6D Is-4C Is-5A Is-5B Is-5C	2.05 2.38 2.44 2.35 2.44	2.4	0.04					
	Is-7A Is-7B Is-7C Is-7D	2.58 2.35 2.45 2.71	2.52	0.16					

Vp Ort.

km/s

5542

4864

4331

4835

STD.

774.2

1038

404.5

575.1

SP.

Tablo 8. Numunelere sismik hız değerleri

	N.NO	HIZ m/s	Vp Ort. km/s	STD. SP.		N.NO	HIZ m/s
	ls-1A ls-1B ls-1C	4803 4855 4567	4742	153.9		Af-2 Af-5 Af-10	5542 4120 4323
	Is-2A Is-2B Is-2C Is-2D	4585 5593 3924 5025	4586	705.1	YON	Af-12 Af-13 Af-14 Af-4	5567 5598 4130 4173
ISPARTA	Is-3A Is-3B Is-3C Is-3D Is-4A Is-4B Is-6A Is-6B Is-6C Is-6D	3234 3610 2375 1759 3136 2176 2298 2135 2612 2703	2604	574.1	AF	Af-6 Af-7 Af-8 Af-9 Af-11 Af-15 Af-3 Af-16 Af-17	4984 4437 3954 4574 4422 3774 4649 5480 4376
	Is-4C Is-5A Is-5B Is-5C	3597 4637 4222 4352	3597	439.3			
	Is-7A Is-7B Is-7C Is-7D	4427 5792 4748 4305	4427	675.8			

En yüksek Schmidt çekiç sertliği değeri standart sapmaları farklı ancak Schmidt çekiç sertliği değerleri aynı olan IS-4 kodlu bazaltik trakiandezit grubu ve IS-5 kodlu fonolit grubudur. En düşük değer ise IS-3 kodlu trakit numunelerinin oluşturduğu grupta gözlenmiştir (Tablo 9).

Tablo 9. Numunelere ait Schmidt çekiç sertliği değerleri

	N.NO	SCH. Ort.	STD. SP.		N.NO	SCH. Ort.	STD. SP.
	Is-1A Is-1B Is-1C	31.2	2.48		Af-2 Af-5 Af-10	34	4.8
	Is-2A Is-2B Is-2C	28.3	1.53		Af-12 Af-13 Af-14	33	14
ISPARTA	IS-2D IS-3A IS-3B IS-3C IS-3D IS-4A IS-4B IS-6A IS-6B IS-6C IS-6D	26.3	4.98	AFYON	Al-4 Af-6 Af-7 Af-8 Af-9 Af-11 Af-15 Af-3 Af-3 Af-16 Af-17	27 30	1.3 4.8
	Is-4C Is-5A Is-5B Is-5C	34.1	2.32				
	Is-7A Is-7B Is-7C Is-7D	34.1	3.16				

Kütlece su emme (KSE) deneyi değerlerine bakıldığında en yüksek değer IS-3 kodlu trakit numunelerinin oluşturduğu grupta gözlenmiştir. Ancak standart sapma değeri yüksek olduğu için kütlece su emme yüzdesi en yüksek IS-1 grubu trakiandezitler olarak belirlenmiştir. En düşük değer ise kumtaşlarından oluşan IS-2 kodlu grupta gözlenmiştir (Tablo 10).

Tablo 10. Numunelere ait kütlece su emme değerleri

			KSE					KSE	
			ORT.	STD				ORT.	STD
	N.NO	ORT.	%	SP.		N.NO	ORT.	%	SP.
	ls-1A	2.82				Af-2	0.57		
	ls-1B	3.05	2.86	0.18		Af-5	3.08	1 74	1 49
	ls-1C	2.7				Af-10	2.96	1.74	1.45
	ls-2A	1.01				Af-12	0.33		
	ls-2B	0.54	0.91	0.28		Af-13	0.47	1.27	1.14
	ls-2C	1.19	0.51	0.20		Af-14	2.08	1.27	1.1.1
	ls-2D	0.89			z	Af-4	3.23		
	ls-3A	2			0	Af-6	1.94		
	ls-3B	1.65			AF	Af-7	2.28		
	ls-3C	3.39				Af-8	3.43	2.6	0.72
4	ls-3D	3.88				Af-9	1.95		
Ê	ls-4A	2.71	5.56	4.25		Af-11	1.99		
Å	ls-4B	3.53	0.00	4.25		Af-15	3.41		
ISF	ls-6A	12.29				Af-3	1.72		
	Is-6B	12.6				At-16	0.63	1.49	0.77
	ls-6C	3.82				Af-17	2.12		
	ls-6D	9.73							
	Is-4C	2.48							
	Is-5A	1.97	2.27	0.46					
	IS-5B	2.81							
	IS-5C	1.81							
	IS-/A	1.26							
	IS-7B	1.19	1.16	0.25					
	IS-7C	0.81		5.25					
	ls-7D	1.38							

Numunelere ait görünür porozite (GP) değerlerine bakıldığında en yüksek değer IS-3 kodlu trakit numunelerinin oluşturduğu grupta gözlenmiştir. Ancak standart sapma değeri yüksek olduğu için görünür porozite değeri en yüksek IS-1 grubu trakiandezitler olarak belirlenmiştir. En düşük değer IS-2 kodlu kumtaşlarının oluşturduğu grupta gözlenmiştir (Tablo 11).

 Tablo 11. Numunelere ait görünür porozite değerleri

				0		1		0	
	N.NO	ORT	GP ORT. %	STD SP.		N.NO	ORT	GP ORT. %	STD SP.
	ls-1A	6.55				Af-2	1.48		
	ls-1B	6.98	6.63	0.31		Af-5	7.22	4 21	2 5
	ls-1C	6.37				Af-10	7.26	4.21	3.5
	ls-2A	2.64				Af-12	0.89		
	ls-2B	1.42	2 20	0 71		Af-13	1.26	3.25	2 91
	ls-2C	3.1	2.38	0.71		Af-14	5.24		2.01
	ls-2D	2.37			_	Af-4	7.82		
	ls-3A	4.93			٥	Af-6	4.79	6.39	
	ls-3B	4.1		7.9	AFγ	Af-7	5.86		
	ls-3C	8.1				Af-8	8.15		1.5
	ls-3D	9.21	11.86			Af-9	5.06		
ΤA	ls-4A	6.39				Af-11	5.15		
AR	ls-4B	8.19				Af-15	7.85		
ISP	Is-6A	24.11				Af-3	4.4		
	ls-6B	24.68				Af-16	1.62	3.83	2
	ls-6C	8.92				Af-17	5.49		
	ls-6D	19.97							
	ls-4C	5.89							
	ls-5A	4.81	5 / 3	1 01					
	ls-5B	6.61	5.45	1.01					
	ls-5C	4.41							
	ls-7A	3.15							
	ls-7B	2.97	2 01	0.65					
	ls-7C	2	2.91	0.05					
	ls-7D	3.53							

Nokta yükü dayanım indeksi (NYD) sonuçlarına ait değerler ortalaması ve standart sapma değerleri ele alındığında en yüksek nokta yükü dayanım indeksi değeri AF-2 kodlu lösitit kayaçlarından oluşan grupta, en düşük değer ise IS-3 kodlu trakit kayaçlarının oluşturduğu grupta gözlenmiştir. Deneylere ait sonuçlar ortalaması Tablo 5'de ve standart sapma değerlerleri Tablo 6' da verilmiştir (Tablo 12).

Tablo 12. Numunelere ait nokta yükü dayanım indeksi değerleri

ueg	erieri								
	N.NO	ORT.	NYD	STD		N.NO	ORT.	NYD	STD
	1. 1.4	0.00	ivipa	JF.		46.2	2.47	ivipa	Jr.
	IS-IA	0.69		0.08		AT-Z	3.47	2.27	
	IS-1B	0.54	0.6			At-5	0.34		2.16
	ls-1C	0.58				Af-10	0.55		
	ls-2A	0.65				Af-12	4.7		
	ls-2B	1.37	0 9	0 33		Af-13	1.31	1.02	0.4
	Is-2C	0.86	0.5	0.55		Af-14	0.74		0.4
	ls-2D	0.7			_	Af-4	0.72		
	ls-3A	0.36			õ	Af-6	0.64		
	ls-3B	1.39		0.38	AFY	Af-7	0.37	0.48	
	ls-3C	0.57				Af-8	0.51		0.15
	ls-3D	0.13	0.38			Af-9	0.42		
₹	ls-4A	0.33				Af-11	0.43		
AR	ls-4B	0.24				Af-15	0.3		
ISP	Is-6A	0.17				Af-3	0.76	0.58	
	ls-6B	0.15				Af-16	0.76		0.32
	Is-6C	0.27				Af-17	0.21		
	ls-6D	0.19							
	ls-4C	0.47							
	ls-5A	1.62	0.77	0.50					
	ls-5B	0.36	0.77	0.58					
	ls-5C	0.61							
	ls-7A	1.58			1				
	ls-7B	1.74	1 07	0.37					
	ls-7C	1.77	1.83	0.27					
	ls-7D	2.22							

3.4. Numunelerin spesifik enerji değerleri

Numunelerin spesifik enerji değerlerine bakıldığında en yüksek değer AF-2 grubuna ait andezitik bazalt numunelerinde gözlenmiştir. En düşük spesifik enerji değeri ise IS-3 kodlu trakit numunelerinde gözlenmiştir. Numunelerin spesifik enerji hesap tabloları Tablo 13,14,15 'de, spesifik enerji değerleri ortalamaları ve standart sapma değerleri Tablo 16'de verilmiştir.

		Ws ort	h ort	L ort	q	Pk	Pb	Pnet	SE	SE _{ort}	
		mm	mm	mm	cm²/dak	Watt	Watt	Watt	J/mm³	J/mm ³	
	ls-1A-1	3.725	22.105	197.05	110.5	2341.1	844.5	1496.5	2.181		
	Is-1A-2	3.775	21	195.97	105	2254.1	853.3	1400.8	2.12	2.111	
	Is-1A-3	3.805	21.89	196.37	109.5	2261.6	851.2	1410.4	2.032		
	ls-1B-1	3.88	20.15	199.42	100.8	2341.57	1251.63	1089.9	1.673		
	ls-1B-2	3.79	19.92	199.59	99.6	2412.5	1193.7	1218.8	1.937	1.844	
	Is-1B-3	3.855	19.995	199.65	100	2384.2	1150.3	1233.9	1.921		
	ls-1C-1	3.74	22.415	202.76	112.1	2726.9	1121.5	1605.4	2.298		
	ls-1C-2	3.725	23.25	201.23	116.3	2966.8	1150.4	1816.3	2.517	2.435	
	ls-1C-3	3.72	22.995	201.53	115	2926.06	1150.44	1775.6	2.491		
	ls-2A-1	3.895	20.96	199.75	104.8	2816.82	1421.33	1395.5	2.051		
	ls-2A-2	3.95	21.08	198.42	105.4	2835.3	1203.7	1631.6	2.351	2.068	
	Is-2A-3	3.985	20.46	198.86	102.3	2549.2	1325.8	1223.4	1.801		
	ls-2B-1	3.805	23.895	200.77	119.5	2455.4	858.4	1597	2.108		
	Is-2B-2	3.92	22.78	198.47	113.9	2488.5	858.8	1629.7	2.19	2.169	
	ls-2B-3	3.87	23.31	199.77	116.6	2491.2	830.3	1660.9	2.209		
	ls-2C-1	3.75	22.84	201.37	114.2	1711.1	836.5	874.6	1.225	1.156	
	ls-2C-2	3.855	23.43	201.38	117.2	1676.8	835.9	840.8	1.117		
	ls-2C-3	3.805	22.61	201.15	113.1	1648.9	842.6	806.3	1.125		
	ls-2D-1	3.77	21.005	198.72	105	2559.28	1308.66	1250.6	1.895	1.865	
TA	ls-2D-2	3.865	21.59	198.11	108	2530.65	1236.85	1293.8	1.861		
PAR	ls-2D-3	3.88	21.655	198.61	108.3	2473.35	1186.29	1287.1	1.838		
IS	ls-3A-1	3.93	23.825	203.65	119.1	2485.011	854.741	1630.3	2.089	9 2 2.242	
	Is-3A-2	4.07	22.125	202.77	110.6	2480.1	827.6	1652.5	2.202		
	ls-3A-3	3.43	23.55	202.9	117.8	2478.8	840.7	1638.1	2.434		
	ls-3B-1	3.93	21.51	200.67	107.6	2898.5	1132.4	1766.1	2.507		
	ls-3B-2	3.88	21.92	200.91	109.6	2861.1	1151.7	1709.5	2.412	2.421	
	ls-3B-3	3.865	21.68	200.64	108.4	2852.9	1216.9	1636	2.343		
	ls-3C-1	3.795	19.845	200.5	99.2	1849.5	1108.6	740.9	1.181		
	ls-3C-2	3.84	19.235	200.47	96.2	2166.1	1135.3	1030.8	1.675	1.468	
	ls-3C-3	3.84	19.46	200.29	97.3	2119.8	1155	964.8	1.549		
	ls-3D-1	3.88	23.455	201.24	117.3	1942.3	1124.7	817.6	1.078		
	ls-3D-2	3.64	23.33	200.82	116.7	1924	1111.1	812.9	1.149	1.124	
	ls-3D-3	3.75	23.325	201.16	116.6	1954.5	1119.8	834.7	1.145		
	ls-4A-1	3.945	21.68	198.41	108.4	2875.7	1201.3	1674.4	2.349		
	Is-4A-2	3.915	21.955	200.51	109.8	3024.6	1174.2	1850.4	2.583	2.458	
	Is-4A-3	3.9	21.92	199.49	109.6	2921.5	1181.5	1740	2.442		
	ls-4B-1	3.86	20.745	198.12	103.7	2141.1	1162.6	978.5	1.466	1.637	
	Is-4B-2	3.8	21.3	197.21	106.5	2376.2	1214	1162.2	1.723		
	ls-4B-3	3.865	21.275	197.36	106.4	2390.3	1211.1	1179.2	1.721		
	Is-6A-1	3.77	22.26	199.14	111.3	1675.2	1138.1	537.1	0.768	0.872	
	ls-6A-2	3.675	22.27	197.66	111.3	1790.2	1155.2	635	0.931	0.072	

Tablo 13. Numunelere ait spesifik enerji hesap tablosu-1

		Ws	h	L	Q	Pk	Pb	Pnet	SE	SEort
		mm	mm	mm	cm2/dak	Watt	Watt	Watt	J/mm3	J/mm3
	ls-6B-1	3.745	23.88	200.04	119.4	1199.6	831.8	367.8	0.494	
	ls-6B-2	3.785	24.375	199.94	121.9	1260.6	851.3	409.3	0.532	0.516
	ls-6B-3	3.765	24.62	200.18	123.1	1259.3	855.3	404	0.523	
	ls-6C-1	3.795	20.575	198.56	102.9	1890	858.2	1031.8	1.586	
	ls-6C-2	3.8	21.75	199.04	108.8	1918.4	863.6	1054.8	1.531	1.593
	ls-6C-3	3.83	20.905	198.64	104.5	2002.1	893.5	1108.6	1.662	
	ls-6D-1	3.91	22.42	197.77	112.1	1371.7	873.5	498.2	0.682	
	Is-6D-2	3.835	21.795	198.08	109	1298.8	859	439.8	0.631	0.68
	ls-6D-3	3.51	22.08	197.79	110.4	1342.4	873.2	469.2	0.726	
Ā	ls-7A-1	3.81	23.25	196.91	116.3	2524.4	822.4	1702	2.306	
AR	ls-7A-2	3.83	22.885	196.94	114.4	2694.5	841.5	1853	2.537	2.448
ISP	Is-7A-3	3.77	22.875	197.14	114.4	2668.9	871	1797.9	2.502	
	ls-7B-1	3.975	22.2	200.02	111	2764.8	991.3	1773.5	2.412	
	ls-7B-2	3.83	21.3	199.58	106.5	2704.1	937.7	1766.4	2.598	2.518
	ls-7B-3	3.91	22.155	199.88	110.8	2766.4	930.6	1835.8	2.543	
	ls-7C-1	3.89	21.06	197.51	105.3	2730.3	1155.6	1574.7	2.307	2.341
	ls-7C-2	3.87	20.875	197.67	104.4	2736.2	1149.6	1586.6	2.357	
	ls-7C-3	3.84	21.055	197.41	105.3	2729.3	1139.3	1590	2.36	
	ls-7D-1	3.885	20.805	202.42	104	2785.7	1153.3	1632.4	2.424	2.58
	ls-7D-2	3.87	20.83	204.39	104.2	2929	1169	1760	2.62	
	ls-7D-3	3.89	20.75	204.04	103.8	2957.2	1142.7	1814.5	2.698	
	Af-2-1	3.995	27.035	203.17	135.2	3027.9	859.8	2168.1	2.409	2.494
	Af-2-2	3.965	26.275	202.71	131.4	3069.5	849.1	2220.5	2.558	
	Af-2-3	4	26.515	202.6	132.6	3063.6	840.5	2223.1	2.515	
	Af-5-1	3.48	21.115	199.06	105.6	1990.958	874.087	1116.9	1.824	
	Af-5-2	3.8	20.69	199.76	103.5	1852.317	892.2581	960.1	1.465	1.629
	Af-5-3	3.75	20.65	199.39	103.3	1927.296	896.25	1031	1.598	
	Af-10-1	3.9	20.95	200.4	104.8	2192.659	1154.031	1038.6	1.525	
	Af-10-2	3.9	21.04	202.42	105.2	2061.385	1146.632	914.8	1.338	1.4
	Af-10-3	3.9	21.305	201.51	106.5	2059.098	1132.5	926.6	1.338	
z	Af-12-1	3.985	18.57	146.1	92.9	3957.929	1126.102	2831.8	4.592	
FΥC	Af-12-2	3.965	19.085	165.93	95.4	3845.889	1128.863	2717	4.309	4.394
A	Af-12-3	4	18.765	149.43	93.8	3828.913	1150.776	2678.1	4.282	
	Af-3-1	3.705	21.23	201.58	106.2	2964	1146.19	1817.8	2.773	
	Af-3-2	3.115	21.42	201.76	107.1	2855.961	1172.455	1683.5	3.028	2.805
	Af-3-3	3.92	21.295	201.96	106.5	3001.261	1183.406	1817.9	2.613	
	Af-16-1	3.875	22.025	201.66	110.1	2811.556	1135	1676.6	2.357	
	Af-16-2	3.895	21.56	201.65	107.8	2971.735	1142.413	1829.3	2.614	2.492
	Af-16-3	3.935	21.575	201.68	107.9	2911.403	1138.529	1772.9	2.506	
	Af-17-1	3.69	23.495	200.67	117.5	1933.946	891.8919	1042.1	1.442	
	Af-17-2	3.765	23.065	196.39	115.3	2020.6	884.2632	1136.3	1.57	1.519
	Af-17-3	3.695	23.235	201.7	116.2	1982.432	876.7612	1105.7	1.545	

Tablo 14. Numunelere ait spesifik enerji hesap tablosu-2

		Ws	h	L	Q	Pk	Pb	Pnet	SE	SEort		
		mm	mm	mm	cm2/dak	Watt	Watt	Watt	J/mm3	J/mm3		
	Af-4-1	3.945	21.68	198.41	108.4	2192.659	1154.031	1038.6	1.457			
	Af-4-2	3.915	21.955	200.51	109.8	2061.385	1146.632	914.8	1.277	1.345		
	Af-4-3	3.9	21.92	199.49	109.6	2059.098	1132.5	926.6	1.301			
	Af-6-1	3.9	22.425	202.75	112.1	2988.39	1196.788	1791.6	2.458	2.248		
	Af-6-2	3.895	22.765	202.46	113.8	2793.256	1194.382	1598.9	2.164			
	A-6-3	3.905	24.99	204.82	125	2894.671	1169.483	1725.2	2.121			
	Af-7-1	3.9	20.715	203.02	103.6	2161.297	1209.634	951.7	1.414			
	Af-7-2	3.82	21.545	203.14	107.7	2224.82	1213.737	1011.1	1.474	1.463		
	Af-7-3	3.855	21.305	203.49	106.5	2242.753	1216.131	1026.6	1.5			
	Af-8-1	3.58	22.59	200.58	113	2021.852	877.2	1144.7	1.698			
	Af-8-2	3.73	22.695	199.92	113.5	1933.881	866.25	1067.6	1.513	1.568		
	Af-8-3	3.77	22.74	200.89	113.7	1912.595	846.6087	1066	1.492			
z	Af-9-1	3.875	24.22	201.86	121.1	2323.538	1194.221	1129.3	1.444	1.429		
٥۲	Af-9-2	3.825	23.535	203.22	117.7	2263.101	1180.688	1082.4	1.443			
AF	Af-9-3	3.905	23.7	202.77	118.5	2256.519	1177.35	1079.2	1.399			
	Af-11-1	3.92	24.63	204.87	123.2	2353.544	857.129	1496.4	1.86			
	Af-11-2	3.945	24.49	204.32	122.5	2258.277	857.8125	1400.5	1.739	1.778		
	Af-11-3	3.945	24.38	203.75	121.9	2246.805	857.1364	1389.7	1.734			
	Af-15-1	3.825	23.395	204.37	117	1864.577	855.0923	1009.5	1.354			
	Af-15-2	3.915	22.92	202.28	114.6	1931	878.9524	1052	1.407	1.407		
	Af-15-3	3.865	23.005	202.54	115	1934.311	852.2069	1082.1	1.46			
	Af-13-1	3.935	23.57	215	117.9	4194.833	1120.6	3074.2	3.978			
	Af-13-2	3.835	23.755	198.29	118.8	4546.5	1125.882	3420.6	4.506	4.257		
	Af-13-3	4.02	23.965	198.88	119.8	4556.773	1115.411	3441.4	4.287			
	Af-14-1	3.99	11.1315	184.58	55.7	2450.531	853.1077	1597.4	4.316			
	Af-14-2	3.815	21.715	183.46	108.6	2253.947	880.5405	1373.4	1.989	2.72		
	Af-14-3	3.845	22.565	184.04	112.8	2227.292	886.1757	1341.1	1.855			

Tablo 15. Numunelere ait spesifik enerji hesap tablosu-3

Tablo 16. Numune gruplarına ait spesifik enerji ve standart sapma değerleri

	r									
		SE	SE	STD			SE	SE	STD	
-	N.NO	J/mm³	ORT.	SP.		N.NO	J/mm³	ORT.	SP.	
	ls-1A	2.11		. 13 0.3		Af-2	2.49			
	ls-1B	1.84	2.13			Af-5	1.63	2 / 8	1 36	
	ls-1C	2.44				Af-10	1.40	2.40	1.50	
	Is-2A	2.07				Af-12	4.39			
	ls-2B	2.17	1 97	0.46		Af-13	4.26	2 /0	1 00	
	ls-2C	1.16	1.02	0.40		Af-14	2.72	3.45	1.09	
	Is-2D	1.86			_	Af-4	1.34			
	ls-3A	2.24			0N	Af-6	2.25			
	ls-3B	2.42		0.71	AFΥ	Af-7	1.46			
	Is-3C	1.47				Af-8	1.57	1.61	0.32	
	ls-3D	1.12	1.50 (Af-9	1.43			
ΤA	ls-4A	2.46				Af-11	1.78			
AR	ls-4B	1.64		1.50	0.71		Af-15	1.41		
ISP	Is-6A	0.87					Af-3	2.81		
	ls-6B	0.52				Af-16	2.49	2.27	0.67	
	Is-6C	1.59				Af-17	1.52			
	ls-6D	0.68								
	ls-4C	2.54								
	ls-5A	1.84	2.06	0.22						
	ls-5B	1.86	2.00	0.55						
	ls-5C	1.98								
	ls-7A	2.52								
	ls-7B	2.34	2.54	0.14						
	ls-7C	2.58	2.51	0.11						
	ls-7D	2.58								

4. Verilerin değerlendirilmesi

Şekil 4' de görüldüğü gibi numunelerin doku katsayısı ile spesifik enerjileri arasında r=0.56 katsayılı bir ilişki gözlemlenmiştir.

Şekil 4. Kayaç gruplarına ait spesifik enerji ortalamaları ile doku katsayısı ortalamaları arasındaki ilişki

IS-1 grubu ve AF-4 grubu içerisindeki kayaçlar ele alındığında en yüksek doku katsayısı değerleri (Tablo 6) mikrolitik porfirik dokulu Af-3 ve Af-17 numunelerinde gözlenmiştir (Şekil 5). Bu doku fenokristal olarak bulunan minerallerin küçük, ince taneli bir formda gene fenokristallerin etrafını çevirdiği bir matriks veya hamurdan meydana gelir. Mikrolitik tanelerin matriks içinde birbirleriyle olan yakınlıkları ise doku katsayısını yükseltmektedir.

Şekil 5. Af-3 ve Af-17 numunelerine ait incekesit görüntüsü

IS-2 grubunda bulunan kumtaşlarında doku katsayısı ve buna bağlı spesifik enerji kullanımı farklılık göstermektedir. Mineralojik olarak ele alındığında detritik dokulu olan Is-2A ve Is-2D numunelerinin yüksek çıkan doku katsayılarının (Tablo 6) sebebi tanelerin yuvarlaklıklarının yüksek olması ve fenokristaller arasını küçük çaptaki mineral tanelerinin sıkı bir bağlamla bulunmasıdır (Şekil 6). Bu da kayaç dayanımını yükseltmektedir.

IS-3 grubu ele alındığında gruba ait numuneler arasında mineralleri büyük, köşeli ve geometrik şekilli fenokristallerin yoğun olarak bulunduğu Is-3B, Is-3C, Is-4A ve Is-4B kodlu trakit numunelerinde (Şekil 7) doku katsayılarının yüksek olduğu gözlenmiştir (Tablo 6).

Şekil 6. Is-2A ve Is-2D numunelerine ait incekesit görüntüsü

Şekil 7. Is-3B, Is-3C, Is-4A ve Is-4B numunelerine ait incekesit görüntüleri

IS-4 ve AF-3 grubunu oluşturan bazaltik trakiandezit numunelerinde çeşitli doku tipleri gözlenmiştir (Tablo2,3). Ancak bu iki gruba ait tüm numunelerde kayaç hamurunu oluşturan mikrolitik mineraller yoğun olarak gözlenmiştir(Şekil 8). İki grupta da doku katsayısı yüksek olan (Tablo 6) Is-4C, Af-6, Af-8 ve Af-11 kodlu numunelerde (tıpkı IS-3 grubunda olduğu gibi) büyük ve köşeli mineraller gözlenmiştir (Şekil 8). Bu mineraller arasını dolduran mikrolitik yapıdaki taneler arası sıkı bir matriks söz konusudur.

IS-5 grubuna ait fonolitler de farklı doku katsayıları elde edilmiştir. Bu gruba ait tüm numuneler intergranüler doku tipine sahiptir. İntergranüler kavaclar icerisinde fenokristal doku olarak minerallerin aralarını sık bir bağlamla plajioklas minerallerinin doldurmasıyla meydana gelir. Ancak IS-5 grubunda en yüksek doku katsayısına (Tablo 6) sahip olan Is-7A ve Is-7B numuneleri mineralojik olarak ele alındığında diğer numunelere göre fenokristalleri arası tamamen plajioklas mineraliyle dolmuştur (Şekil 9). Yani bu iki numuneye ait fenokristaller arasında neredeyse hiç boşluk olmamakla birlikte taneler arası tamamen plajioklas minerali ile dolu olup plajioklaslarla fenokristaller bütünüyle sınır ilişkisi içerisindedir. Bu da kayacın dayanımını yükseltmektedir.

Şekil 8. Is-4C, Af-6, Af-8 ve Af-11 numunelerine ait incekesit görüntüleri

Şekil 9. Is-7A ve Is-7B numunelerine ait incekesit görüntüleri

Son grup olan AF-1 grubunu oluşturan lösititler porfirik dokulu kayaçlardır. Doku katsayısı ele alındığında Af-12 numunesi diğer lösitit numunelerine göre daha yüksek çıkmıştır (Tablo 6). Bunun sebebi diğer numunelere oranla bu numunede mineral tane boyları daha büyüktür (Şekil 10). Büyük formda olan bu fenokristaller arasında önemli ölçüde sınır ilişkisi gözlenmektedir (Şekil 10). Bu durumda kayacın bağlamı yüksek olmakla birlikte dayanımı artmıştır.

Şekil 10. Af-12 numunesine ait incekesit görüntüsü

Numunelerin spesifik enerjileri ve tanelere ait şekil faktörü arasındaki ilişki araştırılırken başta anlamlı bir ilişki elde edilemezken sapan değerlere sahip olan AF-4 ve AF-3 kodlu numune gruplarına ait değerler çıkartıldığında Şekil 11 'de görüldüğü üzere numunelerin spesifik enerji ve şekil faktörü değerleri ortalamalarının kullanıldığı grafikte tanelere ait şekiller ile kesilebilirlikleri arasında anlamlı bir ilişki vardır.

Şekil 11. Kayaç gruplarına ait spesifik enerji ortalamaları ile şekil faktörü değerlerinin ortalamaları arasındaki ilişki

Şekil 12. Kayaç gruplarına ait spesifik enerji ve numunelerin içerisindeki tanelerin alanlarının toplamın matrikse oranı değerlerinin ilişkisi

Tanelerin şekillerinin ve büyüklüklerinin, kayaç icerisindeki kapladıkları alanın ve bulunma oranlarının spesifik enerjiyi ne kadar etkilediğini belirleyebilmek amacıyla yapılan grafik Şekil 12 'de verilmiştir. Başta düşük bir katsayı elde edilen ilişkide AF-2 kodlu numune grubuna ait değerler çıkartıldığında R²= 0.46 katsayılı bir ilişki elde edilmiştir. Bu durumda mineral tanelerinin kayaç içerisindeki bulunma oranları, matriks içerisindeki mineral tanelerinin kapladığı alanın ve tane büyüklüklerinin kayacın dayanımını etkilediği aynı zamanda spesifik enerji kullanımını arttırdığı sonucuna varılmıştır.

Lösitit numunelerinin oluşturduğu AF-1 kodlu grupta en yüksek sismik hız (Tablo 8) ve nokta yükü dayanım indeksi (Tablo 12) değerinin çıkması lösitit kayacını oluşturan tanelerin hem büyük boyutta ve yuvarlaklığının yüksek olması hem de kayaç içerisinde kırık, çatlak ve gözenekliliğin diğer kayaç numunelerine oranla daha az olmasıdır.

Schmitd çekiç sertliği değerlerine bakıldığında IS-4 kodlu bazaltik trakiandezit numuneleri ve IS-5 kodlu fonolit numunelerinde yüksek çıkmıştır (Tablo 9). Nedeni büyük, çok büyük, öz şekilli, yarı özşekilli tanelerin bulunma oranının diğer kayaçlara göre fazla olmasıdır.

Kütlece su emme (Tablo 10) ve görünür porozite (Tablo 11) değerleri en yüksek çıkan grup IS-3 kodlu trakit numunelerinin oluşturduğu gruptur. Kütlece su emme ve görünür porozite değerlerinin yüksek çıkması trakit kayacına ait numunelerin içerisinde mevcut olan gözeneklerin tamamına yakınının suyla dolduğunu yani numuneler içerisinde volkanik kayaçlarda sıkça gözlenen gaz boşluklarının fazla olmasından dolayıdır. Aynı zamanda bu durum kayaca ait birim hacim ağırlık (Tablo 7) ve spesifik enerji (Tablo 16) değerinin düşük çıkmasına yani kayacın kesilebilirliğinin kolaylaşmasını sağlamaktadır.

5. Tartışma ve Sonuç

Genel olarak tüm çalışma ele alındığında en düşük doku katsayılarına (TC) sahip olan lösitit numuneleri kumtaşlarına oranla daha yüksek yuvarlaklık katsayısına (FF) sahiptir. Ancak lösitit kayaçlarında spesifik enerji değeri (SE) kumtaşına oranla daha yüksek olarak bulunmuştur (Tablo 16). Bu durumda tane yuvarlaklık katsayısı kayaç dayanımın etkilediği açıktır. Bunun yanı sıra litaretür de geçen tane yuvarlaklığının öneminin yanında kayaçlar içerisinde bulunan fenokristallerin öz şekilli, yarı özşekilli, geometrik şekilli ve tane büyüklükleri de doku katsayılarını ciddi derecede etkilemektedir. Buna bağlı olarak kayaç dayanımlarının da artmasıyla spesifik enerji kullanımı artmaktadır.

Kayaçlara ait doku tipleri ele alındığında ise taneler arasını dolduran hamur veya matriks içerisinde mikrolitik yapıdaki minerallerin yoğunluğu ve tüm taneler arası sınır ilişkisi arttıkça doku katsayısı yükselmekte ve kayaç dayanımı artmaktadır.

Sonuç olarak kayaç dayanımının sayısallaştırılabileceği, tane yuvarlaklığının önemli olduğu, mineral tane büyüklüğünün, fenokristallerin geometrik sekillerinin, hamur veva matriksin icerisinde bulunan mikrolitik yapıdaki minerallerin yoğunluğunun ve mineral taneleri arası temasın arttıkça kayaç dayanımının yükseldiği gözlenmiştir. Bunların yansıra spesifik enerji ile doku katsayısı arasında doğru orantılı anlamlı bir ilişki elde edilmiş olup dairesel testerelerin kullanımında doku katsayısı parametresinin kullanılabilirliği hem zaman kazancını hem de kesime ait verimi arttırabileceği anlaşılmıştır.

Kaynakça

- [1] Şengün, N. 2009. Kayaçların Kırılma Tokluğu ve Gevrekliğinin Dairesel Testereler ile Kesme Verimi Üzerine Etkileri. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 180s, Isparta.
- [2] Şengün N., Altindağ R., Erinç Koçcaz C., "Isparta Yöresinde Bulunan Bazı Mağmatik Kökenli Kayaçların Kesilebilirlik Analizi", DEÜ Fen ve Mühendislik Dergisi, cilt.11, ss.22-31, 2009.
- [3] Öztürk, C.A. 2006. Kayaç dokusal özelliklerinin sınıflandırılması ve kaya mühendisliği uygulamaları. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 220s, İstanbul.
- [4] Howarth, D.F., Rowlands, J.C. 1987. Quantitative Assessment Of Rock Texture And Correlation With Drillability And Strength Properties. Rock Mechanics and Rock Engineering, 20(1987), 57-85, England.
- [5] Öztürk, C. A., Nasuf, E., ve Bilgin, N., 2004. The Assessment of Rock Cuttability and Physical and Mechanical Rock Properties From a Texture Coefficient, J. South African Ins. Mining and Metallurgy, 7, 397-403.
- [6] Tiryaki, B. vd., 2003. Kayaç Kesmede Keski Performansının Tahmini İçin Doku Katsayısı Yaklaşımının Kullanılabilirliği, Madencilik Dergisi, Cilt 42, Sayı 2, Syf 27-43.
- [7] Günaydın, S. 2006. Kayaçların doku katsayıları ile fiziko-mekanik özellikleri arasındaki ilişkilerin incelenmesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 80s, Isparta.
- [8] TS EN 1936, 2010. Doğal taşlar Deney yöntemleri - Gerçek yoğunluk, görünür yoğunluk, toplam ve açık gözeneklilik tayini, TSE, Ankara.
- [9] TS EN 13755, 2009. Doğal taşlar-Deney metotları-Atmosfer basıncında su emme tayini, TSE,Ankara.
- [10] TS EN 14579, 2006. Doğal taşlar Deney yöntemleri-Ses hızı ilerlemesinin tayini, TSE, Ankara.
- [11] ISRM 1981, Rock Characterization, Testing and Monitoring –ISRM Suggested Methods, Pergamon Press", Oxford, Brown, E.T. (ed), 211 p.